JPS59230856A - Controller of electromobile - Google Patents

Controller of electromobile

Info

Publication number
JPS59230856A
JPS59230856A JP10646783A JP10646783A JPS59230856A JP S59230856 A JPS59230856 A JP S59230856A JP 10646783 A JP10646783 A JP 10646783A JP 10646783 A JP10646783 A JP 10646783A JP S59230856 A JPS59230856 A JP S59230856A
Authority
JP
Japan
Prior art keywords
pressure
force
signal
hydraulic pressure
braking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10646783A
Other languages
Japanese (ja)
Inventor
Akira Shimokune
下久「ね」 朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP10646783A priority Critical patent/JPS59230856A/en
Publication of JPS59230856A publication Critical patent/JPS59230856A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/10Indicating wheel slip ; Correction of wheel slip
    • B60L3/106Indicating wheel slip ; Correction of wheel slip for maintaining or recovering the adhesion of the drive wheels
    • B60L3/108Indicating wheel slip ; Correction of wheel slip for maintaining or recovering the adhesion of the drive wheels whilst braking, i.e. ABS
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems

Abstract

PURPOSE:To prevent a wheel from generating lock by enabling just enough braking always, by controlling a pressure adjusting device according to a result of comparison between a deflection between a stepping force signal and a regenerative brake force signal and pressure of a hydraulic pressure duct. CONSTITUTION:At the time of braking wherein a brake pedal 8 is stepped in, hydraulic pressure signals Sp1, Sp2 from hydraulic pressure sensors 15, 16 detecting a step-on force signal ST from a step-on force sensor 9 and hydraulic pressure in the inside of hydraulic pressure ducts 4, 5 are spplied to a regenation control controller 13 to begin with, and generated hydraulic pressure by a master cylinder 6 is decided hereupon whether it is normal or not. When this decision is given as Yes, regenerative instructions Sr and a hydraulic pressure control signal Spc corresponding to a regenerative brake force signal Sc are applied to a traction motor 3 and a hydraulic pressure regulator 14 respectively. As for a front wheel, thynthetic brake force of mechanical brake force depending on a hydraulic pressure type front wheel brake gear 1 and regenerative brake force depending on a traction motor 3 is controlled so that the same corresponds to necessary brake force to be shown by the step-on force signal ST.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は電気自動車の制動装置の改良に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an improvement in a braking device for an electric vehicle.

(従来技術) 一般に、電気自動車の制動装置としては、1%動源であ
るモータを発電機として用いることにより制動を行う電
気制動(いわゆる回生側7ijI)によるものと、ブレ
ーキペダルの踏込みによりマスターシリンダを介してホ
イールブレーキに油圧を与λ−これを作動させる機械制
動によるもの(例えば、実開昭!;l、−/jkり76
7号)とが知られている。
(Prior art) In general, braking devices for electric vehicles include electric braking (so-called regenerative side 7ijI) that performs braking by using a motor that is a 1% power source as a generator, and one that uses the master cylinder by pressing the brake pedal. Hydraulic pressure is applied to the wheel brake via λ - by mechanical braking to operate it (for example, the
No. 7) is known.

ところが、従来の電気自動車では、上記電気制動と機械
制動とを併用し、ブレーキぜグルリ踏込みにより両者が
同時に作動するようになっていたため、制動力が太きす
ぎ、場合によっては車W烏のロックが生じてしまうおそ
れがあった。
However, in conventional electric vehicles, the above-mentioned electric braking and mechanical braking are used together, and both are activated at the same time by pressing down on the brake, so the braking force is too strong, and in some cases, the car may lock up. There was a risk that this would occur.

(発明の目的) 本発明は、上記した電気制動と機械制動を併用するタイ
グの電気自動車の制動装置において、プレーキペダルに
かかる踏力に応じた適正な制動力を得ることのできる電
気自動車の制動装置を提供することを目的とするもので
ある。
(Object of the Invention) The present invention provides a braking device for an electric vehicle, which uses both electric braking and mechanical braking as described above, and is capable of obtaining an appropriate braking force according to the pedal force applied to the brake pedal. The purpose is to provide the following.

(発明の構成) 本発明は、前輪側または後輪側に設けられ、回生制動装
置と油圧式機械制動装置とを備えた電気自動車の制動装
置において、前記油圧式機械制動装置の油圧通路の途中
に設けられた調圧装置、ブレーキペダルにかかる踏力を
検出し、この踏力に応じた踏力信号を発する踏力信号発
生手段、前記調圧装置上流側の油圧通路の圧力を検出し
、この圧力に応じた圧力信号を発する圧力信号発生手段
、前記回生制動装置の回生制動力を検出し、この回生制
動力に応じた回生制動力信号を発する制動力信号発生手
段、および前記踏力信号と前記回生制動力信号とを比較
してその力差を演算し、次いでこの力差と前記圧力信号
によって示される前記油圧通路の圧力とを比較し、前記
力差より前記油圧通路の方が大きいとき減圧信号を、小
さいとき増圧信号を発し、これらの信号によって前記調
圧装置を制御する制御手段を備えたことを特徴とするも
のである。
(Structure of the Invention) The present invention provides a braking device for an electric vehicle that is provided on a front wheel side or a rear wheel side and includes a regenerative braking device and a hydraulic mechanical braking device, in the middle of a hydraulic passage of the hydraulic mechanical braking device. a pressure regulating device installed in the brake pedal, a pedal force signal generating means for detecting the pedal force applied to the brake pedal and emitting a pedal force signal corresponding to the pedal force, and detecting the pressure in the hydraulic passage upstream of the pressure regulating device, a pressure signal generating means for generating a pressure signal, a braking force signal generating means for detecting a regenerative braking force of the regenerative braking device and generating a regenerative braking force signal according to the regenerative braking force, and the pedal force signal and the regenerative braking force. calculate the force difference by comparing the force difference with the pressure signal, and then compare this force difference with the pressure in the hydraulic passage indicated by the pressure signal, and when the pressure in the hydraulic passage is greater than the force difference, a pressure reduction signal is issued. The present invention is characterized in that it includes a control means that issues pressure increase signals when the pressure is small and controls the pressure regulating device using these signals.

(発明の効果) 上記した構成の本発明の電気自動車の制動装置において
は、踏力信号と回生制動力信号とを比較してその力差を
演算し、次いでこの力差と圧力信号によって示される油
圧通路の圧力とを比較し、上記力差より上記油圧通路の
方が大きいとき減圧信号を、小さいとき増圧信号を発し
、こたらの信号によって上記調整装置を制御するように
したので、電気制動力と機械制動力を加えた総合制動力
が、ブレーキペダルの踏力によって決定される必要制動
力と常に同一となり、従って過不足のない制動を行なう
ことができ、車輪のロックが生じたりすることがない。
(Effects of the Invention) In the electric vehicle braking device of the present invention having the above-described configuration, the pedal force signal and the regenerative braking force signal are compared to calculate the force difference, and then the hydraulic pressure indicated by this force difference and the pressure signal is calculated. The pressure in the hydraulic passage is compared with the pressure in the hydraulic passage, and when the pressure difference is greater than the pressure difference in the hydraulic passage, a pressure reduction signal is issued, and when it is smaller, a pressure increase signal is issued, and the adjustment device is controlled by the signal from the Kotara. The total braking force, which is the sum of the power and the mechanical braking force, is always the same as the required braking force determined by the force applied to the brake pedal.Therefore, just the right amount of braking can be achieved, and the wheels will not lock up. do not have.

また本発明においては、回生制動力を調整するのではな
く、機械制動力を調整することによって、総合制動力を
得るようにしているので、効率的なエネルギの回収を図
ることができる。
Further, in the present invention, the total braking force is obtained by adjusting the mechanical braking force instead of adjusting the regenerative braking force, so that efficient energy recovery can be achieved.

(実施例) 以下、添付図面を参照しつつ本発明の好ましい実施例に
よる電気自動車の制動装置について説明する。
(Embodiment) Hereinafter, a braking device for an electric vehicle according to a preferred embodiment of the present invention will be described with reference to the accompanying drawings.

第1図は、本発明の実施例による電気自動車の制動装置
の系統図で必り、この図において、符号1は油圧式前輪
制動装置を、符号2は油圧式後輪制動装置を、そして符
号3はトラクションモータをそれぞれ示す。制動装置1
および2は、それぞれ第1および第コ油圧通路4,5を
介して、マスクシリンダ6に接続されている。このマス
クシリンダ6は、そのピストン(図示せス)カオ硬レー
ティングロッド7を介してブレーキペダル8に連結され
ている。上記オペレーティングロッド7の途中には、踏
力センサ9が設けられており、この踏力センサ9は、ブ
レーキペダル8にかかる運転者の踏力を検出して、該踏
力に応じた踏力信号STを出力するものである。上記マ
スクシリンダ6は、この踏力信号STに応じた油圧を発
生し、上記制動装置1および2に供給してこれらを作動
制御するようになっている。
FIG. 1 is a system diagram of a braking system for an electric vehicle according to an embodiment of the present invention, in which reference numeral 1 indicates a hydraulic front wheel braking device, reference numeral 2 indicates a hydraulic rear wheel braking device, and reference numeral 2 indicates a hydraulic rear wheel braking device. 3 each indicates a traction motor. Braking device 1
and 2 are connected to the mask cylinder 6 via first and second hydraulic passages 4 and 5, respectively. This mask cylinder 6 is connected to its piston (not shown) and to a brake pedal 8 via a hard rating rod 7 . A pedal force sensor 9 is provided in the middle of the operating rod 7, and this pedal force sensor 9 detects the driver's pedal force applied to the brake pedal 8 and outputs a pedal force signal ST corresponding to the pedal force. It is. The mask cylinder 6 generates hydraulic pressure according to the pedal force signal ST, and supplies it to the braking devices 1 and 2 to control their operation.

上記トラクションモータ3には、パフf’1710が接
続されたメインコントローラ11が電カケープル12を
介して接続されており、このメインコントローラ11は
、電気自動車の通常運転状態においては、バッテリ10
からの電力を制御しつつ上記トラクションモータ3に供
給して、該モータ3を作動させ、自動車を走行させるよ
うになっている。
A main controller 11 to which a puff f'1710 is connected is connected to the traction motor 3 via an electric cable 12, and this main controller 11 is connected to a battery 10 in a normal driving state of an electric vehicle.
Electric power is supplied to the traction motor 3 in a controlled manner to operate the motor 3 and drive the vehicle.

上記メ・rンコントローラ11には、上記トラクション
モータ3による回生制動を制御する回生制御コン)=−
ラ13が接続されている。この回生制御コントローラ1
3には、後に説明する目的のため、プレーキイダル8が
、踏み込まhたとさ、これを検知して制動信号SBを出
力するブレーキスイッチ14が接続されている。回生制
御コントローラ13は、上記ブレーキスイッチ14から
の制動信号SBを受け、かつ踏力センサ9からの踏力信
号STが所定値以上となったとき、回生信号Sroをメ
インコントローラ11に送出する。メインコントローラ
11は、このように回生信号Sr。
The main controller 11 includes a regenerative control controller that controls regenerative braking by the traction motor 3.
13 is connected. This regeneration control controller 1
3 is connected to a brake switch 14 which detects when the brake pedal 8 is depressed and outputs a braking signal SB for the purpose described later. The regeneration control controller 13 receives the braking signal SB from the brake switch 14 and sends a regeneration signal Sro to the main controller 11 when the pedal force signal ST from the pedal force sensor 9 exceeds a predetermined value. The main controller 11 thus receives the regeneration signal Sr.

を受けたとき、回生指令Srをトラクションモータ3に
出力して、電気制動を掛けるとともに、電カケープル1
2を介して電気エネルギの回収を行なう。上記メインコ
ントローラ11には、この回生制動によって回収される
電気エネルギすなわち電流を検知することによって回生
制動力を検知し、この回生制動力に応じた回生制動力信
号Scを上記回生制御コントローラ13に出力するよう
になっている。
When received, a regeneration command Sr is output to the traction motor 3, electric braking is applied, and the electric cable 1 is
Electrical energy is recovered via 2. The main controller 11 detects a regenerative braking force by detecting the electric energy, that is, the current recovered by this regenerative braking, and outputs a regenerative braking force signal Sc corresponding to this regenerative braking force to the regenerative control controller 13. It is supposed to be done.

上記前輪制動装置1のだめの第1油圧通路4には、上記
マスクシリンダ6からこの油圧通路4に供給される作動
油の油圧を最終的に調整する油圧レギュレータ14が設
けられている。この油圧レギュレータ14は、上記回生
制御コントローラ13に接続されており、この回生制御
コントローラ13は、上記メインコントローラ11から
回生制動力信号S。を受けて、上記油圧レギュレータ1
4を作動制御して、前輪制動装置1に供給する作動油の
油圧を、回生制動力信号S。で示される回生制動力に相
当する分だけ減圧する。以上によって、油圧式前輪制動
装置1による機械制動力と、トラクションモータ3によ
る回生制動力とを加えた総合制動力が、踏力センサ9か
らの踏力信号ST によって示される必要制動力に相当
するように制御され、常に過不足のない制動が行なえる
The first hydraulic passage 4 of the front wheel braking device 1 is provided with a hydraulic regulator 14 that ultimately adjusts the hydraulic pressure of the hydraulic oil supplied from the mask cylinder 6 to the hydraulic passage 4. This hydraulic regulator 14 is connected to the regeneration control controller 13, and the regeneration control controller 13 receives the regenerative braking force signal S from the main controller 11. Accordingly, the above hydraulic regulator 1
4 and controls the hydraulic pressure of the hydraulic oil supplied to the front wheel braking device 1 as a regenerative braking force signal S. The pressure is reduced by an amount equivalent to the regenerative braking force shown by . As described above, the total braking force obtained by adding the mechanical braking force from the hydraulic front wheel braking device 1 and the regenerative braking force from the traction motor 3 corresponds to the required braking force indicated by the pedal force signal ST from the pedal force sensor 9. It is controlled and can always perform just the right amount of braking.

なお、後に説明する目的のため、上記詔/油圧通路4に
は、上記マスクシリンダ6と油圧レギュレーター40間
に、該マスクシリンダ6からこの油圧通路4に供給され
る作動油の油圧を検出し、この油圧に応じた第1油圧信
号SP1を出力する第1油圧センサー5が、また上記第
2油圧通路5には、マスクシリンダ6からこの第ユ油圧
通路5に供給される作動油の油圧を検出し、この油圧に
応じた第コ油圧信号SP2を出力する第2油圧センサー
6が設けられており、これら油圧センサー5および16
の出力端は、上記回生制御コントローラさ 13に接続されている。
For the purpose to be explained later, the hydraulic pressure passage 4 is provided between the mask cylinder 6 and the hydraulic regulator 40 to detect the hydraulic pressure of the hydraulic oil supplied from the mask cylinder 6 to the hydraulic passage 4. A first oil pressure sensor 5 outputs a first oil pressure signal SP1 corresponding to this oil pressure, and a first oil pressure sensor 5 is also provided in the second oil pressure passage 5 to detect the oil pressure of hydraulic oil supplied from the mask cylinder 6 to this first oil pressure passage 5. A second oil pressure sensor 6 is provided which outputs a second oil pressure signal SP2 corresponding to this oil pressure, and these oil pressure sensors 5 and 16
The output end of the regeneration controller 13 is connected to the regeneration controller 13.

次に、以上説明した構成の電気自動車の制動装置の制御
の一例について、第2図に示したフローチャートを参照
しつつ説明する。
Next, an example of control of the braking device of the electric vehicle having the configuration described above will be described with reference to the flowchart shown in FIG. 2.

この制動装置の制御は、寸ずブレーキペダル8が踏み込
まれているか否か、すなわちプレーヤスイッチ14aが
制動信号SBを発しているか否かの判定から始められる
。この判定がNoのときはその4まスタートに戻り、こ
の判定がYESのときは、踏力センサ9からの踏力信号
STおよび第1および第1油圧センサー5,16からの
第1および第コ油圧信号SP、およびSP2を受け、こ
れらの信号に基づきマスクシリンダ6からペダル踏力に
対応した油圧が発生しているか否か、すなわちマスクシ
リンダ60発生油圧が正常か否かが判定される。この判
定がYESのときは、正常作動状態の回生制動を行なう
回生モード(A)を実行するための信号、すなわちトラ
クションモータ3には回生指令Srを、油圧レギュレー
タ14には回生制動力信号S。に応じた油圧制御信号S
Poをそれぞれ出力する。仁の後、回生制動力信号S。
Control of this braking device begins with a determination as to whether or not the brake pedal 8 is being depressed, that is, whether or not the player switch 14a is issuing the braking signal SB. When this determination is No, the process returns to the start, and when this determination is YES, the pedal force signal ST from the pedal force sensor 9 and the first and second oil pressure signals from the first and first oil pressure sensors 5 and 16 SP and SP2 are received, and based on these signals, it is determined whether or not a hydraulic pressure corresponding to the pedal depression force is generated from the mask cylinder 6, that is, whether or not the hydraulic pressure generated by the mask cylinder 60 is normal. When this determination is YES, a signal is sent to the traction motor 3 to execute the regeneration mode (A) that performs regenerative braking, that is, a regeneration command Sr is sent to the traction motor 3, and a regenerative braking force signal S is sent to the hydraulic regulator 14. Hydraulic control signal S according to
Output each Po. After jin, regenerative braking force signal S.

を読み取シ、回生制動によって回収される電気エネルギ
の大きさを示す回生電流は正常か否か、すなわち回生制
動が正常に行なわれているか否かが判定される。この判
定がYESのときは、そのまま制御を完了し、以上のス
テップを繰り返す。
It is determined whether the regenerative current indicating the amount of electrical energy recovered by regenerative braking is normal or not, that is, whether regenerative braking is being performed normally. When this determination is YES, the control is completed and the above steps are repeated.

以上説明した回生制御(A)の場合には、前輪において
は、油圧式前輪制動装置1による機械制動力と、トラク
ションモータ3による回生制動力とを加えた総合制動力
が、踏力信号STによって示される必要制動力に相当す
るように制御されるとともに、後輪制動装置2において
は、踏力信号3 ’rによって示される必要制動力に相
当する油圧がマスクシリンダ6から供給されるので、常
に過不足なく制動を行なうことができる。
In the case of the regenerative control (A) described above, for the front wheels, the total braking force, which is the sum of the mechanical braking force from the hydraulic front wheel braking device 1 and the regenerative braking force from the traction motor 3, is indicated by the pedal force signal ST. At the same time, in the rear wheel braking device 2, hydraulic pressure corresponding to the required braking force indicated by the pedal force signal 3'r is supplied from the mask cylinder 6, so there is always excess or deficiency. Braking can be done without any problem.

上記マスタシリンダ6の発生油圧が正常か否かの判定が
Noのときは、次いでこの異常が前輪側に存在するのか
否かが判定される。この判定がYESのときは、前輪側
に油圧失陥があることを示しているので、このときは油
圧レギュレータ14に油圧レギュレータ機能をカットす
るための信号SPcを供給して、油圧式前II令制動装
置1の作動を停止するとともに、踏力信号S、に応じた
回主制動力が得られるようにトラクションモータ3に回
生指令Srを出力して、回生モード(B)を実行する。
If the determination as to whether or not the oil pressure generated by the master cylinder 6 is normal is No, then it is determined whether or not this abnormality exists on the front wheel side. When this determination is YES, it indicates that there is a hydraulic failure on the front wheel side, so in this case, a signal SPc for cutting the hydraulic regulator function is supplied to the hydraulic regulator 14, and The operation of the braking device 1 is stopped, and a regeneration command Sr is output to the traction motor 3 so that a rotational braking force corresponding to the pedal force signal S is obtained, thereby executing the regeneration mode (B).

この後回生制動力信号Scを読み取り、回生制動によっ
て回収される電気エネルギの大きさを示す回生電流は正
常か否か、すなわち回生制動が正常に行なわれているか
否かが判定される。この判定がYESのときは、そのま
ま制御を完了し、以上のステツノを繰り返す。
Thereafter, the regenerative braking force signal Sc is read to determine whether the regenerative current indicating the amount of electrical energy recovered by regenerative braking is normal or not, that is, whether regenerative braking is being performed normally. If this determination is YES, the control is completed and the above steps are repeated.

上記コ回の回生電流が正常か否かの判定がN。The judgment of whether the regenerative current of the above-mentioned time is normal or not is N.

の場合、および上記異常は前輪側かの判定がN。In this case, the judgment as to whether the above abnormality is on the front wheel is N.

のときは、とりあえず回生指令Srをカットし、油圧式
制動装置1.2のみを作動させて、故障にそなえること
ができる。
In this case, it is possible to prepare for the failure by cutting off the regeneration command Sr and operating only the hydraulic braking device 1.2.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施例による電気自動車の制動装置
の系統図、 第一図は、第1図に示した制動装置の制御の一例を示す
ノロ−チャートである。 1・・・・・・・・・油圧式前輪制動装置、2・・・・
・・・・・油圧式後輪制動装置。 3・・・・・・・・・ トラクションモータ、11・・
・・・・・・・メインコントローラ、13・・・・・・
・・・回生制御コントローラ、14・・・・・・・・・
油圧レギュレータ特許出願人 東洋工東株式会社
FIG. 1 is a system diagram of a braking device for an electric vehicle according to an embodiment of the present invention, and FIG. 1 is a flowchart showing an example of control of the braking device shown in FIG. 1...Hydraulic front wheel braking device, 2...
...Hydraulic rear wheel braking device. 3... Traction motor, 11...
・・・・・・・Main controller, 13・・・・・・
...Regeneration control controller, 14...
Hydraulic regulator patent applicant Toyo Koto Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 前輪側または後輪側に設けられ、回生制動装置と油圧式
機械制動装置とを備えた電気自動車の制動装置において
、前記油圧式機械制動装置の油圧通路の途中に設けられ
た調圧装置、ブレーキぜダルにかかる踏力を検出し、こ
の踏力に応じた踏力信号を発する踏力信号発生手段、前
記調圧装置上流側の油圧通路の圧力を検出し、この圧力
に応じた圧力信号を発する圧力信号発生手段、前記回生
制動装置の回生側L(+力を検出し、この回生制動力に
応じた回生制動力信号を発する制動力信号発生手段、お
よび前記踏力信号と前記回生制動力信号とを比較してそ
の力差を演算し、次いでこの力差と前記圧力信号によっ
て示される前記油圧通路の圧力とを比較し、前記力差よ
り前記油圧通路の方が大きいとき減圧信号を、小さいと
き増圧信号を発し、これらの信号によって前記調圧装置
を制御する制御手段を備えた電気自動車の制動装置。
In a braking device for an electric vehicle, which is provided on the front wheel side or the rear wheel side and includes a regenerative braking device and a hydraulic mechanical braking device, a pressure regulating device and a brake are provided in the middle of a hydraulic passage of the hydraulic mechanical braking device. a pedal force signal generating means that detects the pedal force applied to the pedal and generates a pedal force signal corresponding to the pedal force; and a pressure signal generator that detects the pressure in the hydraulic passage upstream of the pressure regulating device and generates a pressure signal corresponding to this pressure. means, a braking force signal generating means for detecting regenerative side L (+ force) of the regenerative braking device and generating a regenerative braking force signal according to the regenerative braking force, and comparing the pedal force signal and the regenerative braking force signal. Then, this force difference is compared with the pressure in the hydraulic passage indicated by the pressure signal, and when the pressure in the hydraulic passage is greater than the force difference, a pressure reduction signal is generated, and when it is smaller, a pressure increase signal is generated. A braking device for an electric vehicle, comprising control means for emitting signals and controlling the pressure regulating device based on these signals.
JP10646783A 1983-06-14 1983-06-14 Controller of electromobile Pending JPS59230856A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10646783A JPS59230856A (en) 1983-06-14 1983-06-14 Controller of electromobile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10646783A JPS59230856A (en) 1983-06-14 1983-06-14 Controller of electromobile

Publications (1)

Publication Number Publication Date
JPS59230856A true JPS59230856A (en) 1984-12-25

Family

ID=14434352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10646783A Pending JPS59230856A (en) 1983-06-14 1983-06-14 Controller of electromobile

Country Status (1)

Country Link
JP (1) JPS59230856A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4708225A (en) * 1985-01-29 1987-11-24 Wabco Westinghouse Fahrzeugbremsen Gmbh Overload protection and/or warning arrangement
JPH01126103A (en) * 1987-11-10 1989-05-18 Toyota Autom Loom Works Ltd Braking device for electric motor vehicle
JPH02120165A (en) * 1988-09-30 1990-05-08 Ford Motor Co Regeneration and friction brake device for vehicle and operation thereof
WO1995005299A1 (en) * 1993-08-13 1995-02-23 Itt Automotive Europe Gmbh Brake system with anti-locking protection for electrically powered vehicles
WO1996017741A1 (en) * 1994-12-06 1996-06-13 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Braking control device for electric motorcar
US5927829A (en) * 1995-10-03 1999-07-27 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Brake apparatus for electric automobile utilizing regenerative braking
JP2000247219A (en) * 1999-03-02 2000-09-12 Toyota Motor Corp Braking force controller for vehicle
JP2001268703A (en) * 2000-03-23 2001-09-28 Fuji Heavy Ind Ltd Brake device for electric motor vehicle
KR100747342B1 (en) * 2001-06-20 2007-08-07 현대자동차주식회사 a front brake operating system of hybrid electric vehicles
JP2013500199A (en) * 2009-07-27 2013-01-07 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Hybrid braking system for automobiles with improved braking distribution

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4708225A (en) * 1985-01-29 1987-11-24 Wabco Westinghouse Fahrzeugbremsen Gmbh Overload protection and/or warning arrangement
JPH01126103A (en) * 1987-11-10 1989-05-18 Toyota Autom Loom Works Ltd Braking device for electric motor vehicle
JPH02120165A (en) * 1988-09-30 1990-05-08 Ford Motor Co Regeneration and friction brake device for vehicle and operation thereof
WO1995005299A1 (en) * 1993-08-13 1995-02-23 Itt Automotive Europe Gmbh Brake system with anti-locking protection for electrically powered vehicles
WO1996017741A1 (en) * 1994-12-06 1996-06-13 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Braking control device for electric motorcar
US5927829A (en) * 1995-10-03 1999-07-27 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Brake apparatus for electric automobile utilizing regenerative braking
JP2000247219A (en) * 1999-03-02 2000-09-12 Toyota Motor Corp Braking force controller for vehicle
JP2001268703A (en) * 2000-03-23 2001-09-28 Fuji Heavy Ind Ltd Brake device for electric motor vehicle
KR100747342B1 (en) * 2001-06-20 2007-08-07 현대자동차주식회사 a front brake operating system of hybrid electric vehicles
JP2013500199A (en) * 2009-07-27 2013-01-07 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Hybrid braking system for automobiles with improved braking distribution

Similar Documents

Publication Publication Date Title
US6081081A (en) Electric motor-driven wheel brake for vehicles
US5511859A (en) Regenerative and friction brake blend control
JP5721792B2 (en) Vehicle regenerative braking control method including at least one electric motor
US6070953A (en) Braking system for a vehicle
EP1491386B1 (en) Braking system of hybrid vehicle
WO2014167643A1 (en) Vehicle brake control device
US20010024062A1 (en) Control method for a coordinated regenerative brake system
KR102417509B1 (en) Method for controlling regenerative brake cooperation system
JPH09308004A (en) Brake device of electromotive vehicle
JP5768352B2 (en) Brake control device for electric vehicle
JPWO2005054025A1 (en) Braking device for vehicle
JPS59230856A (en) Controller of electromobile
CN105492271A (en) Vehicle
JP2016111891A (en) Vehicular braking force controller
JP4677964B2 (en) Electric brake device
EP0995655A4 (en) Braking system for vehicles
JPH1132404A (en) Travel motion control equipment for electric vehicle
CN112124270B (en) Deceleration control device for vehicle
JP2018033290A (en) Electric automobile
JP2015030280A (en) Vehicular brake apparatus
JP4687689B2 (en) Vehicle regenerative / friction braking cooperative braking control device
CN109606341B (en) Multi-mode electromechanical hybrid brake decoupling method
CN109624946B (en) Braking force control device for vehicle
JP4355164B2 (en) Vehicle braking device
KR101500348B1 (en) Method for brake controlling of hybrid vehicle