JPS59230688A - Sludge concentrating method - Google Patents

Sludge concentrating method

Info

Publication number
JPS59230688A
JPS59230688A JP7632784A JP7632784A JPS59230688A JP S59230688 A JPS59230688 A JP S59230688A JP 7632784 A JP7632784 A JP 7632784A JP 7632784 A JP7632784 A JP 7632784A JP S59230688 A JPS59230688 A JP S59230688A
Authority
JP
Japan
Prior art keywords
sludge
zone
tank
flotation
float
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7632784A
Other languages
Japanese (ja)
Other versions
JPH0255116B2 (en
Inventor
Akira Yokozeki
横関 丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niigata Engineering Co Ltd
Original Assignee
Niigata Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niigata Engineering Co Ltd filed Critical Niigata Engineering Co Ltd
Priority to JP7632784A priority Critical patent/JPS59230688A/en
Publication of JPS59230688A publication Critical patent/JPS59230688A/en
Publication of JPH0255116B2 publication Critical patent/JPH0255116B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To miniaturize an apparatus scale, by controlling the thickness of a float sludge zone from the gas solid ratio of the amount of air supplied to a float concn. tank and the amount of a solid substance supplied thereto and the sludge staying time and concn. sludge concn. of the float sludge zone. CONSTITUTION:Four interface meters 7 for detecting the lower surface level of a float sludge zone 6 are provided in a float concn. tank 3 and a flow control valve 8 is provided to the outlet of separated water. The interface meters 7 and the flow control valve 8 are respectively connected to a control apparatus 9 and a sludge densitometer 10 for measuring the concn. of the sludge supplied to the float concn. tank 3 is arranged in a raw water tank 1. When the control apparatus 9 receives the measured signals from the sludge densitometer 10 and a flow meter 11 and successively operates the thickness index of the float sludge on the basis of said signals. Subsequently, the control apparatus 9 compares the position of the actual lower surface level of the float sludge zone 6 detected by the interface meters 7 and the aforementioned index and the valve 8 is controlled so as to adjust the difference thereof to zero.

Description

【発明の詳細な説明】 本発明は、汚泥を加圧浮上第縮プロセスにより0縮する
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for reducing sludge to zero through a pressure flotation process.

近年、下水道の普及に伴って下水汚泥をはじめとする汚
泥の処理・処分問題は、今や、技術的、経済的な両面に
おける再検討が8妥とされている。
In recent years, with the spread of sewage systems, the issue of treatment and disposal of sludge, including sewage sludge, is now subject to reexamination from both technical and economic perspectives.

これらの汚泥の処理・処分方法は、一般に、これらを3
〜4係程度に濃縮しrc後、消化−薬注一脱水一焼却、
薬注−脱水一焼却、熱処理−脱水、−焼却、まrcは湿
式酸化−脱水などの方法に工り処理され、埋立て処分さ
れるか、又は焼却工程を経ずに脱水汚泥を緑地や農地へ
還元し有効利用されている。これらの処理方法において
、装置の建設費や維持管理費を左右するのは、汚泥の量
であり、同量の汚泥固形物を処理する場合、高濃度であ
ればある程、装置の建設費や維持管理費は安くなる。
The treatment and disposal methods for these sludges generally consist of three methods.
After concentrating to about 4 parts and rc, digestion, medicine injection, dehydration, and incineration.
Chemical injection - dehydration - incineration, heat treatment - dehydration, - incineration, marc is processed by methods such as wet oxidation - dehydration, and then disposed of in a landfill, or dehydrated sludge without going through the incineration process is disposed of in green areas or farmland. It is being effectively used and returned to the public. In these treatment methods, the amount of sludge determines the construction and maintenance costs of the equipment, and when treating the same amount of sludge solids, the higher the concentration, the lower the construction cost of the equipment. Maintenance costs will be lower.

さらに、汚泥処理プロセスへの濃度が不安定であれば、
管理面において問題が生じるものとなる。
Furthermore, if the concentration into the sludge treatment process is unstable,
This will cause problems in terms of management.

したがって、汚泥をより高濃度でかつ安定した濃縮汚泥
として供給し得る技術の確立は、汚泥処理プロセス全般
について、性能的かつ経済的な両面において非常に有利
に働くものである。
Therefore, the establishment of a technology that can supply sludge as highly concentrated and stable thickened sludge will be extremely advantageous in terms of both performance and economy for the sludge treatment process as a whole.

加圧浮上濃縮プロセスは、処理すべき汚泥などの固形物
に微細気泡を付着せしめ、固形物の見掛は比重を水など
の同伴流体よりも軽くシ、その浮力を利用して分離、濃
縮する技術であり、重力だけに頼る重力沈降方式鍛縮プ
ロセスに比べ原理的に有利とされる。
The pressurized flotation concentration process attaches fine air bubbles to the solid matter such as sludge to be treated, and the apparent specific gravity of the solid material is lighter than that of accompanying fluids such as water, and its buoyancy is used to separate and concentrate the solid matter. This technology is said to be advantageous in principle compared to the gravity sedimentation forging process, which relies solely on gravity.

ところで、下水汚泥は、最初沈澱池において沈降分離さ
れた最初沈殿池汚泥(生汚泥)と、エアレーションタン
クにおいて発生する余剰活性汚泥などであるが、これら
汚泥は有機成分が多い程、濃縮されにくい。これは微生
物を主体とする有機成分がその大部分を占めるためであ
り、水と比べ友場合の比重差がほとんどなく、シかも親
水性のコロイドゾルのため圧密作用を受は碓い。
By the way, sewage sludge includes primary sedimentation tank sludge (raw sludge) that has been sedimented and separated in the primary sedimentation tank, surplus activated sludge generated in the aeration tank, etc., and the more organic components these sludges have, the more difficult it is to thicken them. This is because most of the organic components are made up of microorganisms, and there is almost no difference in specific gravity compared to water, and since it is a hydrophilic colloidal sol, it is not susceptible to compaction.

このような余剰活性汚泥などの有機成分を多く含有する
汚泥を、加圧浮上濃縮プロセスに工り濃縮する場合には
、汚泥に微細気泡をより多く付着させ、かつ微細気泡5
イ寸着汚泥を長時間、浮上濃縮タンクに滞留させておく
必要が生じるつしかし、浮上o縮タンクで微細気泡の発
生量を増加させるのは、原理的に限度がある。従って汚
泥に微細気泡をより多く付着させるために処理すべき汚
泥を大幅に希釈し、微&llI気泡量に対する浮上濃縮
タンクに供給される汚泥の固形物量を少なくして処理し
ているのが冥情であり、浮上画線タンクが大きくなって
経済的でないという問題があった。
When sludge containing a large amount of organic components, such as surplus activated sludge, is concentrated using a pressure flotation concentration process, more microbubbles are attached to the sludge, and the microbubbles 5 are
Although it is necessary to allow the sludge to remain in the flotation concentration tank for a long time, there is a theoretical limit to increasing the amount of microbubbles generated in the flotation/condensation tank. Therefore, in order to make more microbubbles adhere to the sludge, the sludge to be treated is significantly diluted, and the amount of solid matter in the sludge supplied to the flotation thickening tank is reduced relative to the amount of microbubbles. Therefore, there was a problem that the floating image tank became large and uneconomical.

また、従来の加工浮上濃縮プロセスはa縮汚泥の取り出
しかあ″!υ正確で−2いために安定した高礎度の濃縮
汚泥が噛られないという欠点があっ几。
In addition, the conventional processing flotation concentration process has the drawback that the removal of the reduced sludge is not accurate, so the stable thickened sludge with a high degree of foundation cannot be chewed.

この理由としては、取り出し−ft−Dt%縮汚泥汚泥
中泡により濃縮汚泥の流量が正確に測定できないことな
どが考えられる。この欠点を一部解決する手段として、
実開昭54−90765や特開昭54−147650で
見られる様に浮上濃縮タンクの浮上汚泥ゾーンの厚さを
つねに一定にしてc、′3縮汚泥を取り出すことが提案
されている。しかしながらこの方法によっても、浮上0
縮タンクに供給される汚泥の流量及び濃度の経時的変動
には対応出来ず、結−ii?J安介1パbり妊つ知一度
0(予櫛1慣発動頼未ト討応−出−*+9結局安定した
かつ高濃度汚泥が得られないという問題が依然として解
決されていない。
A possible reason for this is that the flow rate of the thickened sludge cannot be accurately measured due to bubbles in the removed ft-Dt% reduced sludge sludge. As a means to partially solve this drawback,
As seen in U.S. Pat. However, even with this method, levitation 0
It is not possible to cope with changes over time in the flow rate and concentration of sludge supplied to the reduction tank, resulting in The problem of not being able to obtain stable and highly concentrated sludge remains unsolved.

このように、従来の加圧浮上濃縮プロセスで汚泥を濃縮
する場合にあっては、−縮汚泥を高濃度でかつ安定した
状態で得ることができず、実用化においては多くの課題
ケ有していfc。
In this way, when concentrating sludge using the conventional pressurized flotation concentration process, it is not possible to obtain reduced sludge in a highly concentrated and stable state, and there are many problems in practical application. te fc.

本発明者は、下水汚泥などの汚泥を加圧浮上濃縮プロセ
スを用いて濃縮する方法において、濃縮汚泥の到達O変
分より高く、かつ安定した状態で連続的に取り出すため
に鋭意研究を行なった結果、浮上濃縮タンクに供給され
る空気量と供給固形物量との気固比と、浮上汚泥ゾーン
の汚泥滞留時間と、濃縮汚泥濃度との相関関係を知見し
、本発明をなすに至った。
The present inventor has conducted intensive research in order to continuously extract sludge, such as sewage sludge, in a stable state and higher than the attained O variation of thickened sludge in a method of concentrating sludge such as sewage sludge using a pressure flotation concentration process. As a result, the inventors discovered the correlation between the gas-solid ratio between the amount of air supplied to the flotation thickening tank and the amount of solids supplied, the sludge residence time in the floated sludge zone, and the thickened sludge concentration, and the present invention was accomplished.

以下本発明を説明する。The present invention will be explained below.

本発明において、汚泥を加圧浮上濃縮させるには、浮上
汚泥を分離させ7c後の分離水を一部循環し、これを加
圧した後、はぼ同圧の空気を供給し、空気を水に溶解さ
せた後減圧することにより微細気泡を発生させて処理す
べき汚泥を供給して発生気泡を汚泥に付着させ、浮上濃
縮タンクにおいて浮上分離、θ縮する循環加圧方式や、
処理すべき汚泥をそのままか、または分離水などによっ
て希釈調整したスラリーを加圧し、これにほぼ同圧の空
気を供給し、溶解さルた後減圧し、微細気泡を発生させ
ると同時に汚泥粒子に付着させ、浮上濃縮タンクにおい
て浮上分離、濃縮する全加圧方式等の種々の方式が採用
される。
In the present invention, in order to concentrate sludge by flotation under pressure, the floated sludge is separated, a part of the separated water after 7c is circulated, and after pressurizing it, air of approximately the same pressure is supplied, and the air is A circulation pressurization method in which fine bubbles are generated by dissolving the sludge and then reducing the pressure, supplying the sludge to be treated, allowing the generated bubbles to adhere to the sludge, flotation separation and θ compression in a flotation concentration tank,
The sludge to be treated is either as it is or the slurry diluted with separated water is pressurized, air of approximately the same pressure is supplied to this, the pressure is reduced after it is dissolved, and fine bubbles are generated and at the same time sludge particles are Various methods are employed, such as a fully pressurized method in which the material is deposited, separated by flotation, and concentrated in a flotation concentration tank.

なお、浮上γt、を縮タンクの形状は竪形や横型、まr
cは円形や矩型など各種のものが用いられる。
Note that the shape of the tank for reducing the floating γt can be vertical, horizontal, or round.
Various shapes such as circular or rectangular shapes are used for c.

本発明では、かかる浮上濃縮プロセスに工り汚泥を濃縮
するに際して、浮上濃縮タンクに供給された供給空気量
と供給汚泥の固形物量との気固比と、Wソ縮汚泥濃度と
、浮上汚泥ゾーン滞留時間と、の相関関係から上記浮上
濃縮タンクの浮上汚泥ゾ−ン表面の沿縮汚泥儂匠が目標
とする0度になる様に、該l浮上汚泥ゾーンの厚さを算
出し、それに基づいて上記浮上濃縮タンクの実際の浮上
汚泥ゾーンの厚さを制御する方法であり、さらには浮上
汚泥ゾーンの厚さ則ち、浮上汚泥ゾーンの下位面が所定
レベルとなるように浮上汚泥と分離した分離水の排出流
量を制御して処理するものである。
In the present invention, when concentrating engineered sludge in such a flotation concentration process, the air-solid ratio between the amount of supplied air supplied to the flotation concentration tank and the amount of solid matter in the supplied sludge, the WSO shrinkage sludge concentration, and the floated sludge zone Calculate the thickness of the floating sludge zone so that the surface of the floating sludge zone in the flotation concentration tank becomes 0 degrees, which is the target value of the sludge artist, based on the correlation between the residence time and This is a method of controlling the actual thickness of the floated sludge zone in the flotation thickening tank, and furthermore, the thickness of the floated sludge zone, that is, the lower surface of the floated sludge zone is separated from the floated sludge so that it is at a predetermined level. This process is performed by controlling the discharge flow rate of separated water.

浮上汚泥ゾーンの下位面が上記算出した所定のレベルと
なるように分離水の排出流量を制御する方法としては、
浮上濃縮タンク内の浮上汚泥ゾーンと分離水との界面に
汚泥濃度計または濁度計などのセンサーを設置しておき
、浮上汚泥ゾーンの下位面をセンサーによって検知し、
該下位面が上記算出したレベルになる様浮上濃縮タンク
の底部に設けた分離水排出口の流量調整弁を絞り、分離
水の排出流量を徐々に低下させたり、前記流量調整弁を
開いて、分離水の排出流量を徐々に増加させる方法があ
る。なお、前記センサーの取付位置は浮上汚泥ゾーンの
滞留時間を十分に与える位置、例えば汚泥ゾーン上部よ
り0.5〜1.5mの個所に複数個が設置される。まず
浮上渭)縮タンクのあるべき浮上汚泥ゾーンの厚さの推
算は、浮上濃縮タンクに供給される汚泥の流量と濃度を
流量計や汚泥濃度計等で測定して、これらの測定値から
汚泥の供給固形物量を算出し、次いでこの供給固形物量
と目標とする濃縮汚泥濃度値とから算出して求められる
A method for controlling the discharge flow rate of separated water so that the lower surface of the floating sludge zone reaches the predetermined level calculated above is as follows:
A sensor such as a sludge concentration meter or turbidity meter is installed at the interface between the floating sludge zone and separated water in the flotation concentration tank, and the lower surface of the floating sludge zone is detected by the sensor.
Squeeze the flow rate adjustment valve of the separated water outlet provided at the bottom of the flotation concentration tank so that the lower surface reaches the level calculated above, gradually reduce the discharge flow rate of separated water, or open the flow rate adjustment valve, There is a method of gradually increasing the discharge flow rate of separated water. Note that a plurality of the sensors are installed at a position that provides sufficient residence time in the floating sludge zone, for example, at a location 0.5 to 1.5 m from the upper part of the sludge zone. First, to estimate the thickness of the floating sludge zone where the flotation tank should be located, measure the flow rate and concentration of sludge supplied to the flotation thickening tank with a flow meter or sludge concentration meter, and use these measured values to estimate the thickness of the floated sludge zone where the flotation tank should be located. The amount of solids to be supplied is calculated, and then the amount of solids to be supplied is calculated from the amount of solids to be supplied and the target thickened sludge concentration value.

この浮上汚泥ゾーンの厚さの推算方法を気固比と濃縮汚
泥濃度を用いてさらに説明する。
The method for estimating the thickness of this floating sludge zone will be further explained using the gas-solid ratio and the thickened sludge concentration.

第1図は浮上汚泥ゾーンの汚泥滞留時間と0縮汚泥濃度
との相関関係を示したもので、汚泥に付着する空気量と
供給固形物量との気固比の変化によってそれらの関係が
相違することを知見し、実際に処理する汚泥をサンプリ
ングし試暎によシ作成したものである− 気固比は汚泥に付着する微細気泡の重量とその汚泥(固
形分)の重量との比であるが、これは加圧浮上濃縮プロ
セスにおいて水に溶解させ友空気重量を上記汚泥の固形
物重量で割って求めることが出来る。
Figure 1 shows the correlation between the sludge retention time in the floating sludge zone and the zero shrinkage sludge concentration, and the relationship differs depending on the change in the gas-solid ratio between the amount of air attached to the sludge and the amount of solids supplied. The gas-solid ratio is the ratio of the weight of fine bubbles attached to the sludge to the weight of the sludge (solid content). However, this can be determined by dividing the weight of free air dissolved in water in the pressure flotation concentration process by the solid weight of the sludge.

ところで、浮上67縮タンクで発生する微細気泡の量は
、前述の様に限匹があり、加圧する圧力および加圧対象
水の温度が同一ならば、一定であると見ることができ、
一度上記溶解空気量を測定してしまえば連続的に測定す
る必要はない。従って、気固比は供給汚泥濃度に逆比例
するものであり、加圧浮上濃縮プロセス運転中における
気固比の変動は、供給汚泥濃度の変化に2きかえること
ができる。そして、第1図から明らかの様に浮上濃縮タ
ンクに供給された汚泥は、ある時点を時間後には、その
気固比値に対応しである決った濃度に達する関係にある
ので、その濃度から上記供給された汚泥が、を時間後に
形成する浮上汚泥ゾーンの容′!k(厚さ一供給固形物
量、/(温度×核装置の浮上汚泥ゾーンの表面積)が求
まる。
By the way, the amount of microbubbles generated in the flotation 67 condensation tank has a limit as mentioned above, and can be considered to be constant if the pressure to pressurize and the temperature of the water to be pressurized are the same.
Once the amount of dissolved air is measured, it is not necessary to measure it continuously. Therefore, the gas-solid ratio is inversely proportional to the concentration of supplied sludge, and fluctuations in the gas-solid ratio during operation of the pressurized flotation concentration process can be translated into changes in the concentration of supplied sludge. As is clear from Figure 1, the sludge supplied to the flotation thickening tank reaches a certain concentration after a certain point in time, which corresponds to its gas-solid ratio. The volume of the floating sludge zone that the supplied sludge forms after a period of time! k (thickness - amount of solids supplied, / (temperature x surface area of floating sludge zone of nuclear device) is calculated.

従って、浮上?層線タンクの浮上汚泥ゾーン表面の濃縮
汚泥濃度が目標とする濃度になって排出されることを収
束条件に経時的に流入してくる汚泥が、それぞれの汚泥
の滞留時間において形成する上記容量(厚さ)を加算(
積分)し浮上汚泥ゾーンの厚さを算出する。ヤして、こ
の計算を遂時性なって計算上の浮上汚泥ゾーンの厚さを
相称として、実際a汚蜆ゾーンの厚さを制御するのであ
る。
Therefore, surfacing? The above-mentioned capacity ( thickness) is added (
(integration) to calculate the thickness of the floating sludge zone. Then, the actual thickness of the a sludge zone is controlled by making this calculation timely and using the calculated thickness of the floating sludge zone as a symmetry.

上述の浮上汚泥の厚さの指標は、填1図の関係をコンピ
ュータ等と起重させておけば、供給汚泥の濃度や流量の
変動があっても即座に定めることができ、サンプル値P
IDやギヤツブ付PID などの公知の制御方法により
分離水排出口の流量調整弁等に制御信号を送って汚泥ゾ
ーンの厚さを上記指標に合せることができる。また、濃
縮汚泥の取り出しは、浮上濃縮タンクの浮上汚泥ゾーン
の表面から濃縮汚泥集泥川越流せきをオーバーフローさ
せることによつイ行ない、このオーバーフローの量は分
離水の流量によって支配されるため、分離水の排出流、
I艮を前述の如く制御することにより、はじめて、】縮
汚泥が無制限に流出することを防止し、かつ浮上汚泥ゾ
ーンを安定化させることが可能となる。この時、濃縮汚
泥のかき寄せ機は、あくまで濃縮汚泥が偏流を起こさな
いようにかき寄せるもので、かき寄せ機のかき寄せM度
は表面の濃縮汚泥が均一にかき寄せられるよう調整され
、かつ、汚泥の濃縮傾向に応じて1〜60分の間で決定
(れる。
The above-mentioned index of the thickness of floating sludge can be determined instantly even if there are fluctuations in the concentration or flow rate of the supplied sludge by using the relationship shown in Figure 1 with a computer, etc., and the sample value P
The thickness of the sludge zone can be adjusted to the above-mentioned index by sending a control signal to a flow rate regulating valve or the like at the separated water outlet using a known control method such as an ID or a PID with a gear. In addition, thickened sludge is removed by overflowing the thickened sludge collection river overflow weir from the surface of the floating sludge zone of the floating thickening tank, and the amount of overflow is controlled by the flow rate of separated water. Separated water discharge stream,
By controlling the I-sludge as described above, it becomes possible to prevent the reduced sludge from flowing out without restriction and to stabilize the floating sludge zone. At this time, the purpose of the thickened sludge scraper is to scrape the thickened sludge so that it does not drift, and the scraping M degree of the scraper is adjusted so that the thickened sludge on the surface is scraped up uniformly, It is determined between 1 and 60 minutes depending on the tendency.

この方法によれば濃縮汚泥を取り出す際、浮上汚泥ゾー
ン下部への流動の影響をより小さくすることが可能とな
る。
According to this method, when taking out the thickened sludge, it is possible to further reduce the influence of flow to the lower part of the floating sludge zone.

従来、濃縮度を高める手段としては気固比をより大きく
する、即1ち、供給汚泥を希釈してその濃度を下げる工
夫と共に、固形物負荷を60〜90kg−8S/rIL
2・日におさえて行なわれていたが、これらはいずれも
プラント規模をむやみに大きくするだけで、何ら経済的
効果を期待し得るものではない。
Conventionally, the means to increase the concentration level is to increase the gas-solid ratio, that is, to dilute the supplied sludge to lower its concentration, and to increase the solids load to 60 to 90 kg-8S/rIL.
This was done within 2 days, but all of these methods merely increased the size of the plant unnecessarily, and no economic effect could be expected.

本発明においては、気固比と旋網汚泥濃度と浮上汚泥ゾ
ーン滞留時間との相関関係から浮上汚泥を導入すること
により、装置性能が十分に発揮でき、かつ大幅に装置規
模を縮少することができる。
In the present invention, by introducing floating sludge based on the correlation between the gas-solid ratio, the purse sludge concentration, and the residence time in the floating sludge zone, the equipment performance can be fully demonstrated and the equipment scale can be significantly reduced. can.

すなわち、本発明によれば供給汚泥の濃度をむやみに希
釈する必要はなく、固形物負荷をも50〜600 [l
ry −887m、2.日 〕、好咬しくは100〜3
00 〔1cy−8S/扉2・日〕の範囲とすることが
可能となり、浮上1縮タンクの容4を小さくすることが
出来るとともに、高濃度の濃縮汚泥をさらに安定しt状
態で連続して得ることが出来る。
That is, according to the present invention, there is no need to unnecessarily dilute the concentration of the supplied sludge, and the solids load can also be reduced to 50 to 600 [l].
ry -887m, 2. 〕、Good bite is 100-3
00 [1cy-8S/door 2 days], it is possible to reduce the capacity 4 of the flotation 1 condensation tank, and it is possible to further stabilize the highly concentrated thickened sludge and continuously maintain it in a t state. You can get it.

第2図は本発明の7を3縮方法の様態の1つを示してお
り、第2図中1は原水タンク、2は加圧タンク、3は浮
上d縮タンクである。汚泥はこの原水タンク1から加圧
タンク2を通って浮上濃縮タンク3に移送され、浮−ヒ
没縮タンク3内で浮上分離6縮されるが、原水タンク1
から加圧タンク2に移送される途中でポンプ4により加
圧されると共に空気が導入され、また加圧タンク2から
浮上濃縮タンク3に移送される途中で弁5により減圧さ
れることは周知の通りである。
FIG. 2 shows one embodiment of the 7 to 3 reduction method of the present invention, in which 1 is a raw water tank, 2 is a pressurized tank, and 3 is a floating d-contraction tank. The sludge is transferred from this raw water tank 1 through a pressurized tank 2 to a flotation concentration tank 3, where it is floated, separated, and contracted in a flotation tank 3.
It is well known that while being transferred from the pressurized tank 2 to the pressurized tank 2, it is pressurized by the pump 4 and air is introduced, and that the pressure is reduced by the valve 5 while being transferred from the pressurized tank 2 to the flotation concentration tank 3. That's right.

そして、本実施例においては、浮上濃縮タンク3内には
浮上汚泥ゾーン6の下位面を検知する4基の界面計7・
・・が装備され、また浮上濃縮タンク3の分離水排出口
には流量調整弁8が装備さnている。これら界面計7・
・・、流量調整弁8はそ1ぞれ制御装置9に接続されて
いる。また、原水タンク1内には浮上8扇タンク3に供
給される汚泥の9度を測定する汚泥濃度計lOが備えら
れ、原水タンク1から加圧タンク2に汚泥を移送する管
路には汚泥の流量を測定する流量計11が装備されてい
る。
In this embodiment, in the flotation concentration tank 3, there are four interface meters 7 and 7 for detecting the lower surface of the flotation sludge zone 6.
..., and the separated water outlet of the flotation concentration tank 3 is equipped with a flow rate adjustment valve 8. These interfaces total 7・
..., each of the flow rate regulating valves 8 is connected to a control device 9. In addition, the raw water tank 1 is equipped with a sludge concentration meter lO that measures the 9 degrees of sludge supplied to the floating 8-fan tank 3, and the pipe that transfers sludge from the raw water tank 1 to the pressurized tank 2 is equipped with a sludge concentration meter lO. A flow meter 11 is equipped to measure the flow rate.

そして、制」装置49は、汚泥濃度計10と流量計11
とからそれぞれdFIJ定信号が入方されると、この信
号から第1図の関係に基づいて浮上汚泥の厚さの指標を
遂時演算する。ついで、制御装置9は、界面計7・・・
で検知した浮上汚泥ゾーン6の実際の下位面の位1;工
と、上記指標とを比較してその差がゼロとなるように、
流量調整弁8を制御し、分離水を排水する。
The control device 49 includes a sludge concentration meter 10 and a flow meter 11.
When a dFIJ constant signal is received from each of the above, an index of the thickness of the floated sludge is calculated from this signal based on the relationship shown in FIG. Next, the control device 9 controls the interface meter 7...
Compare the actual lower surface of the floating sludge zone 6 detected with the above index and make sure that the difference is zero.
The flow rate adjustment valve 8 is controlled to drain the separated water.

しかして、上記硫縮装置によれば、制御装置9に工す流
量調整弁8から排出される分離水の流量が正確に規定さ
れ、このため、浮上濃縮タンク3内の浮上汚泥ゾーン6
の下位面を所定のレベルにfJy4整することが容易に
行なえ、また人手を要さず自動化が可能となる。
According to the above-mentioned sulfurization apparatus, the flow rate of separated water discharged from the flow rate regulating valve 8 installed in the control device 9 is accurately regulated.
It is easy to adjust the lower surface of fJy4 to a predetermined level, and automation is possible without requiring manual labor.

以下、実施例を示し本発明′5r:具体的に説明する。The present invention '5r will be specifically explained below with reference to Examples.

(実施例) 全加圧方式の加圧浮上装置において前述の方法にエリ浮
上濃縮タンクの供給流量を10〜20−/hr  と変
化させて汚泥を処理したところ、下記の表に示す各々の
結呆が得られた。、なお、汚泥中の揮発性物質は79〜
32係(対全固形物比)であった。
(Example) When sludge was treated in a fully pressurized pressure flotation device using the method described above while changing the supply flow rate of the Eri flotation concentration tank from 10 to 20-/hr, each result shown in the table below was obtained. I was stunned. , the volatile substances in the sludge are 79~
The ratio was 32 (relative to total solids).

表 この表から明らがな如く、固形物負荷が高いにもかかわ
らず汚泥が:3 ’6〜6係程度濃縮さJ”I−fCo
なお、比較のため通常の重力沈降方式で上記汚泥を濃縮
させたところ、2.111にすぎなかった。
Table As is clear from this table, despite the high solids load, the sludge was concentrated to the extent of 3'6 to 6.
For comparison, when the above sludge was concentrated using a normal gravity sedimentation method, the concentration was only 2.111.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は小線汚泥濃度と浮上汚泥ゾーン71α留時閣と
の関係を示すグラフ、第2図は本発明の方法の芙施例を
示すフローシートである。 l・・・・・・原水タンク、2・・・・・・加圧タンク
、3・・・・・・浮上捲縮タンク、6・・・・・・浮上
汚泥ゾーン、7・・・・・・界面計、8・・・・・・流
f AI’J整弁、9・・・・・・制御装置、10・・
・・・・汚泥濃度計、1】・・・・・・流量計。
FIG. 1 is a graph showing the relationship between the small line sludge concentration and the floating sludge zone 71α, and FIG. 2 is a flow sheet showing an example of the method of the present invention. 1...Raw water tank, 2...Pressure tank, 3...Floating crimping tank, 6...Floating sludge zone, 7...・Interface meter, 8...Flow f AI'J valve control, 9...Control device, 10...
...Sludge concentration meter, 1] ...Flowmeter.

Claims (3)

【特許請求の範囲】[Claims] (1)汚泥を加圧浮上第縮プロセスにエリi/7 a 
f ル方法において、浮上0縮タンクに供給され友供給
空気量と供給汚泥の固形物量との気固比と、濃縮汚泥濃
度と、浮上汚泥ゾーン滞留時間と、の相関関係から上記
浮上濃縮タンクの浮上汚泥ゾーンの厚さを定め、それに
基づいて上記浮上濃縮タンクの実際の浮上汚泥ゾーンの
厚さを制御することをq♀徴とする汚泥のの縮方法。
(1) Sludge is subjected to pressure flotation first contraction process.
In the F method, the correlation between the amount of air supplied to the flotation tank and the amount of solids in the supplied sludge, the concentration of thickened sludge, and the residence time in the flotation zone is determined by A method for shrinking sludge characterized by determining the thickness of a floating sludge zone and controlling the actual thickness of the floating sludge zone in the flotation thickening tank based on the thickness.
(2)前記浮上汚泥ゾーンの厚さの制御を、浮上汚泥ゾ
ーンの下位面が所定のレベルとなるように浮上汚泥を分
離した分離水の排出流量を制御することを特徴とする特
許請求の範囲第1項記載の汚泥の濃縮方法。
(2) The thickness of the floated sludge zone is controlled by controlling the discharge flow rate of separated water from which floated sludge has been separated so that the lower surface of the floated sludge zone is at a predetermined level. The method for concentrating sludge as described in paragraph 1.
(3)前記浮上汚泥ゾーンの厚さの制御を、浮上汚泥ゾ
ーンと分離水との界面に設置した汚泥d度計や濁度計な
どのセンサーと浮上濃縮タンクの分離水排出口に設けf
c重量調整弁とを使用して行なうことをtl”が徴とす
る特許請求の範囲第1項記載の汚泥のε3縮方法。
(3) The thickness of the floating sludge zone is controlled by sensors such as a sludge meter and turbidity meter installed at the interface between the floating sludge zone and the separated water, and at the separated water outlet of the flotation concentration tank.
2. The method for reducing ε3 of sludge according to claim 1, characterized in that tl'' is carried out using a weight adjustment valve.
JP7632784A 1984-04-16 1984-04-16 Sludge concentrating method Granted JPS59230688A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7632784A JPS59230688A (en) 1984-04-16 1984-04-16 Sludge concentrating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7632784A JPS59230688A (en) 1984-04-16 1984-04-16 Sludge concentrating method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP4331880A Division JPS6029318B2 (en) 1980-04-02 1980-04-02 Sludge thickening method and device

Publications (2)

Publication Number Publication Date
JPS59230688A true JPS59230688A (en) 1984-12-25
JPH0255116B2 JPH0255116B2 (en) 1990-11-26

Family

ID=13602255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7632784A Granted JPS59230688A (en) 1984-04-16 1984-04-16 Sludge concentrating method

Country Status (1)

Country Link
JP (1) JPS59230688A (en)

Also Published As

Publication number Publication date
JPH0255116B2 (en) 1990-11-26

Similar Documents

Publication Publication Date Title
Dick et al. Evaluation of activated sludge thickening theories
Dupont et al. A one-dimensional model for a secondary settling tank including density current and short-circuiting
US3966598A (en) Circular dissolved gas flotation system
Námer et al. Settling properties of digested sludge particle aggregates
KR20080075544A (en) Method and plant for thickening sludge derived from water treatment by flocculation-decantation with ballasted floc
CN102126822A (en) Active sludge floatation thickening device and method for membrane biological reaction tank process
US6565755B1 (en) Sludge density measurement for controlling a sludge treatment stage
JPS59230688A (en) Sludge concentrating method
JPS6029318B2 (en) Sludge thickening method and device
McKeown et al. Studies on the behavior of benthal deposits of wood origin
GB1511458A (en) Apparatus and method for separating foreign solid particles from a liquid
Lumley et al. Investigations of secondary settling at a large treatment plant
JP3973967B2 (en) Coagulation separation device
Arboleda‐Valencia A new approach to treatment plant design and construction in Latin America
Brisbin Sewage Sludge Thickening Tests
JPS62199361A (en) Slurry circulating method
Priesing et al. Plant-scale polyelectrolyte treatment of wastewater using streaming current control
Lawrance Lime‐Soda Sludge Recirculation Experiments at Vandenberg Air Force Base
US2570590A (en) Solids contact tanks, ducts, and controls for same
JPH0462000A (en) Method and apparatus for concentrating slurry
Goda A Study on the Mechanism of Transportation of Suspended Sediment and Its Application to Increasing the Efficiency of Sedimentation Basin
Fitch et al. Implementing direct filtration and natural freezing of alum sludge
JPS60197300A (en) Method and apparatus for dehydrating sludge
CA1194623A (en) Method and apparatus for treating organic wastewater
Logan Scum Removal by Vacuator at Palo Alto