JPS59229519A - Scanning photon microscope - Google Patents
Scanning photon microscopeInfo
- Publication number
- JPS59229519A JPS59229519A JP9258484A JP9258484A JPS59229519A JP S59229519 A JPS59229519 A JP S59229519A JP 9258484 A JP9258484 A JP 9258484A JP 9258484 A JP9258484 A JP 9258484A JP S59229519 A JPS59229519 A JP S59229519A
- Authority
- JP
- Japan
- Prior art keywords
- scanning
- photon
- electron
- photoelectron
- plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/26—Electron or ion microscopes; Electron or ion diffraction tubes
- H01J37/28—Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/0004—Microscopes specially adapted for specific applications
- G02B21/002—Scanning microscopes
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は光子ビームを走査し顕微鏡像を得る走査光子顕
微鏡に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a scanning photon microscope that scans a photon beam to obtain a microscopic image.
走査光子顕微鏡は走査電子顕微鏡における電子を光子に
置換したものであり、それ自体新しいものではない。し
かしながら、従来の走査光子顕微鏡においては、電子顕
微鏡の場合と異なり、真空中で用いられることはなく、
大気中で試料からの反射光や散乱光を用いて顕微鏡像を
えている。試料が半導体の場合は、透過光も用いられ、
さらに試料で発生した光起電力や光電流を信号として用
いることも広く行われている。A scanning photon microscope is a scanning electron microscope that replaces electrons with photons, and is not new in itself. However, unlike electron microscopes, conventional scanning photon microscopes are not used in a vacuum;
Microscopic images are obtained using reflected light and scattered light from a sample in the atmosphere. If the sample is a semiconductor, transmitted light is also used,
Furthermore, it is widely practiced to use photovoltaic force or photocurrent generated in a sample as a signal.
光電子放射を走査像の信号源として用いることは原理的
には可能である。しかしながら、光電子放射のためには
、光のエネルギが被照射物体の仕事関数を上まわるもの
でなければならない。例えば、対象物がAl(仕事関数
φ”:4 eV )の場合は。In principle, it is possible to use photoelectron radiation as a signal source for scanning images. However, for photoelectron emission, the energy of the light must exceed the work function of the object to be irradiated. For example, if the object is Al (work function φ'': 4 eV).
光の波長は310 nm以下の紫外線領域にはいる。逆
に言うと、波長が紫(〜36Qnm)以上の可視域光子
では、セシュウムなどの仕事関数が小さい(φγ1.6
eV )の物質の場合を除き光電子は期待できない。The wavelength of the light is in the ultraviolet region of 310 nm or less. Conversely, photons in the visible range with wavelengths of violet (~36Qnm) or longer have a small work function such as cesium (φγ1.6
Photoelectrons cannot be expected except in the case of materials with
したがって、可視、赤外領域の光子を用いる場合には、
多くの場合光電子を検知することができない。したがっ
て、従来の走査光子顕微鏡においては、試料を真空中に
置かなければならない理由はなく、試料はすべて大気中
に置かれている。Therefore, when using photons in the visible and infrared regions,
In many cases, photoelectrons cannot be detected. Therefore, in conventional scanning photon microscopy, there is no reason why the sample must be placed in a vacuum; all samples are placed in the atmosphere.
その結果真空中に納められた被観測物体表面をその被観
測物体の仕事関数を上まわらないエネルギの光子ビーム
を用いて走査し、顕微鏡像を得るような走査光子顕微鏡
は従来存在しなかった。As a result, there has never been a scanning photon microscope that scans the surface of an object housed in a vacuum using a photon beam with an energy that does not exceed the work function of the object to obtain a microscopic image.
本発明の目的は、したがって、真空中に納められた被観
測物体表面をその被観測物体の仕事関数を上まわらない
エネルギの光子ビームを用いて走査し、顕微鏡像を得る
ことを可能にする走査光子顕微鏡を提供することである
。Therefore, an object of the present invention is to scan the surface of an object to be observed housed in a vacuum using a photon beam with an energy not exceeding the work function of the object to be observed, thereby making it possible to obtain a microscopic image. To provide a photon microscope.
上記目的を達成するために2本発明による走査光子顕微
鏡は、被観測物体を納めるための真空容器と、上記被観
測物体と対向して光子ビームを発生する光子源と、上記
光子ビームで上記被観測物体表面を走査するための手段
と、上記光子が上記被観測物体に当るときに発生する光
電子を検出するための検出器とを含むことを要旨とする
。In order to achieve the above object, the scanning photon microscope according to the present invention includes a vacuum container for containing an object to be observed, a photon source that faces the object to be observed and generates a photon beam, and a scanning photon microscope that uses the photon beam to expose the object to the object. The gist includes means for scanning the surface of the observed object, and a detector for detecting photoelectrons generated when the photons hit the observed object.
第1図および第2図を用いて9本発明の詳細な説明する
。The present invention will be described in detail using FIGS. 1 and 2.
第1図は光電子の発生機構の原理をエネルギ・ダイヤフ
ラムを用いて示す。物体1に、光子2゜2′を照射する
と、物体のエネルギ・レベル・ダイヤグラムにおける充
満帯1′にある電子3,3′は。FIG. 1 shows the principle of the photoelectron generation mechanism using an energy diaphragm. When the object 1 is irradiated with photons 2° 2', the electrons 3 and 3' in the full band 1' in the energy level diagram of the object.
光子2,2′からエネルギを受けて励起される。しかし
、光子2.2′のエネルギが仕事関数φ以下の場合は、
電子3.3′は、物体外の真空空間4に飛び出すことは
できない。It receives energy from photons 2 and 2' and is excited. However, if the energy of photon 2.2' is less than the work function φ, then
The electrons 3.3' cannot escape into the vacuum space 4 outside the object.
一方、物体が何らかの理由で、加熱されると。On the other hand, if an object is heated for some reason.
充満帯1′中の電子は励起されて高エネルギ状態1“に
もちあげられる。このような状態に光子2“を照射する
と、第2図がら容易に理解されるように。The electrons in the filled zone 1' are excited and lifted to a high-energy state 1''. When such a state is irradiated with a photon 2'', as can be easily understood from FIG.
電子3”は仕事関数以上のエネルギ・レベルに上り。Electron 3" rises to an energy level above its work function.
その結果、光電子として真空空間4に飛び出してくる。As a result, they fly out into the vacuum space 4 as photoelectrons.
したがって、物体を加熱状態にすれば、仕事関数より低
いエネルギの光子によって光電子放射が可能になり、こ
の光電子を用いた走査像が可能となる。Therefore, when an object is heated, photoelectron emission becomes possible using photons with energy lower than the work function, and scanning images using these photoelectrons become possible.
第3図は本発明による走査光子顕微鏡の1実施の態様を
示すブロック図である。この実施の態様ニオいては光子
ビームはパルス化さレル。パルス化された光子ビームに
同期して信号を取り出すようにすれば、 SN比が改善
されるという利点が得られる。その光源はどのようなも
のであっても差支えないが、第3図には、走査電子顕微
鏡で用いる電子線装置を光源に応用した場合が示されて
いる。FIG. 3 is a block diagram showing one embodiment of a scanning photon microscope according to the present invention. In this embodiment, the photon beam is pulsed. Extracting the signal in synchronization with the pulsed photon beam has the advantage of improving the signal-to-noise ratio. Although any light source may be used, FIG. 3 shows a case where an electron beam device used in a scanning electron microscope is applied to the light source.
この光源を従来のレーザや陰極線管で置き換えることが
可能であることは訂う迄もない。It goes without saying that this light source can be replaced with a conventional laser or cathode ray tube.
第3図において、電子銃5から電子線6を引き出し、こ
れを電子レンズ9で収束して、適当な螢光物質11′を
塗布した螢光板11に照射する。パルス光源を得るため
には、ブランキング・プレート7にパルス電源26から
パルス電圧を印加し、ブランキング・アパーチャ8との
組合わせで電子線6をパルス化して螢光板11に照射す
る。螢光板11で発生した光子ビーム13は、レンズ1
2で収束されて、固体回路素子14に照射される。光子
ビーム13の走査は電子線6を偏向コイル1oで偏向走
査させることによって自動的になされる。固体回路素子
14には。In FIG. 3, an electron beam 6 is extracted from an electron gun 5, focused by an electron lens 9, and irradiated onto a fluorescent plate 11 coated with a suitable fluorescent substance 11'. In order to obtain a pulsed light source, a pulse voltage is applied to the blanking plate 7 from a pulse power source 26, and in combination with the blanking aperture 8, the electron beam 6 is pulsed and the fluorescent plate 11 is irradiated with the pulsed electron beam 6. The photon beam 13 generated by the fluorescent plate 11 passes through the lens 1
2 and irradiates the solid-state circuit element 14. Scanning of the photon beam 13 is automatically performed by deflecting and scanning the electron beam 6 with a deflection coil 1o. In the solid state circuit element 14.
電極15.15’を介して直流電源16によって電圧を
印加し、正規の状態で動作させておく。A voltage is applied by the DC power source 16 through the electrodes 15, 15', and the device is kept operating under normal conditions.
固体回路素子14が正常に動作している場合は。If the solid state circuit element 14 is operating normally.
素子表面からは光電子は放射されないが1回路素子が、
短絡事故などで局部的に加熱されると、既に説明した理
由により、光電子放射が生じる。この電子を検出器19
で検知して得られる信号は増幅器銀で増幅され、信号処
理回路24を介して走査像表示管27に供給される。偏
向コイル乙によって表示管27の電子線(図示せず)と
電子線6は走査電源nを介して同期して走査させである
から、走査電子顕微鏡の場合によく知られているように
2回路素子14の走査光子像が表示管27上にえもれ、
もし加熱が局部的であれば、温度分布状態を目視できる
ようになる。Although no photoelectrons are emitted from the element surface, one circuit element
Local heating, such as from a short-circuit accident, results in photoelectron emission for the reasons already explained. This electron is detected by the detector 19
A signal obtained by detection is amplified by an amplifier and supplied to a scanning image display tube 27 via a signal processing circuit 24. Since the electron beam (not shown) of the display tube 27 and the electron beam 6 are synchronously scanned by the deflection coil B via the scanning power supply n, two circuits are required as is well known in the case of a scanning electron microscope. The scanning photon image of the element 14 leaks onto the display tube 27,
If the heating is localized, the temperature distribution can be visually observed.
光電子の検出は2回路素子14とアース間にそう人した
検出抵抗17の端子電圧を増幅器】8で増幅してもよい
ことは明らかである。It is clear that photoelectrons may be detected by amplifying the terminal voltage of the detection resistor 17 between the two-circuit element 14 and the ground using the amplifier 8.
光電子放射がない場合(回路素子14の温度上昇がない
場合)は、光電子による回路素子14の認識ができない
が2回路素子14表面からの光子の反射。When there is no photoelectron emission (when there is no temperature rise in the circuit element 14), the circuit element 14 cannot be recognized by photoelectrons, but photons are reflected from the surface of the two-circuit element 14.
散乱を検出器21で検知し、増幅器22で増幅してやれ
ば、これを信号として、素子表面像をえることができる
。If the scattering is detected by the detector 21 and amplified by the amplifier 22, an image of the surface of the element can be obtained using this as a signal.
用いている光子ビームのエネルギより低い仕事関数の物
質が回路素子14表面に存在すれば1回路素子14の温
度上昇がない場合でも光電子が検知できるから1本発明
によれば、特定物質の存在を検出することができる。回
路素子14の温度上昇があれば、特定物質からの光電子
放射は増大するから。If a substance with a work function lower than the energy of the photon beam being used exists on the surface of the circuit element 14, photoelectrons can be detected even when the temperature of the circuit element 14 does not rise. According to the present invention, the presence of a specific substance can be detected. can be detected. This is because if the temperature of the circuit element 14 increases, the photoelectron emission from the specific substance increases.
その部分での温度上昇を識別できることは明らかである
。It is clear that a temperature increase in that area can be identified.
光の波長を変えたい時は、螢光物質11′を目的に応じ
て変化させる。When it is desired to change the wavelength of light, the fluorescent substance 11' is changed according to the purpose.
以上の説明から明らかなように1本発明によれば取扱い
が容易な可視域光子を用いて固体回路素子表面の温度分
布を検知でき、不良事故解析が容易になる。しかも、空
間分解能は光子スポットによるから、1μm近傍の高い
分解能かえられる。As is clear from the above description, according to the present invention, the temperature distribution on the surface of a solid-state circuit element can be detected using visible photons, which are easy to handle, and failure analysis becomes easy. Moreover, since the spatial resolution is based on the photon spot, a high resolution of around 1 μm can be achieved.
第1図および第2図は本発明の詳細な説明するだめのエ
ネルギ・レベル・ダイヤグラム、第3図は本発明による
走査光子顕微鏡の構成を示すブロック図である。
1・・・物体 1′・・・充満帯■“
・・・高エネルギ状態 2.2′・・光子3.3’
、3“・・・電子 4・・真空空間5・・・電子
銃 6・・・電子線7・・・ブランキング
・プレート
8・・・ブランキング・アノく−チャ
9・・・電子レンズ 10・・・偏向コイル1
1・・・螢光板 11パ・°螢光物質12
・・・レンズ 13・・・光子ビーム14
・・・固体回路素子 15 、15’ ゛°電極
16−゛′直流電源 17・・・検出抵抗1
8.20.22・・・増幅器 19・・・光電子検
出器21・・・反射、散乱光子検出器
乙・・・走査電源 調・・・信号処理回路5
・・・偏向コイル が・・・パルス電源27・
・・走査像表示管
代理人弁理士 中 村 純之助1 and 2 are energy level diagrams for detailed explanation of the present invention, and FIG. 3 is a block diagram showing the configuration of a scanning photon microscope according to the present invention. 1...Object 1'...Filled zone■“
...High energy state 2.2'...Photon 3.3'
, 3"...electron 4...vacuum space 5...electron gun 6...electron beam 7...blanking plate 8...blanking anno-cha 9...electron lens 10 ...deflection coil 1
1... Fluorescent plate 11 fluorescent substance 12
... Lens 13 ... Photon beam 14
...Solid circuit element 15, 15'゛°electrode 16-''DC power supply 17...Detection resistor 1
8.20.22...Amplifier 19...Photoelectron detector 21...Reflected and scattered photon detector B...Scanning power source Control...Signal processing circuit 5
...Deflection coil...Pulse power supply 27.
...Scanning Image Display Management Agent Patent Attorney Junnosuke Nakamura
Claims (1)
体と対向して光子ビームを発生する光子源と、上記光子
ビームで上記被観測物体表面を走査するための手段と、
上記光子が上記被観測物体に当るときに発生する光電子
を検出するための検出器とを含むことを特徴とする走査
光子顕微鏡。a vacuum container for storing an object to be observed; a photon source that faces the object to be observed and generates a photon beam; and means for scanning the surface of the object to be observed with the photon beam;
and a detector for detecting photoelectrons generated when the photons hit the object to be observed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9258484A JPS59229519A (en) | 1984-05-09 | 1984-05-09 | Scanning photon microscope |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9258484A JPS59229519A (en) | 1984-05-09 | 1984-05-09 | Scanning photon microscope |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59229519A true JPS59229519A (en) | 1984-12-24 |
Family
ID=14058481
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9258484A Pending JPS59229519A (en) | 1984-05-09 | 1984-05-09 | Scanning photon microscope |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59229519A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5260686A (en) * | 1975-11-14 | 1977-05-19 | Shimadzu Corp | X-ray photoelectronic analysis |
-
1984
- 1984-05-09 JP JP9258484A patent/JPS59229519A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5260686A (en) * | 1975-11-14 | 1977-05-19 | Shimadzu Corp | X-ray photoelectronic analysis |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2919170B2 (en) | Scanning electron microscope | |
US6049079A (en) | Apparatus for detecting a photon pulse | |
US4442355A (en) | Device for detecting secondary electrons in a scanning electron microscope | |
US6365897B1 (en) | Electron beam type inspection device and method of making same | |
CN114678244B (en) | Ultrafast scanning electron microscope system and application method thereof | |
US5041724A (en) | Method of operating an electron beam measuring device | |
US4764674A (en) | High time resolution electron microscope | |
JPS59229519A (en) | Scanning photon microscope | |
JP2530591B2 (en) | Pulsed laser photoexcitation electron source device suitable for high current density electron emission | |
US5808309A (en) | Apparatus for generating an electron beam | |
JP4608820B2 (en) | X-ray inspection equipment | |
JP2648538B2 (en) | Inspection device using two-dimensional electron source | |
JPH1054878A (en) | Fluorescent device and image pickup device and inspection device using the fluorescent device | |
JPH082603Y2 (en) | X-ray analyzer | |
JP2635015B2 (en) | Method and apparatus for observing insulating film | |
JP2807668B2 (en) | Electron beam defect inspection method and apparatus | |
JPH08212962A (en) | Secondary electron detector | |
JPH04322047A (en) | Secondary electron or reflected electron detector of scanning type electron microscope and similar device | |
JP2969090B2 (en) | Defect inspection method | |
JP2635016B2 (en) | Observation method of thin film | |
JPH09219427A (en) | Electron beam inspection device | |
JPH1125901A (en) | Scanning microscope and scanning microscopic method | |
JPH1027835A (en) | Inspection of defect and device | |
JPH06289299A (en) | Scanning photoelectronic microscope | |
Coleman et al. | Ultra fast x-ray streak camera |