JPS59229902A - Shaped-beam antenna - Google Patents

Shaped-beam antenna

Info

Publication number
JPS59229902A
JPS59229902A JP10474383A JP10474383A JPS59229902A JP S59229902 A JPS59229902 A JP S59229902A JP 10474383 A JP10474383 A JP 10474383A JP 10474383 A JP10474383 A JP 10474383A JP S59229902 A JPS59229902 A JP S59229902A
Authority
JP
Japan
Prior art keywords
parabolas
antenna
axis
reflecting mirror
main reflecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10474383A
Other languages
Japanese (ja)
Other versions
JPH0611086B2 (en
Inventor
Mitsuhiro Kusano
草野 光裕
Makoto Ando
真 安藤
Kenji Ueno
健治 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Nippon Telegraph and Telephone Corp
Original Assignee
NEC Corp
Nippon Telegraph and Telephone Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Telegraph and Telephone Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP58104743A priority Critical patent/JPH0611086B2/en
Publication of JPS59229902A publication Critical patent/JPS59229902A/en
Publication of JPH0611086B2 publication Critical patent/JPH0611086B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/12Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave
    • H01Q19/13Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave the primary radiating source being a single radiating element, e.g. a dipole, a slot, a waveguide termination

Abstract

PURPOSE:To obtain a shaped-beam antenna containing a primary radiator having a large degree of freedom with a simple constitution by consituting a main reflector with the envelope surface of a line group formed in accordance with the section form of a shaped beam to be synthesized. CONSTITUTION:A main reflector is formed by a part of five types of parabolas 3-7. These parabolas use the phase center point P of a primary radiator 13 as a common focal point and axes Z3-Z7 having different directions with angles theta3-theta7 on the basis of a reference axis Z of the reflector 2. With an antenna of such a consitution, the radio waves of a spherical wave source radiated within a cut plane from the radiator 13 are reflected by parabolas 3-7 and then radiated within the same plane as the radio waves traveling toward each axis. The radiation characteristics within the cut plane are shown by a solid line 40 as mainly a synthetic wave. Thus it is possible to synthesize the desirable radiation characteristics by adjusting the number of parabolas forming cut lines, the size of each parabola, the focal distance and the axis direction respectively.

Description

【発明の詳細な説明】 〔発明の騙する技術分野〕 本発明は無線通信における反射鏡アンテナに属し、伐数
の地上局と通信を行う衛星搭載用アンテナ等に適する成
形ビームアンテナに関するものである。
[Detailed description of the invention] [Technical field in which the invention deceives] The present invention belongs to reflector antennas in wireless communication, and relates to a shaped beam antenna suitable for antennas mounted on satellites that communicate with ground stations in the area. .

〔従来技術の説明〕[Description of prior art]

従来、この種のアンテナには、地上局が散在する4テ定
の地域を効率よ(照射するように、放射ビームの断面形
状が成形された放射特性を持つことが望まれる。このよ
うないわゆる成形ビームアンテナとしては、例えば第1
図に縦断側面図を示すような複数個の1次放射器により
給電されたパラボラアンテナが従来用いられていた。第
1図において、1は点Fを焦点とし2を基準軸とする回
転放物面鏡、10および11は1次放射器である。この
1次放射器1oおよび11は電力分配器12によりそれ
ぞれ適切な励振振幅比および位相差で給電されている。
Conventionally, it is desirable for this type of antenna to have a radiation characteristic in which the cross-sectional shape of the radiation beam is shaped so that it can efficiently irradiate a 4-tea area where ground stations are scattered. As a shaped beam antenna, for example, the first
A parabolic antenna fed by a plurality of primary radiators, as shown in a vertical side view in the figure, has conventionally been used. In FIG. 1, 1 is a parabolic mirror of revolution having a focal point at point F and 2 as a reference axis, and 10 and 11 are primary radiators. The primary radiators 1o and 11 are supplied with power by a power divider 12 with appropriate excitation amplitude ratios and phase differences, respectively.

この1次放射器10および11はそれぞれ焦点Fより偏
位して配置されているため、各1次放射器10.11よ
り放射され回転放物面鏡lで反射された電波は、それぞ
れ進行方向の異なる平面波状の電波として放射され、全
体としては電力分配器12により給電された振幅比およ
び位相差に準じて合成される。なお第1図は1次放射器
の数が2個の例を示したが、2個以上の場合も合成の方
法は同様である。したがって1次放射器の数と配置位置
および励振振幅比と位相差を望ましい成形ビームの形状
に合わせて選定することにより、成形ビームアンテナが
実現される。
Since these primary radiators 10 and 11 are each arranged to be deviated from the focal point F, the radio waves emitted from each primary radiator 10 and 11 and reflected by the parabolic mirror l travel in the respective traveling directions. They are radiated as different plane wave radio waves, and are combined as a whole according to the amplitude ratio and phase difference supplied by the power divider 12. Although FIG. 1 shows an example in which the number of primary radiators is two, the method of combining is the same even if there are two or more primary radiators. Therefore, a shaped beam antenna can be realized by selecting the number and arrangement position of the primary radiators, excitation amplitude ratio, and phase difference in accordance with the desired shape of the shaped beam.

しかしながらこの構成のアンテナでは、一般に1次放射
器の1の増加に比例して電力分配器が複雑化し、その損
失も増大する欠点があった。また1次放射器の数が増加
すると、1次放射器と電力分配器全体の寸法および重量
が増大し、?is星に搭載する場合に゛は衛星全体の構
成に与える影響が大きい等の欠点もあった。
However, an antenna with this configuration generally has the disadvantage that the power divider becomes more complex and its loss increases in proportion to the increase in the number of primary radiators. Also, as the number of primary radiators increases, the size and weight of the primary radiators and power divider as a whole increases, and ? When mounted on an IS star, there were drawbacks such as the large effect it would have on the overall configuration of the satellite.

また他の構成の成形ビームアンテナとしては、特開昭5
0−99060に記載されたアンテナのように、回転放
物面の1部よりなる部分鏡面を複数個組合わせて構成さ
れる主反射鏡を用いて、1次放射器系の構造を簡略化し
たアンテナもあるが、複数の部分鏡面を組合わせている
ため、各部分鏡面の回転対称軸や焦点距離および主反射
鏡全体に占める各部分鏡面の割合等を自由に選定するこ
とができず、設計の自由度が小さい欠点があった。
In addition, as a shaped beam antenna with other configuration,
As in the antenna described in 0-99060, the structure of the primary radiator system is simplified by using a main reflector made up of a combination of multiple partial mirror surfaces each formed by a part of a paraboloid of revolution. There is also an antenna, but since it is a combination of multiple partial mirror surfaces, it is not possible to freely select the rotational symmetry axis and focal length of each partial mirror surface, and the proportion of each partial mirror surface to the entire main reflecting mirror, so it is difficult to design. The disadvantage was that the degree of freedom was small.

〔発明の目的〕[Purpose of the invention]

本発明は、上記欠点を改良するもので、複数局との通信
を行うことができ、簡単な構成で設計の自由度の大きい
1次放射器を価えた成形ビームアンテナを提供すること
を目的とする。
The present invention aims to improve the above drawbacks, and provides a shaped beam antenna that can communicate with multiple stations, has a simple configuration, and has a primary radiator with a high degree of freedom in design. do.

〔発明の要旨〕[Summary of the invention]

本発明は、合成しようとする成形ビームの断面形状に合
わせて形成した線群の包絡面を用いて主反射鏡が構成さ
れたことを特徴とする。
The present invention is characterized in that the main reflecting mirror is constructed using an envelope surface of a group of lines formed in accordance with the cross-sectional shape of a shaped beam to be synthesized.

すなわち本発明は、主反射鏡と、この主反射鏡を直接ま
たは1個以上の副反射鏡を介して照射する1次放射器と
を備えた成形ビームアンテナにおいて、上記主反射鏡は
、この主反射鏡上に位置する一定点および上記1次放射
器の位相中心点または上記副反射鏡を介した等価位相中
心点を含む平面群の各切断線により形成される切断線群
の包絡面により構成され、上記各切断線はそれぞれ軸の
向きの異なる複数の放物線の組合わせにより形成され、
かつ上記各放物線の軸の向きは隣接する他の切断線を形
成する放物線の軸の向きとそれぞれ異なるように形成さ
れたことを特徴とする。
That is, the present invention provides a shaped beam antenna comprising a main reflecting mirror and a primary radiator that irradiates the main reflecting mirror directly or via one or more sub-reflecting mirrors, in which the main reflecting mirror Consisting of an envelope surface of a group of cutting lines formed by each cutting line of a group of planes including a fixed point located on the reflecting mirror and the phase center point of the primary radiator or the equivalent phase center point via the sub-reflector. and each of the above cutting lines is formed by a combination of a plurality of parabolas with different axis directions,
Further, the axes of each of the parabolas are formed to be different in direction from the axes of the adjacent parabolas forming other cutting lines.

〔実施例による説明〕[Explanation based on examples]

次に本発明の実施例を図面に基づいて訂しく説明する。 Next, embodiments of the present invention will be described in detail based on the drawings.

第2図は本発明一実施例アンテナの箱断fi1i1面図
、第6図はそのアンテナの主反射鏡の正面図である。
FIG. 2 is a box-cut plan view of an antenna according to an embodiment of the present invention, and FIG. 6 is a front view of the main reflecting mirror of the antenna.

第2図および第3図において、主反射ψ、20点0は1
次放射器13の最大放射方向のビーム軸と主反射鏡2と
の交点であり、点Pは1次放射器13の位相中心点、2
は主反射鏡20基準軸である。
In Figures 2 and 3, the main reflection ψ, 20 points 0 is 1
Point P is the intersection point of the beam axis in the maximum radiation direction of the secondary radiator 13 and the main reflecting mirror 2, and the point P is the phase center point of the primary radiator 13,
is the main reflecting mirror 20 reference axis.

主反射鏡2は、点0と点Pとを含む平面群の各切断線に
より形成される切断線群の包餡面により構成される。第
3図の実線20.21.22は前記切断線群を形成する
切断線の一部である。この各切断線は以下に述べる方法
により定まる。
The main reflecting mirror 2 is constituted by an enclosing surface of a group of cutting lines formed by each cutting line of a group of planes including point 0 and point P. Solid lines 20, 21, and 22 in FIG. 3 are some of the cutting lines forming the group of cutting lines. Each of these cutting lines is determined by the method described below.

第4図は本実施例アンテナが合成しようとする成形ビー
ムの観測球面上での等利得線図の一例である。第4図に
おいて、実線49は観測球面上での咎利得線図であって
、実線3o、31.32はそJtぞれ第3図に示した切
断a20,21.22を含む切断平面と観測球面との交
線であり、点Qは第2図に示したz軸と観測球面との交
点である。なお第4図の実線49で表わされる等利得線
図はこのZ軸よりの角度に対して示されており、実線3
゜と32はそれぞれ垂部角度軸と水平角度軸に一致して
いる。したがって各切断平面内での放射特性−1例えば
第4図の実線30,31.32で考えられる切傷t v
Tfj+に対応して、それぞれ第5図の実線40、破線
41.2点鎖線42で示されるような特性が望まれるこ
とになる。第5図において縦軸5゜は電力振幅値を示す
軸、横軸51はz軸よりの角度を示す釉である。各切断
平面内で望ましい放射特性を得るための主反射鏡2の切
断線の定め方を例えば第5図の実線40の場合について
説明する。
FIG. 4 is an example of an equal gain diagram on the observation sphere of the shaped beams that the antenna of this embodiment attempts to synthesize. In FIG. 4, the solid line 49 is a gain diagram on the observation sphere, and the solid lines 3o and 31.32 are the cutting planes including the cuts a20 and 21.22 shown in FIG. 3, respectively, and the observation plane. It is a line of intersection with the spherical surface, and point Q is the intersection of the z-axis shown in FIG. 2 and the observation spherical surface. Note that the equal gain diagram represented by the solid line 49 in FIG. 4 is shown with respect to the angle from this Z axis, and the solid line 3
° and 32 correspond to the vertical angular axis and the horizontal angular axis, respectively. Therefore, radiation characteristics within each cutting plane -1 For example, the cuts t v considered by the solid lines 30, 31, and 32 in FIG.
Corresponding to Tfj+, characteristics as shown by a solid line 40, a broken line 41, and a two-dot chain line 42 in FIG. 5 are desired, respectively. In FIG. 5, the vertical axis 5° is an axis indicating the power amplitude value, and the horizontal axis 51 is the glaze indicating the angle from the z-axis. How to determine the cutting line of the main reflecting mirror 2 in order to obtain desirable radiation characteristics within each cutting plane will be explained using, for example, the case of the solid line 40 in FIG. 5.

第6図は第2図の中央縦断面図、第7図は第6図に示さ
れる主反射鏡2の放射特性図である。なお第7因の実心
40は第5図に示したものと同一である。第6図に示し
た切断線により示さねる主反射鏡2 F、Il、5イj
I類の放物線3.4.5.6.7の一部により形成され
る。各放物線3.4.5.6.7は1次放射器13の位
相中心点Pを共通の焦点とし、向きの異なるz3、z4
.z6、z6、z7をそれぞれ剰1とする。θ3.04
、θ6、θ7は主反射鏡2の基準軸2よりの放物ね3.
4.6.7の各角度である。
6 is a central vertical sectional view of FIG. 2, and FIG. 7 is a radiation characteristic diagram of the main reflecting mirror 2 shown in FIG. 6. Note that the real center 40 of the seventh factor is the same as that shown in FIG. Main reflecting mirror 2 F, Il, 5 Ij shown by the cutting line shown in Fig. 6
It is formed by a part of the Class I parabola 3.4.5.6.7. Each parabola 3.4.5.6.7 has a common focus at the phase center point P of the primary radiator 13, and has different directions z3 and z4.
.. Let z6, z6, and z7 each be the remainder 1. θ3.04
, θ6, θ7 are paraboloids from the reference axis 2 of the main reflecting mirror 23.
4.6.7 angles.

このような+1′4成のアンテナでは、1次放射器13
より切1す「平面内に放射された球In1波波碑01↓
1.Lυは各放物線3.4.5.6.7で反射した後、
それぞれの4?i1方向に進行する′電波として1rJ
1−平1uj内に放射される。この切断平面内の放射特
性は主としてこれらの合成波として実勝4oで示される
。したがって、切断線を形成する放物線の数と各h1勿
緑の寸法、焦点耐重しおよび軸の向きを調整することに
より望ましい放射特性を合成することができる。上述し
た放射特性の合成を各切ド1平面内で行うことにより、
アンテナ全体としては、第4図の実線49に示した等利
得蕨紬を合成できる。
In such a +1'4 antenna, the primary radiator 13
Yorikiri 1 "Sphere radiated in a plane In1 wave wave monument 01 ↓
1. After Lυ is reflected by each parabola 3.4.5.6.7,
4 of each? 1rJ as a radio wave traveling in i1 direction
1 - radiated within 1 uj. The radiation characteristic within this cutting plane is mainly expressed as a composite wave of these waves. Therefore, desired radiation characteristics can be synthesized by adjusting the number of parabolas forming the cutting line, the dimensions of each h1 line, the focal weight resistance, and the direction of the axis. By synthesizing the radiation characteristics described above within one plane of each cut,
The antenna as a whole can be synthesized with equal-gain warabi pongee shown by the solid line 49 in FIG.

以上説明したように、等利得線図の合成は各切貼平面内
でそれぞれ個別に行わわるため、Vr合う切IノE線の
杓成要素が総て同一であることはな(、構成委素の1部
あるいは全体が異なり、この違いは王として軸の向きの
追いが主体的であり、各放物心の寸法および焦点距離は
、主として切断線群の包絡面がなたらかな鋭化となるよ
うに選定される。
As explained above, since the composition of equal gain diagrams is performed individually within each cut and paste plane, the constituent elements of the cut I-E lines that match Vr are not all the same (constituent committee). One part or the entire element is different, and this difference is mainly due to the direction of the axis, and the dimensions and focal length of each parabola are mainly due to the gradual sharpening of the envelope surface of the group of cutting lines. are selected as follows.

なお切断し群の数については、主反射鏡全体の大きさ、
使用族波数帝、合成しようとする噌利得i図の形状等に
より選定されるか、波動効果をも考慮した放射特性の解
析結果あるいは実測結果によりその紅を増減することが
できる。
The number of cut groups depends on the overall size of the main reflecting mirror,
The wave number used can be selected depending on the shape of the gain-i diagram to be synthesized, or it can be increased or decreased based on the results of analysis or actual measurements of radiation characteristics that also take into account wave effects.

第8図は本発明の他の実施例アンテナの中央縦I、;1
面図、第9図は第8図に示される主反射fa2’の放射
慣性図である。本実施例の主反射鏡2′は、第8図に示
すように切断線が6種類の放物線3′、4(5′の一部
により形成され、この切断線が基緒軸2を中心にして回
転して栴成される。したがって合成される放射特性も第
9図の放射特性を示す実線43を軸50の回りに回転し
たものとなる。なお第8図および&)9図に示される軸
z3および2.の刺1zよりの角度θ、およびθ、は、
θ3−0.で))る。各切断平面内の屋ましい放射特性
の実〜43で示されるいわゆる双峰性ビームを合成する
方法は第6図および第7図の場合と同様である。本実%
、例のアンテナの主反射鏡2′の格成の%徴は、各切断
線の中央部は総て同一の焦点距離と軸を有する放物線4
′であり、絢辺部は焦点距離は同一であるが軸の向きが
それぞれ異なる放物F、i!3′、5′であるところに
ある。
FIG. 8 shows another embodiment of the antenna according to the present invention, with the center vertical I;
The plan view and FIG. 9 are radial inertia diagrams of the main reflection fa2' shown in FIG. As shown in FIG. 8, the main reflecting mirror 2' of this embodiment has cutting lines formed by parts of six types of parabolas 3', 4 (5'), and this cutting line is centered on the basic axis 2. Therefore, the radiation characteristics to be synthesized are also obtained by rotating the solid line 43 showing the radiation characteristics in FIG. 9 around the axis 50. Axes z3 and 2. The angle θ and θ from the thorn 1z are as follows:
θ3-0. Out. The method of synthesizing the so-called bimodal beams shown by 43 with the disturbing radiation characteristics in each cutting plane is the same as in FIGS. 6 and 7. Actual%
, the % characteristic of the main reflector 2' of the antenna in the example is that the central part of each cutting line is a parabola 4 with the same focal length and axis.
', and the paraboloids F, i! have the same focal length but different axis directions. It is located at 3' and 5'.

なお以上の説明では、1次放射器が電波の’)j41路
に存在し、いわゆるブロッキングがある41゛〆[成の
アンテナについて説明したが、ブロッキングの少ない、
いわゆるオフセット形式のアンテナにも適用することが
できる。
In the above explanation, the primary radiator exists in the ')j41 path of radio waves, and the antenna with so-called blocking is described.
It can also be applied to a so-called offset type antenna.

また説明の都会上、アンテナは送イ―アンテナとして扱
ったが、アンテナの相反性より受信アンテナにも適用す
ることができ、したがって上記にξ明で用いた「照射」
および「放射」の語は、本発明を送信アとンテナに限定
するものではない。
Also, for the sake of explanation, the antenna was treated as a transmitting antenna, but due to the reciprocity of antennas, it can also be applied to receiving antennas, and therefore the ``irradiation'' used in ξ light above
The words "radiating" and "radiating" do not limit the invention to transmitting antennas.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によ才1ば合成しようとす
る成形ビームの断面形状に合わせて形成した切ル[赳群
の包絡面を用いて主反射鏡を栴成し、これを1次放射器
により直接、あるいは副反射鏡を介して絹電することに
より、11次放射器系の構造が升4.略化され、かつ設
計の自由度の大きな優れた越、形ビームアンテナが実現
できる。特に枚数のjlfz上局との通(Mを行う必要
があり、かつアンテナ全体の寸法、重量等に制限の多い
衛星招載用アンデナに用いれば多大な効果を発揮すると
とができる。
As explained above, the advantage of the present invention is to form a main reflecting mirror using the envelope surface of the cut beam formed in accordance with the cross-sectional shape of the shaped beam to be synthesized, and The structure of the 11th order radiator system can be changed to 4. It is possible to realize an excellent cross-beam antenna that is simplified and has a large degree of freedom in design. In particular, it is said that it will be very effective if used in a satellite invitation antenna that requires communication with a number of JLFZ upper stations and has many restrictions on the size, weight, etc. of the entire antenna.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例アンテナの縦断(1iil 1iIi図
。 第2図は本発明一実施例アンテナの縦1’l’li”I
t!!I面図。 第3図はそのアンテナの主反射錆・の正面図。 第4図はその笠利;#線図。 第5図はその放射特性図。 第6図は第2図の中火綿]断面図。 第717iはその放射特性図。 第8121は本発明の他の実施例アンテナの中央網1i
、l+ 1川しjo 第9図はその放射特性図。 2.2′・・・主反射勿1六 3〜7.3′〜5′・・
・放物線、13・・・1次放射器、0・−・主反射鏡上
の定点、P・・・1 ?jζ放躬放射位イ[」中心点、
2・・・主反射鏡の基準軸。 特許出願人 代理人弁理士井 出 直 孝 第1図 第2図 第3図 第4図 第5図 第6図 第8図 第9図
Fig. 1 is a vertical cross section of a conventional antenna (1iil 1iIi diagram). Fig. 2 is a vertical cross section of an antenna according to an embodiment of the present invention.
T! ! I view. Figure 3 is a front view of the main reflection rust on the antenna. Figure 4 is the Kasari; # line diagram. Figure 5 shows its radiation characteristics. Figure 6 is a cross-sectional view of the medium-fired cotton in Figure 2. No. 717i is its radiation characteristic diagram. No. 8121 is a central network 1i of an antenna according to another embodiment of the present invention.
, l + 1 Kawashijo Figure 9 is its radiation characteristic diagram. 2.2'...Main reflection 16 3~7.3'~5'...
・Parabola, 13...Primary radiator, 0...Fixed point on the main reflector, P...1? jζradial position i[' center point,
2...Reference axis of main reflector. Patent applicant's representative Patent attorney Nao Takashi IdeFigure 1Figure 2Figure 3Figure 4Figure 5Figure 6Figure 8Figure 9

Claims (1)

【特許請求の範囲】[Claims] <l+  主反射鏡と、この主反射鋼を直接囚反射鎖な
介して照射する1次放射器とを備えた成形ビームアンテ
ナにおいて、上記主反射鏡は、この主反射鏡上に位置す
る一定点および上記1次放射器の位相中心点を含む平面
群の各切断線により形成される切断灯群の包絡面により
構成され、上記各切断線はそれぞれ軸の向きの異なる代
数の放物線の組合わせにより形成され、かつ上記各放物
力祖の軸の向きは膜接する他の切断線を形成する放物紛
の軸の向きとそれぞれ異なるように形成されたことを特
徴とする成形ビームアンテナ。
<l+ In a shaped beam antenna equipped with a main reflecting mirror and a primary radiator that irradiates this main reflecting steel via a direct reflection chain, the main reflecting mirror has a fixed point located on this main reflecting mirror. and an envelope surface of the cutting light group formed by each cutting line of the plane group including the phase center point of the primary radiator, and each cutting line is formed by a combination of algebraic parabolas with different axis directions. 1. A shaped beam antenna characterized in that the directions of the axes of each of the paraboloids are different from the directions of the axes of the paraboloids forming other cutting lines in contact with the membrane.
JP58104743A 1983-06-10 1983-06-10 Molded beam antenna Expired - Lifetime JPH0611086B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58104743A JPH0611086B2 (en) 1983-06-10 1983-06-10 Molded beam antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58104743A JPH0611086B2 (en) 1983-06-10 1983-06-10 Molded beam antenna

Publications (2)

Publication Number Publication Date
JPS59229902A true JPS59229902A (en) 1984-12-24
JPH0611086B2 JPH0611086B2 (en) 1994-02-09

Family

ID=14388972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58104743A Expired - Lifetime JPH0611086B2 (en) 1983-06-10 1983-06-10 Molded beam antenna

Country Status (1)

Country Link
JP (1) JPH0611086B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5136294A (en) * 1987-01-12 1992-08-04 Nec Corporation Multibeam antenna
US5258767A (en) * 1989-03-14 1993-11-02 Kokusai Denshin Denwa Co., Ltd. Antenna system for shaped beam
CN110401040A (en) * 2019-07-26 2019-11-01 中国电子科技集团公司第五十四研究所 A kind of reflector antenna Dividing Curve Surface method based on gradeization area and mixing shape

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5099060A (en) * 1973-12-27 1975-08-06

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5099060A (en) * 1973-12-27 1975-08-06

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5136294A (en) * 1987-01-12 1992-08-04 Nec Corporation Multibeam antenna
US5258767A (en) * 1989-03-14 1993-11-02 Kokusai Denshin Denwa Co., Ltd. Antenna system for shaped beam
CN110401040A (en) * 2019-07-26 2019-11-01 中国电子科技集团公司第五十四研究所 A kind of reflector antenna Dividing Curve Surface method based on gradeization area and mixing shape

Also Published As

Publication number Publication date
JPH0611086B2 (en) 1994-02-09

Similar Documents

Publication Publication Date Title
US6590544B1 (en) Dielectric lens assembly for a feed antenna
US3995275A (en) Reflector antenna having main and subreflector of diverse curvature
JP2000216627A (en) Compact offset gregorio antenna system providing adjacent high gain antenna beam
US3797020A (en) Microwave antenna structure with aperture blocking elimination
JP2000216626A (en) Compact forward feed type dual reflector antenna system for providing adjacent high gain antenna beam
JP2000216625A (en) Compact side-feed type dual reflector antenna system for providing adjacent high gain antenna beam
JPH09504158A (en) Reconfigurable, zoomable, swivelable, elliptical beam antenna
JPH0359603B2 (en)
JPS59229902A (en) Shaped-beam antenna
US20230282987A1 (en) Multisegment reflector antenna directing beams
JPS603210A (en) Antenna in common use for multi-frequency band
CN113823918B (en) Novel multi-beam imaging self-tracking parabolic antenna
WO1998015033A1 (en) Dielectric lens assembly for a feed antenna
US6633264B2 (en) Earth coverage reflector antenna for geosynchronous spacecraft
JPH0467364B2 (en)
JPS62173804A (en) Antenna for reception
JPS5939104A (en) Shaped beam antenna
JPH0566763B2 (en)
JP2605939B2 (en) Multi-beam antenna
JPS5884504A (en) Formed beam antenna
JPS6138261Y2 (en)
JPS5892106A (en) Multibeam antenna
JP2571378B2 (en) Omni-directional antenna in horizontal plane
JP2643560B2 (en) Multi-beam antenna
JPS5884506A (en) Formed beam antenna