JPS59230687A - Scale suppression of multistage flash type water making apparatus - Google Patents

Scale suppression of multistage flash type water making apparatus

Info

Publication number
JPS59230687A
JPS59230687A JP58104885A JP10488583A JPS59230687A JP S59230687 A JPS59230687 A JP S59230687A JP 58104885 A JP58104885 A JP 58104885A JP 10488583 A JP10488583 A JP 10488583A JP S59230687 A JPS59230687 A JP S59230687A
Authority
JP
Japan
Prior art keywords
brine
seawater
acid
scale
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58104885A
Other languages
Japanese (ja)
Inventor
Masao Ono
正男 小野
Haruo Kuwabara
桑原 春男
Toshio Sao
俊生 佐尾
Isao Shimizu
勲 清水
Hiroshi Miyamoto
博 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP58104885A priority Critical patent/JPS59230687A/en
Publication of JPS59230687A publication Critical patent/JPS59230687A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/06Flash distillation
    • B01D3/065Multiple-effect flash distillation (more than two traps)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Abstract

PURPOSE:To reduce the scale adhesion speed of a heat transfer pipe, by adding an acid to replenishing seawater or replenishing seawater mixed recirculation brine while sending the resulting liquid into the heat transfer pipe of an evaporation apparatus in such a state that formed CO2 is dissolved in the liquid. CONSTITUTION:The adding position of an acid is arranged to the replenishing seawater line 18 connected to the outlet of a degassing tower 6 or to the recirculation brine line 19 connected to the inlet of a recirculation pump where concn. brine after evaporation and replenishing seawater are mixed and the acid 17 is added in an amount required in decomposing at least 30% or more, pref., about 50% of alkali carbonate component in the replenishing seawater. For example, a method, wherein the acid adding amount is controlled to a predetermined value by a pH controller 16 provided to the outlet of the recirculation brine pump, can be adapted to acid addition. By this method, the pH of the recirculation brine at the inlet of the heat transfer pipe of a heat recovery part is lowered and the scale adhesion speed of the heat transfer pipe can be reduced and operation is performed in an extremely advantageous manner.

Description

【発明の詳細な説明】 本発明は多段フラッシュ型造水装置の伝熱管内スケール
抑制法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for suppressing scale within heat exchanger tubes of a multi-stage flash freshwater generator.

海水から淡水を製造するだめの概略系統図を第1図に示
す。原海水は海水供給ポンプ1を経て熱放出部2の伝熱
管3に入り、熱放出部の蒸発室の発生水蒸気と熱交換し
水蒸気の方は冷却し凝縮され、海水の方は加熱される。
Figure 1 shows a schematic system diagram of a tank for producing fresh water from seawater. The raw seawater enters the heat transfer tube 3 of the heat release section 2 via the seawater supply pump 1, and exchanges heat with the steam generated in the evaporation chamber of the heat release section, so that the water vapor is cooled and condensed, and the seawater is heated.

この加熱された海水の一部は補給海水として補給海水ポ
ンプ4を経て消泡剤5r添加後脱気塔6に送られ溶存酸
素などのガスを脱気する。この脱気海水にスケール抑制
剤7を添加し、熱放出部の最終段蒸発室の濃縮海水(濃
縮ブラインと称す以下同じ)と混合され、循環ブライン
として循環ポンプ8を経て熱回収部9の伝熱管10に送
られる。熱回収部伝熱管の循環ブラインは、熱回収部の
蒸発室で蒸発した水蒸気を冷却、凝縮させながら加熱さ
れ、温度を高めながら各段の蒸発室を経てブラインヒー
タ11に送られる。ブラインヒータには別個に設置され
た蒸気発生装置から送気された蒸気12で所定の温度に
加熱されたのち、第1段の蒸発室に入り逐次次段の蒸発
室に送られる。各蒸発室はエジェクター16と連結され
順次減圧されておシ、各蒸発室で発生した水蒸気は伝熱
管と接触して熱交換を行ない、水蒸気は凝縮して各蒸発
室に設けられた凝縮水受皿14に集められる。熱回収部
、熱放出部の各蒸発室に設置された凝縮水受皿14は連
通しておシ製造水ポンプ15によって別個に設けられた
淡水タンクに送られる。蒸発室のブラインは第1段から
第2段、第6段と逐次次段の蒸発室に移Qながら濃縮さ
れ、熱回収部の最終段蒸発室を経て熱放出部蒸発室に移
υこの最終段蒸発室の1部はブロー水として排出される
A portion of this heated seawater is sent as make-up sea water via a make-up sea water pump 4 to a degassing tower 6 after adding an antifoaming agent 5r to degas gas such as dissolved oxygen. A scale inhibitor 7 is added to this deaerated seawater, and the mixture is mixed with concentrated seawater (referred to as concentrated brine, hereinafter referred to as concentrated brine) in the final stage evaporation chamber of the heat release section, and is transferred to the heat recovery section 9 via the circulation pump 8 as circulation brine. It is sent to the heat tube 10. The circulating brine in the heat exchanger tubes of the heat recovery section is heated while cooling and condensing the water vapor evaporated in the evaporation chamber of the heat recovery section, and is sent to the brine heater 11 through the evaporation chambers of each stage while increasing its temperature. The brine heater is heated to a predetermined temperature with steam 12 sent from a separately installed steam generator, and then enters the first stage evaporation chamber and is sequentially sent to the next stage evaporation chamber. Each evaporation chamber is connected to an ejector 16 and is sequentially depressurized.The water vapor generated in each evaporation chamber contacts a heat transfer tube to exchange heat, and the water vapor is condensed into a condensed water receiver provided in each evaporation chamber. It will be collected on 14th. The condensed water receivers 14 installed in each evaporation chamber of the heat recovery section and the heat release section are communicated and sent to a separately provided fresh water tank by a produced water pump 15. The brine in the evaporation chamber is transferred from the 1st stage to the 2nd stage to the 6th stage, where it is concentrated while passing through the final stage evaporation chamber of the heat recovery section, and then transferred to the heat release section evaporation chamber. A portion of the stage evaporation chamber is discharged as blow water.

そしてIApはスケール抑制剤を添加した脱気補給海水
と混合され循環ポンプ8を通して熱回収部伝熱管10の
方に送られ循環する。
The IAp is then mixed with degassed make-up seawater to which a scale inhibitor has been added, and sent through the circulation pump 8 to the heat exchanger tubes 10 in the heat recovery section for circulation.

この多段フラッシュ型造水装置において伝熱管内にスケ
ールが付着すると伝熱性能の低下につながるため、種々
のスケール抑制対策が適用されている。この伝熱管に析
出付着するスケールは、海水の加熱、濃縮によって析出
するCaCO3゜Mg(OH)t  を主体とするいわ
ゆるアルカリスケール(ソフト・スケールとも云う)と
高温領域にて析出するC a S 04系を主体とする
ハードスケールに大別される。
In this multi-stage flash water generation device, if scale adheres to the inside of the heat transfer tubes, it will lead to a decrease in heat transfer performance, so various scale suppression measures are applied. The scale that precipitates and adheres to the heat transfer tubes is the so-called alkaline scale (also called soft scale) mainly composed of CaCO3゜Mg(OH)t, which precipitates when seawater is heated and concentrated, and CaS04, which precipitates in high temperature regions. It is broadly divided into hard scales, which are mainly based on systems.

通常CaSO4系のハードスケールは、ブラインの加熱
温度、濃縮蒸発率をその飽和溶解度以下に制限し析出を
抑制している。他方CaCO3゜Mg(OH)2  を
主体とするアルカリスケール抑制は、酸添加によシ補給
海水中の炭酸分を分解除去するいわゆるpHコントロー
ル法か或いは重合リン酸系や重合マレイン酸系等のスケ
ール抑制剤添加法によって析出を抑制する方法が実用さ
れている。しかしスケールの析出を完全に抑制すること
は困難なため、スケールが伝熱管内壁に付着し汚れ係数
(スケール付着による伝熱抵抗の増大)がある限度盆越
えた場合には、スポンジボールを循環ブライン中に圧送
して管内面スケールを剥離除去するいわゆるボールクリ
ーニング法か或いは酸洗疎性が併用されている。
Usually, CaSO4-based hard scale restricts the heating temperature and concentration and evaporation rate of brine to below its saturated solubility, thereby suppressing precipitation. On the other hand, alkaline scale control mainly using CaCO3゜Mg(OH)2 can be achieved by the so-called pH control method, which decomposes and removes the carbonic acid in the supplementary seawater by adding acid, or by using scales such as polymerized phosphoric acid or polymerized maleic acid. A method of suppressing precipitation by adding an inhibitor has been put into practice. However, it is difficult to completely suppress scale precipitation, so if scale adheres to the inner wall of the heat transfer tube and the fouling coefficient (increase in heat transfer resistance due to scale adhesion) exceeds a certain limit, the sponge ball is circulated through the brine. A so-called ball cleaning method is used in which scale is removed from the inner surface of the tube by pressure feeding, or pickling is used in combination.

pHコントロール法は、補給海水に酸を添加して海水中
の炭酸塩アルカリ分のほぼ全量を分解し生成したC02
は脱炭酸塔(図示していない)で除去したのち脱気塔を
通して溶存酸素を除去した後循環ブラインと混合するも
のであシ、海水中のアルカリスケール成分は殆んど除去
されるため、伝熱管内を流動する循環ブラインの加熱温
度や濃縮比をハードスケールの飽和溶解度以下、通常加
熱温度として約120℃以下、ブライン中の全溶解固形
分として約70000ppm前後以下(濃縮比として約
2.0前後以下)にて運転ちれておシ、スケール抑制法
としては最も効果的な方法である。しかし循環ブライン
のpHとしては一般的に約Z5〜18の範囲であり、こ
のpHK調畳するためには海水中の炭酸取分をほぼ全量
分解する必要があるので、酸消費量が多く、かつ取扱い
及び運転開始時や負荷変動時においてそのA整が難かし
く、またpHが低いため装置構成材料の腐蝕問題などの
欠点がある。
The pH control method involves adding acid to make-up seawater to decompose almost all of the carbonate alkaline content in the seawater.
The water is removed in a decarboxylation tower (not shown) and then passed through a deaeration tower to remove dissolved oxygen and then mixed with circulating brine.Since most of the alkaline scale components in seawater are removed, transmission The heating temperature and concentration ratio of the circulating brine flowing in the heat tube should be below the saturation solubility of the hard scale, the normal heating temperature should be about 120°C or below, and the total dissolved solid content in the brine should be about 70,000 ppm or below (the concentration ratio should be about 2.0 This is the most effective method for controlling scale. However, the pH of circulating brine is generally in the range of approximately Z5 to 18, and in order to adjust this pH, it is necessary to decompose almost all of the carbonate fraction in seawater, which requires a large amount of acid consumption. It is difficult to handle and adjust the A at the start of operation or during load fluctuations, and the low pH causes problems such as corrosion of the equipment's constituent materials.

他方スケール抑制剤添加法は、運転操作が容易でしかも
ブラインpHが高い(通常9以下)ので装置構成材料の
腐蝕防止の面では非常に有利であるが、スケール抑制効
果の面ではpHコントロール法よりも劣るため、pHコ
ントロール法に比較してボールクリーニングを頻繁に行
なう必要がある。その上循環ブラインのpHがほぼ91
以上になるとブライン中にOH−が生成し、伝熱管内に
おいてMg(OH)2  の析出が増加し伝熱管の汚れ
係数を置くすると共にスケールツバイングーの役目をは
たしホールクリーニングでは剥離除去しにくい性状のス
ケールになるためボールクリーニング効果ケ低下させる
On the other hand, the scale inhibitor addition method is easy to operate and has a high brine pH (usually 9 or less), so it is very advantageous in terms of preventing corrosion of equipment constituent materials, but it is less effective than the pH control method in terms of scale inhibition effect. Since the pH control method is also inferior, it is necessary to perform ball cleaning more frequently than with the pH control method. Furthermore, the pH of the circulating brine is approximately 91.
When the temperature increases, OH- is generated in the brine, and the precipitation of Mg(OH)2 increases in the heat exchanger tubes, which increases the contamination coefficient of the heat exchanger tubes and acts as a scale spool, and is removed by peeling during hole cleaning. Ball cleaning effectiveness is reduced because the scale becomes difficult to clean.

第2図にスケール抑制剤添加性単独の場合のボールクリ
ーニングの効果例を示す。第2図において実線はブライ
ン最高温度112℃、pH9,1〜96以上、濃縮比1
.95〜2の場合の、点線はブライン最高温度112℃
、pH9以下、濃縮比17以下の場合のボールクリーニ
ングの効果を示し、各折線の下端部はボールクリーニン
グ後を示す。この第2図に示すように、熱回収部体熱管
入口の循環ブラインpHが9以上のケースではボールク
リーニング前後における汚れ係数の回復率が恕く、しか
も時間経過と共にその回復率は低下して行く傾向を示し
た。pHを9以下にすると回復率は良好になり、時間経
過と共に多少回復率の低下が起るがほぼ安定した回復率
を示している。循環ブラインのpI−Iは次に述べるよ
うに濃縮比に影響される。蒸発室においてブラインが蒸
発濃縮すると共にHCO,−の熱分解によってCO,ガ
スを放散してC0%−k生成し、1(Co3−が無くな
ると次にC01−が加水分解を起してCO2ガスを放散
しOH−性成するので、蒸発後の濃縮ブラインpHは蒸
発娘縮前よυも高くなる。このCO2ガスの放散斌は蒸
発室内ブラインの温反と滞留時間等に影4芒れるので、
循環ブラインの濃縮比を高くするほど蒸発室におけるブ
ラインの滞留時間が長く、COζ=濃度が犬とな9、C
O2ガスの放散やOH−の生成が多くなって循環ブライ
ンのpHが高くなる。
FIG. 2 shows an example of the effect of ball cleaning when the scale inhibitor is added alone. In Figure 2, the solid line indicates a maximum brine temperature of 112°C, a pH of 9, 1 to 96 or higher, and a concentration ratio of 1.
.. In the case of 95-2, the dotted line is the maximum brine temperature of 112℃
, shows the effect of ball cleaning when the pH is 9 or less and the concentration ratio is 17 or less, and the lower end of each broken line shows the state after ball cleaning. As shown in Fig. 2, in the case where the pH of the circulating brine at the inlet of the heat pipe of the heat recovery section is 9 or higher, the recovery rate of the dirt coefficient before and after ball cleaning is poor, and the recovery rate decreases as time passes. showed a trend. When the pH is set to 9 or less, the recovery rate becomes good, and although the recovery rate decreases somewhat with the passage of time, it shows an almost stable recovery rate. The pI-I of circulating brine is influenced by the concentration ratio as described below. In the evaporation chamber, the brine is evaporated and concentrated, and CO and gas are released by thermal decomposition of HCO,- to produce CO2 gas. The pH of the concentrated brine after evaporation will be higher than that before condensation.The rate of CO2 dissipation is affected by the temperature and residence time of the brine in the evaporation chamber. ,
The higher the concentration ratio of the circulating brine, the longer the residence time of the brine in the evaporation chamber, and the COζ = concentration becomes 9,C.
The dissipation of O2 gas and the production of OH- increase, increasing the pH of the circulating brine.

第3図に循環ブラインの濃縮比と循環ブラインのpHと
の関係を示す。第6図において、1ハス/7−− 、L
/仰制剤添加法単独の場合の、2は後述するpHコント
ロール法とスケール抑制剤添加法を組合せた併用法(但
しCO2を排出する場合)の、6は後述する本発明法の
場合の上記関係を示す。図中、Fは補給海水を示す。
FIG. 3 shows the relationship between the concentration ratio of circulating brine and the pH of circulating brine. In Figure 6, 1 lotus/7--, L
/In the case of the supine stimulant addition method alone, 2 is the combination method of combining the pH control method and the scale inhibitor addition method (described later) (however, when CO2 is discharged), and 6 is the above in the case of the present invention method described later. Show relationships. In the figure, F indicates supplementary seawater.

このことからスケール抑制剤添加法においては、熱回収
部伝熱管入口の循環ブラインpHがほぼ9以下になるよ
う補給海水量及びブローダウン量を調整する必要がある
ため、循環ブラインの濃縮比は通常1.7前後以下(標
準海水と同様の海水を使用した場合)が限度となる。
Therefore, in the scale inhibitor addition method, it is necessary to adjust the amount of make-up seawater and the amount of blowdown so that the pH of the circulating brine at the inlet of the heat exchanger tube in the heat recovery section is approximately 9 or less, so the concentration ratio of the circulating brine is usually The limit is around 1.7 or less (when using seawater similar to standard seawater).

他方この中間的方法として、pHコントロール法とスケ
ール抑制剤添加法を組合せた併用法(両者の組合せを以
後併用法と称す)によって両者の欠点を補う方法が知ら
れている。即ち補給海水にpHコントロール法よシも少
ない酸を加え海水中の炭酸塩アルカリ成分の1部(pH
コントロール法ではほぼ全:ht)を分解し生成Co2
ガスを脱炭酸塔を通して除去した後、脱気塔全通して溶
存酸素を除いた後、スケール抑制剤を添加したものを、
濃縮ブラインと混合して熱回収部伝熱管入口の循環ブラ
インにするものである。この併用法について詳細に調査
した結果、例えば補給海水中の炭酸塩アルカリ成分の5
0%程度を分解するに要する酸(例えば硫酸)を加え説
炭竣塔を通して生成CO2ガスを除去し、さらに脱気塔
を通し溶存酸素を除去した後に、所定証のスケール抑制
剤を添加したものはpHとしてZ9〜8.0の範囲とな
る。この補給海水を濃縮ブラインと混合し熱回収部伝熱
管入口の循環ブラインにした場合、この循環ブラインは
濃縮比が17のときpHは8.8位になるが20程度で
操作するとpHは9前後に上外し、汚れ係数の経時変化
及びボールクリーニング効果は、スケール抑制剤添加法
単独時の循環ブラインpHが9前後のケース(但し濃縮
比として約t7の時)と殆んど大差がなく、スケール抑
制剤添加法単独時よりも濃縮比としては上昇できる利点
はあるが、ボールクリーニング頻度及び回復率の面では
効果が少ない。
On the other hand, as an intermediate method, a method is known in which the drawbacks of both methods are compensated for by a combination method that combines the pH control method and the scale inhibitor addition method (the combination of both is hereinafter referred to as the combination method). In other words, by adding a small amount of acid to make-up seawater using a pH control method, a portion of the carbonate alkaline component (pH
In the control method, almost all (ht) is decomposed and generated Co2
After removing the gas through a decarboxylation tower and removing dissolved oxygen through the entire deaeration tower, a scale inhibitor is added.
It is mixed with concentrated brine to form circulating brine at the inlet of the heat exchanger tube in the heat recovery section. As a result of detailed investigation into this combined method, we found that, for example,
Acid (e.g. sulfuric acid) required to decompose about 0% is added, the generated CO2 gas is removed through a coal finishing tower, and dissolved oxygen is removed through a degassing tower, after which a specified scale inhibitor is added. The pH is in the range of Z9 to 8.0. If this make-up seawater is mixed with concentrated brine and used as circulating brine at the inlet of the heat exchanger tube in the heat recovery section, the pH of this circulating brine will be around 8.8 when the concentration ratio is 17, but when operated at around 20, the pH will be around 9. The change in fouling coefficient over time and the ball cleaning effect are almost the same as in the case where the circulating brine pH is around 9 when the scale inhibitor addition method is used alone (however, when the concentration ratio is about t7), and the scale Although it has the advantage of increasing the concentration ratio compared to the inhibitor addition method alone, it is less effective in terms of ball cleaning frequency and recovery rate.

本発明は上記酸添加の効果を一層上げる手段を提供する
もので、補給海水中の炭酸塩アルカリ成分の1部少なく
とも30チ以上好ましくは50チ程度を分解するに要す
る酸を脱気塔出口の補給海水か又は補給海水と濃縮ブラ
インが混合した循環ブラインポンプ入口に注入し、酸添
加にて生成するCO2を脱炭酸塔や脱気塔全通して外部
に除去することなく、そのfま補給海水又は循環ブライ
ン中に可溶式せたままで、循環ブライン中のC01−や
OH−と反応させることにょt) pHを低める仁とが
できるため、1例として補給海水中の炭酸塩アルカリ成
分の50%程度を分解するに安する酸を加え生成するC
O2を外部に出さずにそのまま濃縮ブラインと混合して
操作すると、循環ブラインの61k 鰯比tpHコント
ロール法と同程度の20前後に上げても循環ブラインの
pHは、従来法よジも低く pHコントロール法とスケ
ール抑制剤添加法の中間程度である8、4前後になり、
このpH低下に伴なって伝熱管へのスケール析出が減少
すると共にボールクリーニングによる汚れ係数の回復率
も良くなる。
The present invention provides a means to further enhance the effect of acid addition, and the acid required to decompose at least 30 t, preferably about 50 t, of the carbonate alkali component in the make-up seawater is transferred to the outlet of the degassing tower. By injecting make-up seawater or a mixture of make-up seawater and concentrated brine into the circulating brine pump inlet, the make-up seawater can be directly removed without removing the CO2 produced by acid addition to the outside through the decarboxylation tower or deaeration tower. Alternatively, it can be left soluble in the circulating brine and reacted with CO1- and OH- in the circulating brine. C generated by adding an acid that is easy to decompose about %
If O2 is mixed with the concentrated brine without releasing it to the outside and operated, the pH of the circulating brine will be lower than that of the conventional method even if the pH is raised to around 20, which is about the same as the sardine ratio t pH control method. The value is around 8.4, which is between the scale inhibitor addition method and the scale inhibitor addition method.
As the pH decreases, scale precipitation on the heat exchanger tubes decreases, and the rate of recovery of the fouling coefficient by ball cleaning also improves.

第4図に、酸添加後CO,を外部に放散した場合、生成
C02を除去することなくその−2ま循環ブライン中に
溶解させた場合の汚れ係数経時変化及びボールクリーニ
ング効果を対比した。前者は実琢で、後者は点線で示し
た。前者はブライ7 ft 高’Qt W 112℃、
pH約9、a縮比2.0、後者tよブライン最高温度1
12℃、pH8,4前後、濃縮比20である。なお各折
線の下端部はボールクリーニング後を示す。この図の示
す通9後者の方がボールクリーニングによるスケール除
去効果が大きく、殆んど酸洗時と同程度1で回復する効
果が現わ7’した。
FIG. 4 compares the change in fouling coefficient over time and the ball cleaning effect when CO2 is diffused to the outside after addition of an acid and when CO2 produced is dissolved in the circulating brine to -2 without removing it. The former is shown as a fruit, and the latter is shown as a dotted line. The former is a braai 7ft high'Qt W 112℃,
pH approx. 9, a compression ratio 2.0, brine maximum temperature 1
The temperature was 12°C, the pH was around 8.4, and the concentration ratio was 20. Note that the lower end of each broken line indicates the state after ball cleaning. As shown in this figure, in the latter case, the scale removal effect by ball cleaning was greater, and the recovery effect was almost the same as in pickling.

以上のように本発明法は今までの脱炭酸塔を有する方法
よりも熱回収部伝熱管入口の循環ブラインpHを下げる
ことができたスケールj1111tilJ法である。
As described above, the method of the present invention is a scale j1111tilJ method that is able to lower the pH of the circulating brine at the inlet of the heat exchanger tube in the heat recovery section than the conventional method having a decarboxylation tower.

以下、第5図に示す系統図をもとに本発明の具体的実施
態様を以下説明する。第5図中、第1図と同一符号は第
1図と同−機能部を示す。
Hereinafter, specific embodiments of the present invention will be described below based on the system diagram shown in FIG. In FIG. 5, the same reference numerals as in FIG. 1 indicate the same functional parts as in FIG. 1.

f曖17の添加位置は脱気塔6出口の補給海水18か又
は蒸発後の濃縮ブラインと補給海水が混合した循環ブラ
インポンプ入口の循環ブライン19に配置し、補給海水
中の炭酸塩アルカリ成分を少なくとも30チ以上好まし
くは50チ程度を分解するに相当する酸を添加する。酸
添加量は例えば循、環ブラインポンプ出口に設置したp
E(制御器16によって所定値に調整する方法が適用で
きる。
The addition position of f-17 is placed in the make-up seawater 18 at the outlet of the degassing tower 6 or in the circulation brine 19 at the inlet of the circulation brine pump where concentrated brine after evaporation and make-up seawater are mixed, and the carbonate alkali component in the make-up seawater is added. Acid equivalent to decomposing at least 30 or more, preferably about 50, is added. The amount of acid added can be determined, for example, by using a circulating brine pump installed at the outlet.
E (a method of adjusting to a predetermined value by the controller 16 can be applied).

以上のように本発明の方法によれば、pHコントロール
法とスケール抑制剤添加法を組合せた併用法よシも熱回
収部イム熱管入口の循環ブラインpHが低下することに
なp1伝熱管のスケール付着速度を低減することができ
るばかりでなくボールクリーニング効果についてi[洗
時と同程度の効果を現わすため、運転操作上極めて有利
になり、工業的に極めて顕著な効果を奏する0
As described above, according to the method of the present invention, the pH of the circulating brine at the inlet of the heat tube in the heat recovery section is reduced by the combined method of combining the pH control method and the scale inhibitor addition method. Not only can the adhesion speed be reduced, but the ball cleaning effect is the same as that of washing, so it is extremely advantageous in terms of operation and has an extremely remarkable effect industrially.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の多段フラ・ソシュ型造水装置の系統図、
第2図はスケ−1し抑制剤添加性単独の場合のボールク
リーニングの効果例を示す図表、第6図は循環ブライン
の濃縮比と循環ブラインのpHの関係を示す図表、第4
図は酸添加後CO,を外部に放出する従来法と、CO□
を溶存させたま\である本発明法との、熱回収部伝熱管
入口の循環ブラインpHとボールクリーニングによる汚
れ係数の回後率を対比した図表、第5図は本発明法の一
実施態様の系統図である。 復代理人  内 1)  明 復代理人  萩 原 亮 − 運転朝間 循環ブラインの濃度比 第4園 運転期間
Figure 1 is a system diagram of a conventional multi-stage Fra-Sauche type water generator.
Figure 2 is a chart showing an example of the effect of ball cleaning in the case of Sk-1 and inhibitor additive alone; Figure 6 is a chart showing the relationship between the concentration ratio of circulating brine and the pH of circulating brine;
The figure shows the conventional method of releasing CO, to the outside after adding acid, and CO□
Figure 5 is a graph comparing the circulation brine pH at the inlet of the heat exchanger tube in the heat recovery section and the recovery rate of the fouling coefficient due to ball cleaning with the method of the present invention in which the method of the present invention remains dissolved. It is a system diagram. Sub-agents 1) Mei-Fu agent Ryo Hagiwara - Concentration ratio of circulating brine during the morning of operation 4th garden operation period

Claims (1)

【特許請求の範囲】[Claims] 多段フラッシュ型造水装置の伝熱管内スケール抑制法と
して、補給海水に含まれる炭酸塩アルカリ成分の1部を
分解するに要する酸を補給海水か又は補給海水と混合し
た循環ブラインに加え、生成するC02は液中に溶解、
混合したまま外部に放散させることなく、そのまま蒸発
装置の伝熱管に送入することを特徴とする、多段フラッ
シュm遣水装置のスケール抑制法。
As a method for suppressing scale in the heat transfer tubes of a multi-stage flash water generation system, the acid required to decompose part of the carbonate alkaline components contained in the make-up seawater is added to the make-up seawater or circulating brine mixed with the make-up seawater. C02 is dissolved in the liquid,
A scale suppression method for a multi-stage flash water supply device, which is characterized by feeding the mixture as it is into a heat transfer tube of an evaporator without dissipating it to the outside.
JP58104885A 1983-06-14 1983-06-14 Scale suppression of multistage flash type water making apparatus Pending JPS59230687A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58104885A JPS59230687A (en) 1983-06-14 1983-06-14 Scale suppression of multistage flash type water making apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58104885A JPS59230687A (en) 1983-06-14 1983-06-14 Scale suppression of multistage flash type water making apparatus

Publications (1)

Publication Number Publication Date
JPS59230687A true JPS59230687A (en) 1984-12-25

Family

ID=14392633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58104885A Pending JPS59230687A (en) 1983-06-14 1983-06-14 Scale suppression of multistage flash type water making apparatus

Country Status (1)

Country Link
JP (1) JPS59230687A (en)

Similar Documents

Publication Publication Date Title
US4444675A (en) Alkaline scale abatement
US3218241A (en) Inhibiting scale formation in fresh water recovery
US4260461A (en) Vapor compression distillation apparatus and method
CN104860464B (en) Energy-saving ammonia-nitrogen wastewater treatment method and device
US8277662B2 (en) Steam boiler apparatus and operating method therefor
JP2008272668A (en) Water producing apparatus and water producing method
US3951752A (en) Method and apparatus for converting saline water to fresh water
JPH03262585A (en) Ultra-pure water generating apparatus
JPS59230687A (en) Scale suppression of multistage flash type water making apparatus
US4795532A (en) Aftertreatment method and apparatus for distilled water
CN114230071A (en) Treatment method of DMF (dimethyl formamide) -containing wastewater
WO2016063581A1 (en) Treatment method and treatment apparatus for ammonia-containing wastewater
EP0187432A1 (en) Aftertreatment of distilled water
JPS59222289A (en) Method for suppressing scale in heat transmitting pipe of multi-stage flash type water making device
CN214936167U (en) Low-temperature negative-pressure evaporation concentration system applied to wastewater zero discharge device
US3814671A (en) Method and apparatus for saline water conversion
CN110697814B (en) Ammonia-containing sulfate wastewater treatment system and process
JPS5824398A (en) Reduction of alkaline scale
JP5402669B2 (en) Water treatment method for boiler water system
US3507754A (en) Recirculating multistage flash evaporation system and method
CN110981060A (en) Ammonium chloride double-effect plate type rising film concentration evaporation process and system thereof
JP2001054785A (en) Evaporation type production of pure water nd device thereof
JPS60143894A (en) Post-treatment of distilled water
JPS6359756B2 (en)
JPS59102492A (en) Method for preventing deposition of scale in evaporation type seawater desalination apparatus