JPS59229405A - Refractory block - Google Patents

Refractory block

Info

Publication number
JPS59229405A
JPS59229405A JP10397583A JP10397583A JPS59229405A JP S59229405 A JPS59229405 A JP S59229405A JP 10397583 A JP10397583 A JP 10397583A JP 10397583 A JP10397583 A JP 10397583A JP S59229405 A JPS59229405 A JP S59229405A
Authority
JP
Japan
Prior art keywords
block
expansion
carbonaceous
length
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10397583A
Other languages
Japanese (ja)
Inventor
Shigeru Fujiwara
茂 藤原
Masato Nakai
仲井 正人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP10397583A priority Critical patent/JPS59229405A/en
Publication of JPS59229405A publication Critical patent/JPS59229405A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/04Blast furnaces with special refractories
    • C21B7/06Linings for furnaces

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Blast Furnaces (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

PURPOSE:To provide a refractory block which is easily buildable and can prevent both cracking and molten metal penetration during operation by the constitution in which a projecting part to break down during operation and an allowance of a recessed shape for absorbing thermal expansion behind said projection are provided on one side of the block. CONSTITUTION:A projecting part 22 having a suitable length l1 and a max. allowance delta for expansion is formed at one end face 15 which heats up to a high temp. during operation of a blast furnace with a carbonaceous block 14 to be used for building a refractory layer in the hearth of the blast furnace. An allowance 17 of a recessed shape for absorbing thermal expansion decreasing gradually from the other surface 16 where the temp. is low to the position of the length l2 which is about <=(1/3-1/4) of the overall length L of the block 14 is provided behind said projecting part. The block 14 can be exactly and efficiently built by matching the faces of the length l2. The projecting part 22 is broken down by the expansion when the blast furnace operates then the side face 18 in the central part expands to contact tightly with the side face of the other block (not shown in figure) thereby preventing both cracking and molten metal penetration.

Description

【発明の詳細な説明】 本発明は、高炉炉床部等の耐火層の築造に用いる耐火物
ブロックに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a refractory block used for constructing a refractory layer for a blast furnace hearth or the like.

例えば第1図に示す如く、高炉炉床部1は、高さり、が
2500〜5000rrrmからなる炉床底部耐火層2
と、厚さL2が800〜2800Hnの炉床壁部耐火層
3からなる炉床部耐火層6と、炉体冷却層4、例えば外
面を散水冷却される50〜’i’omm厚の鉄皮、又は
鉄皮の内側に配設されたステーブなどによる側壁冷却層
、鋼管あるいはI形鋼と鋼板よりなるダクト中に空気又
は水を流した炉底冷却層と、1OO1rrIn前後厚の
スタンプ層5とから構成される。
For example, as shown in FIG. 1, a blast furnace hearth 1 has a hearth bottom refractory layer 2 having a height of 2,500 to 5,000 rrrm.
, a hearth part refractory layer 6 consisting of a hearth wall refractory layer 3 having a thickness L2 of 800 to 2800 Hn, and a furnace body cooling layer 4, for example, an iron shell having a thickness of 50 to 'i'omm whose outer surface is cooled by water spraying. , or a side wall cooling layer made of staves placed inside the steel shell, a bottom cooling layer in which air or water is passed through a duct made of steel pipes or I-shaped steel and steel plates, and a stamp layer 5 with a thickness of about 1OO1rrIn. It consists of

高炉炉床部1は、稼動時14. O0〜1600℃の溶
銑を貯えるものであり、耐火層6は耐食性。
The blast furnace hearth section 1 is operated at 14. It stores hot metal at a temperature of 0 to 1600°C, and the refractory layer 6 is corrosion resistant.

熱伝導性等のすぐれた炭素質の耐火物ブロッ久以下炭素
質ブロックと略す)を用いて築造される。
It is constructed using a carbonaceous refractory material with excellent thermal conductivity (hereinafter abbreviated as carbonaceous block).

例えば炉床壁部耐火層3は、炭素質ブロックで築造され
た炉床底部耐火層2上に炭素質ブロックを第2図の如く
スタンプ層5の内周にリング積みするのを複数段実施し
て築造される。耐火層6を形成する炭素質ブロック7は
、その外周の冷却層4でスタンプ層5を介して冷却する
ことによって保護している。上記炭素質ブロック〒は1
500℃において0.5〜0.6%の熱膨張による伸び
が生じる。上記熱膨張は、耐火層6の上下並び水平方向
で吸収されている。たとえば、炉床壁部耐火層3の上下
方向膨張吸収は、一般にブロック上下方向の相互間に膨
張吸収化を設けることなく、詳しくは、空目地で、或は
膨張吸収能の少ない目地材を介在させて、耐火層6全体
として第1図に示す如く朝顔9〜シャフト11間に、膨
張吸収化8を設けて吸収させている。
For example, the hearth wall refractory layer 3 is formed by stacking carbonaceous blocks in rings around the inner periphery of the stamp layer 5 in multiple stages on the hearth bottom refractory layer 2 made of carbonaceous blocks, as shown in FIG. It will be built. The carbonaceous block 7 forming the refractory layer 6 is protected by being cooled by the cooling layer 4 on its outer periphery via the stamp layer 5. The above carbonaceous block is 1
At 500°C, an elongation due to thermal expansion of 0.5 to 0.6% occurs. The above thermal expansion is absorbed in the horizontal direction of the refractory layer 6 arranged vertically. For example, vertical expansion absorption of the hearth wall refractory layer 3 is generally achieved without providing expansion absorption between the blocks in the vertical direction, and more specifically, by using open joints or by interposing joint materials with low expansion absorption capacity. As shown in FIG. 1, the fireproof layer 6 as a whole is provided with an expansion absorber 8 between the morning glory 9 and the shaft 11 to absorb the fire.

一方、上記熱膨張を水平方向で吸収する方法としては、 ■炭素質ブロックの背面に膨張吸収材を設ける。On the other hand, as a method to absorb the above thermal expansion in the horizontal direction, ■An expansion absorbing material is provided on the back side of the carbonaceous block.

■炭素質ブロック間に膨張吸収材を設ける。■Install expansion absorbing material between carbonaceous blocks.

■外部から拘束し、炭素質ブロックの塑性変形で吸収す
る。
■Restricted from the outside and absorbed by plastic deformation of the carbonaceous block.

の3つの方法がある。There are three methods.

しかしながら上記■、■、■の単独の熱膨張吸収法を採
用して築造した耐火層には一長一・短があり併用して築
造した耐火層にも欠点がある。たとえば炉床壁部耐火層
3の場合、1ず■の吸収法全採用した築造方法及び築造
体の欠点について述べる0 スタンプ層5の施工並びに耐火層6の築造に際し、第2
図の如く炉周方向に60〜90個の炭素質ブロックツを
ブロック7相互間に膨張代を設けること々く、詳しくは
空目地で、或は膨張吸収能のない目地材を介在させてリ
ング積みし、かつブロックワの背面のスタンプ層5を、
上記ブロック7の熱膨張のほとんど全部を吸収するよう
に施行しておくと、稼動時、炭素質ブロック7内には冷
却による温度勾配が生じ、稼動面側の膨張量に比べ、背
面の膨張量が小さいため稼動面側の膨張を吸収させよう
とすると背面側の目地が開き、またブロック7によって
圧密が完了するまでは、スタンプ層5の冷却能が小さく
炭素質ブロック7の冷却そのものが不足して、稼動面が
損耗し湯もれにつながる。このため一般にスタンプ層5
は、緻蟹な施工体となして、常時十分な冷却能を維持さ
せるようにしており、炭素質ブロック7の熱膨張のtl
んの一部しか吸収できず、上記熱膨張の残部は■の吸収
法で吸収される。詳しくは、鉄皮、スタ 3− ンブ層でブロックツは外部拘束されるためブロック7の
塑性変形で上記熱膨張の残部が吸収されることになり、
高炉の大型化にとも々い拘束度が大きくなり、ブロック
の稼動面から全長の%〜%程度の位置にクラックが発生
する。勿論、上記熱膨張の全部を■の吸収法で吸収する
ように築造すると同様にクラックが発生する。
However, the fire-resistant layers built using the above-mentioned thermal expansion absorption methods alone have advantages and disadvantages, and the fire-resistant layers built using them in combination also have drawbacks. For example, in the case of the hearth wall refractory layer 3, we will discuss the construction method that adopted the absorption method described in 1 and the drawbacks of the structure.
As shown in the figure, 60 to 90 carbonaceous blocks are stacked in rings in the circumferential direction of the furnace, with an expansion allowance between blocks 7, and more specifically, with open joints or with a joint material that does not have an expansion absorption capacity. And stamp layer 5 on the back of the blocker,
If almost all of the thermal expansion of the block 7 is absorbed, a temperature gradient will occur in the carbonaceous block 7 due to cooling during operation, and the amount of expansion on the back side will be greater than the amount of expansion on the operating side. is small, so when trying to absorb the expansion on the working surface side, the joint on the back side opens, and until the block 7 completes consolidation, the cooling capacity of the stamp layer 5 is small and the cooling of the carbonaceous block 7 itself is insufficient. This can lead to wear and tear on the operating surfaces and lead to hot water leaks. For this reason, generally the stamp layer 5
is made into a dense construction body to maintain sufficient cooling capacity at all times, and the thermal expansion tl of the carbonaceous block 7 is
Only a portion of the thermal expansion can be absorbed, and the remainder of the thermal expansion is absorbed by the absorption method (2). Specifically, since the blocks are externally restrained by the steel shell and the stub layer, the remainder of the thermal expansion is absorbed by the plastic deformation of the blocks 7.
As the size of the blast furnace increases, the degree of restraint increases, and cracks occur at a position of about % to % of the total length from the operating surface of the block. Of course, if the building is built so that all of the thermal expansion is absorbed by the absorption method (2), cracks will occur as well.

次に■の吸収法を採用した築造法及び築造体の欠点につ
いて述べる。
Next, we will discuss the construction method and the drawbacks of the structure that adopted the absorption method (■).

第2図の如く炉周方向に60〜90個の炭素質ブロック
′7をリング積みしてスタンプ層5内周に耐火層6を築
造する際に、第3〜6図の如く炭素質ブロック’i’−
’i’間に膨張吸収材12、詳しくは膨張吸収能を有す
る目地材12i介在させ、ブロック70周方向の相互間
に、ブロック7の膨張代を設けて、ブロック7の熱膨張
のほとんど全部を吸収するようにすると、稼動時、ブロ
ック7のクラック発生は有効に防止できる。しかし炭素
質ブ 4− ロック7が十分に膨張し、膨張吸収材12が圧密される
前に稼動面が溶銑に接し吸収材12部に溶銑がさし込む
欠点がある。なお、第4図は第3図の目地を耐火層6厚
み方向の途中で周方向にずらしたものである。
When building the refractory layer 6 on the inner periphery of the stamp layer 5 by stacking 60 to 90 carbonaceous blocks '7 in a ring in the direction of the furnace circumference as shown in FIG. i'-
An expansion absorbing material 12, specifically a joint material 12i having an expansion absorbing ability is interposed between 'i', and an expansion allowance for the block 7 is provided between the blocks 70 in the circumferential direction, so that almost all of the thermal expansion of the block 7 can be absorbed. If it is absorbed, cracks in the block 7 can be effectively prevented from occurring during operation. However, there is a drawback that the operating surface comes into contact with the hot metal before the carbonaceous block 7 is sufficiently expanded and the expansion absorbing material 12 is consolidated, and the hot metal is inserted into the absorbing material 12 portion. In addition, in FIG. 4, the joints in FIG. 3 are shifted in the circumferential direction halfway in the thickness direction of the refractory layer 6.

更に左お上記の如くブロック7相互間に膨張吸収化を設
けるに際して、第5或は6図の如く膨張吸収材12、即
ち膨張吸収能を有する目地材12が存在する目地に、前
張り或は保護用レンガ13を設けることもあるが、上記
レンガ13の剥がれによって、或は上記レンガ13の目
地からの溶銑さし込みがあり、いずれも溶銑さし込み対
策の決め手とはならず、築造時間及びコストの増大につ
ながる。
Furthermore, when providing expansion absorption between the blocks 7 as described above on the left, pre-lining or Protective bricks 13 may be installed, but the peeling of the bricks 13 or the intrusion of hot metal from the joints of the bricks 13 are not decisive factors in preventing hot metal intrusion, and the construction time and lead to increased costs.

以上の様に前記炭素質ブロックの熱膨張水平方向吸収法
■、■、■を単独で採用した築造法及び築造体には一長
一短があり、前記各吸収法を採用した築造方法及び築造
体の利点を活しつつ欠点を解消すべく、耐火壁の築造に
際して炭素質ブロックの熱膨張の吸収を■、■、■の吸
収法で分担せしめる築造法が試みられているが、溶銑さ
し込み、クラック発生ともに解消する最適配分比が見い
出せず、現実には理論膨張量のz〜%を■及び又は■の
方法で吸収し、残部を■の方法で吸収させるように築造
しているが、それとても溶銑のさし込み、クラックの発
生の問題が生じているのが現状である。また、炉床底部
耐火層2においても前述した0、■、■の吸収法の組み
合せが採用されているが、目地部への溶銑のさし込み、
炭素質ブロックのクラックの発生の問題が生じている。
As mentioned above, there are advantages and disadvantages to the construction methods and structures that employ the carbonaceous block horizontal thermal expansion absorption methods ①, ②, and ① alone, and the advantages of the construction methods and structures that adopt each of the above-mentioned absorption methods. In order to eliminate the drawbacks while taking advantage of this, a construction method has been attempted in which the absorption of thermal expansion of carbonaceous blocks is shared among the absorption methods of ■, ■, and ■ when constructing fireproof walls. The optimal distribution ratio that eliminates both generation and expansion has not been found, and in reality, the structure is constructed in such a way that z~% of the theoretical expansion amount is absorbed by the method of ■ and/or ■, and the remainder is absorbed by the method of ■. Currently, there are problems with hot metal penetration and cracking. In addition, the combination of the above-mentioned absorption methods 0,
The problem of cracks occurring in carbonaceous blocks has arisen.

本発明は、上記実状に鑑みなされたもので、本発明は耐
火層を能率よく築造でき、しかも耐火層の稼動時クラッ
クの発生、溶銑さし込みともに排除できる耐火物ブロッ
クを提供するものである。
The present invention has been made in view of the above-mentioned circumstances, and provides a refractory block that can efficiently build a refractory layer, and can also eliminate the occurrence of cracks during operation of the refractory layer and the insertion of hot metal. .

本発明の要旨は耐火物ブロックの一面に、一端部に稼動
時に圧壊する突起部を設けると共に突起部後方に凹状熱
膨張吸収式を形成した耐火物ブロックにある。
The gist of the present invention resides in a refractory block in which a protrusion that collapses during operation is provided on one surface of the refractory block at one end, and a concave thermal expansion absorbing type is formed behind the protrusion.

以下本発明を具体的に説明する。The present invention will be specifically explained below.

第7図は、第1,2図に示す高炉炉床部lの炉床壁部耐
火層3を築造する際に用いるに好適な本発明の炭素質の
耐火物ブロックの一例を示す平面図である。
FIG. 7 is a plan view showing an example of the carbonaceous refractory block of the present invention suitable for use in constructing the hearth wall refractory layer 3 of the blast furnace hearth section l shown in FIGS. 1 and 2. be.

第7図の炭素質ブロック14は、長さり、一端面15幅
Wl、他端面16幅W2  (Wl (W2 ) 、厚
みW1′。
The carbonaceous block 14 in FIG. 7 has a length of one end surface 15 width Wl, the other end surface 16 width W2 (Wl (W2)), and thickness W1'.

W’((W f= W2’ )のブロックの両側面の中
央部に面15からの長さtlより面16から長さ4まで
凹状膨張吸収化1’7を形成すると共にブロックの両側
面の面15側端部に突起部22を形成したものである。
A concave expansion absorption 1'7 is formed at the center of both sides of the block W' ((W f = W2') from the length tl from the plane 15 to the length 4 from the plane 16, and at the same time A protrusion 22 is formed at the end of the surface 15.

膨張吸収式17は、高炉稼動時に高温となる面15から
長さl、の位置の最大膨張代δが高炉稼動時低温となる
面16から長さt2の位置まで漸減するようになしてい
る。長さ12は、膨張を背面に逃すことで吸収する量分
担によって左右されるが、プロ 7− ツク14の長さLの%〜%以下が好ましい。この長さt
2が大きすぎると背面に逃す量が多くなって背面の目地
開きにつながる。また4部は耐火層築造時のブロック間
位置合せを容易にして築造能率を高める。突起部長さt
l及び突起部により形成した最大膨張代δは、相互に関
連して決定されるが基本的には、築造後の稼動開始から
定常安定稼動に至る過程における熱膨張過程において、
膨張吸収式17が消失した段階、いいかえると炭素質ブ
ロック14の長さ方向中央部の側面18同志が密着する
段階以降に、炭素質ブロック14の高温面側に形成した
突起部、或はブロック突起部長さ1゜部が圧壊するよう
に、ブロックの物性(膨張量。
In the expansion-absorption type 17, the maximum expansion allowance δ at a length l from the surface 15 that becomes high temperature during blast furnace operation gradually decreases to a length t2 from the surface 16 that becomes low temperature during blast furnace operation. The length 12 depends on the amount of expansion to be absorbed by letting it escape to the back surface, but is preferably between % and % of the length L of the protrusion 14. This length t
If 2 is too large, there will be a large amount of leakage to the back, leading to openings on the back. In addition, the fourth section facilitates alignment between blocks during construction of the fireproof layer, increasing construction efficiency. Projection length t
l and the maximum expansion allowance δ formed by the protrusion are determined in relation to each other, but basically, in the thermal expansion process from the start of operation after construction to steady stable operation,
A protrusion formed on the high-temperature surface side of the carbonaceous block 14 or a block protrusion after the stage when the expansion-absorption type 17 disappears, in other words, after the stage when the side surfaces 18 at the longitudinal center of the carbonaceous block 14 are in close contact with each other. Physical properties of the block (expansion amount) so that 1° part of the length is crushed.

圧壊強度等)、ブロック14に作用する拘束力等を考慮
して決定するものである。
This is determined by taking into account the compressive strength, etc.), the restraining force acting on the block 14, and the like.

炭素質ブロックの中央部に形成した膨張吸収式17に膨
張吸収材を充填する場合には、膨張代δは膨張吸収材の
収縮特性を考慮し、突起部或は突 8− 起部長さit部が圧壊するまでに膨張吸収材が圧密され
るように決定することが必要である。々お長さ1.の突
起部、或はブロック突起部長さ11部は、上記の如くブ
ロック14の側面18の密着後・圧壊する運命にあるブ
ロック14の有効長さの短縮式であるから、長さ2+は
、上記密着時点までの溶銑のさし込みを有効に防止する
に必要な最小限にとどめるのが好ましく、10〜50嗣
が好ましい。
When filling the expansion-absorbing type 17 formed in the center of the carbonaceous block with an expansion-absorbing material, the expansion allowance δ is determined by considering the shrinkage characteristics of the expansion-absorbing material, and determining the length of the protrusion 8--the length of the protrusion it part. It is necessary to determine that the expansion absorbing material is consolidated by the time it collapses. length 1. The length 11 of the protrusion or block protrusion part is a shortened formula of the effective length of the block 14 which is destined to be crushed after the side surface 18 of the block 14 is brought into close contact with the block 14, so the length 2+ is the length 11 of the block protrusion part. It is preferable to keep it to the minimum necessary to effectively prevent insertion of hot metal up to the point of close contact, and 10 to 50 times is preferable.

以上の如く長さり2幅Wl w W2 +厚w(、wイ
並びに長さ11.12及び膨張代δを決定した第7図の
炭素質ブロック14を第9− a図に示すように築造さ
れた炉床底部耐火層2上に第8図の如くリング積みして
第9−a図に示す如く上記リング積みを複数段形成する
ことにより、炭素質ブロック14の炉周方向相互間の稼
動面側と背面側の両端部には膨張代がなく中央部には稼
動面側から背面側に向って漸減し・かつ稼動後、稼動面
側端部の圧壊までに消失する膨張吸収式20(第13図
)を形成した高炉炉床壁部耐火層3が築造される。
The carbonaceous block 14 of Fig. 7, in which the length, width, Wl, W2 + thickness, w, length 11.12, and expansion allowance δ have been determined as above, is constructed as shown in Fig. 9-a. By stacking rings as shown in FIG. 8 on the refractory layer 2 at the bottom of the hearth, and forming a plurality of rings as shown in FIG. There is no expansion allowance at both the side and back ends, and the center part gradually decreases from the operating surface side to the back side, and after operation, it disappears by the time the operating surface side end collapses. The blast furnace hearth wall refractory layer 3 having the structure shown in FIG. 13) is constructed.

どのように本発明の炭素質ブロック14を用いて高炉炉
床壁部耐火層3を築造すると炭素質ブロック14の周方
向相互間の稼動面側と背面側の両端部には膨張代を設け
ず、中央部には稼動面側から背面側に向って漸減し、か
つ稼動後の稼動面側端部の圧壊までに消失する膨張吸収
代を設けることになるから築造後の稼動開始から定常稼
動に至るまでの炭素質ブロックの稼動面側端部の熱膨張
は、上ロピ端部側匍同志の塑性変形密着に有効に利用さ
れ、ブロックの中央部の膨張代への溶銑のさし込みを有
効に防止し、一方定常稼動までの炭素質ブロックの中央
部の稼動面側から背面側に向って漸減する熱膨張は上記
ブロックの中央部にクラツノを発生せしめることなく、
中央部の膨張代を消失して炭素質ブロック中央部側面同
志が密着することに有効利用され、このブロック中央部
側面同志の密着後、ブロック稼動面側端部が圧懐詳しく
は・割れ損耗或はブロックの突起部が圧壊するが、この
時前記の如くブロックの中央部側面同志が密着、或は塑
性変形密着しているので、このとき以降における溶銑の
さし込みをも有効に防止できるものである。々お高炉炉
床壁部耐火層3の築造に際して一側面のみに突起部と膨
張吸収代を形成した炭素質ブロックを用いても同様にク
ラックの発生並びに溶銑のさし込みを有効に防止できる
How can the blast furnace hearth wall refractory layer 3 be constructed using the carbonaceous block 14 of the present invention without providing an expansion allowance at both ends of the working surface side and the back side between the carbonaceous blocks 14 in the circumferential direction? In the center part, there is an expansion and absorption allowance that gradually decreases from the operating surface side to the rear side and disappears by the time the operating surface side end collapses after operation, so from the start of operation after construction to steady operation. Thermal expansion of the working surface side end of the carbonaceous block up to the end is effectively used for plastic deformation and close contact between the upper and lower ends of the side spools, and the insertion of hot metal into the expansion allowance at the center of the block is effectively used. On the other hand, the thermal expansion that gradually decreases from the operating surface side to the back side of the central part of the carbonaceous block until steady operation does not cause cracks to occur in the central part of the block.
It is effectively used to eliminate the expansion allowance in the center part and bring the side faces of the center part of the carbonaceous block into close contact with each other. In this case, the protruding part of the block is crushed, but at this time, as mentioned above, the sides of the central part of the block are in close contact with each other, or are in close contact due to plastic deformation, so it is possible to effectively prevent the insertion of hot metal from this point onwards. It is. When building the refractory layer 3 of the blast furnace hearth wall, a carbonaceous block having a protrusion and an expansion absorption layer formed on only one side can be used to effectively prevent cracks from occurring and penetration of hot metal.

第9−b図は、第9− a図の炉床壁部耐火層3の下層
部を下面及び周方向両側面に膨張代δを設シアた炭素質
ブロック14”を用い、上層部を第7図の炭素質ブロッ
ク14の上下面にも膨張代δを設けたブロック14′を
用いて築造した例を示したものであり、第1図に示す炉
床壁部耐大層2の上下方向膨張吸収式8を設けなくてす
む。
Fig. 9-b shows that a carbonaceous block 14'' with an expansion allowance δ provided on the lower surface and both circumferential sides of the lower layer of the hearth wall refractory layer 3 of Fig. 9-a is used, and the upper layer is This shows an example of construction using a block 14' in which an expansion allowance δ is provided on the upper and lower surfaces of the carbonaceous block 14 shown in FIG. There is no need to provide an absorption type 8.

第9− a図は第9−b図の炉床壁部耐火層3を築造す
る前の炉床底部耐火層2の築造時にも、本 11− 発明の耐火物ブロックを用いた例を示す0本例の炉床底
部耐火層2は外周部が炭素質ブロックを、複数段のリン
グ積みで築造し、そして中央部下層は炭素質ブロックを
竪積みして築造し、中央部上層は上記下層上に炭素質ブ
ロックを載置して築造されており、外周部3段目(及び
4段目)には上面のみ(及び下面のみ)に膨張代δを設
けたブロック14“を用い、中央部下層は第9−a図の
A−A矢視図である第11図に示す如く4面に膨張代δ
を設けたブロック14“を用い、中央部上層も4面に膨
張代δを設けたブロックll“を用いて築造している。
Figure 9-a shows an example in which the refractory block of the present invention is used during the construction of the hearth bottom refractory layer 2 before constructing the hearth wall refractory layer 3 in Figure 9-b. In the hearth bottom refractory layer 2 of this example, the outer periphery is constructed by stacking carbonaceous blocks in multiple stages of rings, the lower center layer is constructed by stacking carbonaceous blocks vertically, and the upper layer in the center is built on top of the lower layer. It is constructed by placing carbonaceous blocks on the outer periphery, and the third (and fourth) tier of the outer periphery uses blocks 14" with an expansion allowance δ on only the upper surface (and only the lower surface). As shown in FIG. 11, which is a view taken along arrow A-A in FIG. 9-a, there is an expansion allowance δ on the four sides.
The upper layer of the central part is also constructed using block 11'' with expansion allowance δ on four sides.

なお中央部下層は2面に膨張代δを設けたブロック14
“を用いて、例えば第10図に示す如く築造しても良い
勿論、中央部上層についても同様である。なお第8図は
第9−a、’LC図のB−B矢視図を示す。
The central lower layer is a block 14 with an expansion allowance δ on two sides.
Of course, the same applies to the upper layer of the central part. Fig. 8 shows a view taken along the arrow B-B of Fig. .

以上の築造例から明らかなように高温面および低温面を
除いた他の1側面、又は他の2側面、又 12− は他の3側面、又は他の4側面に第7図に示す11゜t
2およびδが設けられている本発明の耐火物ブロックを
用いることによジブロックの水平方向及び又は上下方向
相互間の両端部には膨張代を設けず中央部には膨張代を
設けた耐火層が形成されクラックの発生並びに溶銑のさ
し込みが有効に防止される。
As is clear from the above construction examples, the 11° angle shown in Fig. 7 is applied to one side, or two other sides, or the other three sides, or the other four sides, excluding the high-temperature surface and the low-temperature surface. t
By using the refractory block of the present invention in which the refractory blocks 2 and δ are provided, an expansion allowance is not provided at both ends of the diblock horizontally and/or vertically, but an expansion allowance is provided at the center. A layer is formed to effectively prevent the occurrence of cracks and the penetration of hot metal.

以下、この発明の実施例を具体的に示す。Examples of the present invention will be specifically shown below.

第12図〜第14図に示したように・第15図に示した
本発明に係る炭素質ブロック14を下段に、第16図に
示した比較用炭素質ブロック21を上段に築造し、実験
操業を行った。
As shown in FIGS. 12 to 14, the carbonaceous block 14 according to the present invention shown in FIG. 15 was constructed in the lower stage, and the comparative carbonaceous block 21 shown in FIG. 16 was constructed in the upper stage, and an experiment was carried out. The operation was carried out.

築造にあたって、本発明に係る部分は、炭素質ブロック
の膨張を炭素質ブロック相互間で6o′X)。
During construction, the part according to the present invention allows the expansion of the carbonaceous blocks by 6o'X) between the carbonaceous blocks.

背面のスタンプ材5で30%、残りを炭素質ブロックの
弾性変形で吸収できるようにした。なお第13図の如く
半周はブロックの膨張吸収部にカーボン系吸収材19を
設けておシ、δ−〇、7wnとし、他の半周は膨張吸収
化20としてδ−0,6門にした。
The stamp material 5 on the back side absorbs 30%, and the rest can be absorbed by the elastic deformation of the carbonaceous block. As shown in FIG. 13, one half of the block was provided with a carbon-based absorbent material 19 in the expansion absorption part of the block, and the other half was set to δ-0, 7wn, and the other half was expanded to 6 gates as expansion absorption 20.

比較用部分は、背面スタンプで30%吸収し、炭素質ブ
ロック相互間は膨張量に対し約10%吸収する膨張吸収
材を設けた。
In the comparative part, the back stamp absorbs 30%, and an expansion absorbing material that absorbs about 10% of the expansion was provided between the carbonaceous blocks.

炉体を還元雰囲気で1200℃壕で予熱し、1200℃
の溶銑をうけ、1550℃に昇温し、lO日間維持した
結果、比較ブロック21には稼動面よりブロック長さに
対して%〜%のところにクラックが発生した。
Preheat the furnace body to 1200℃ in a reducing atmosphere and heat it to 1200℃.
As a result of heating the block 21 to 1550° C. and maintaining it for 10 days, cracks occurred in the comparative block 21 at a distance of % to % of the length of the block from the operating surface.

本発明に係る築炉部には溶銑のさし込みもなく、本発明
に係る炭素質ブロック14は、稼動面部(第15図中の
cAa)が圧壊したものの、その他にはクラックは発生
せず、良好な結果が得られた。
There was no insertion of hot metal into the furnace part according to the present invention, and although the working surface part (cAa in Fig. 15) of the carbonaceous block 14 according to the present invention was crushed, no other cracks occurred. , good results were obtained.

以上、詳述した様に、本発明の耐火物ブロックによれば
、耐火層を能率よく築造でき、しかも耐火層の稼動時、
溶湯のざし込み1クラツクの発生を有効に防止すること
ができ、耐火層の寿命を有効に延長できるものである。
As described above in detail, according to the refractory block of the present invention, the refractory layer can be constructed efficiently, and when the refractory layer is operated,
It is possible to effectively prevent the occurrence of cracks due to molten metal pouring, and the life of the refractory layer can be effectively extended.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は高炉のシャフト下部〜炉床部の構造の説明図、
第2図は高炉炉床壁部の水平断面の説明図、第3図、第
4図、第5図、第6図は膨張代の設置例の説明図、第7
図は本発明に係る炭素質の耐火物ブロックの一例の説明
図、第8図、第9−a図、第9−b図、第9−0図、第
10図、第11図は本発明に係る耐火物ブロックを用い
て築造した高炉炉床部の築造状況の説明図、第12図、
第13図、第14図は実験炉の築造状況の説明図で、第
12図は第14図に示したD−D部の水平断面の説明図
、第13図は第14図に示したC−0部の水平断面の説
明図、第14図は実験炉の縦断面の説明図、第15図は
実験に用いた本発明に係る炭素質の耐火物ブロックの説
明図、第16図は実験に用いた比較用炭素質ブロックの
説明図である。  15− 1・・・・ ・高炉炉床部 2・・・・・・高炉炉床底部耐火層 3・・・・・・高炉炉床壁部耐大層 4・・・・・・炉体冷却層 5・・・・・・スタンプ層 6・・・・・ 炉床部耐火層 7・・・・・・炭素質ブロック 8・・・・・・膨張吸収化 9・・−・・朝顔 10・・・・・炉腹 11・・・・・シャフト 12・・・・・膨張吸収材 13・・・・・前張り或いは保護用レンガ14゜・・・
・炭素質ブロック 15・・・・・炭素質ブロックの筒温となる面16・・
・・・炭素質ブロックの低温となる面17・・・・・膨
張吸収化 1日・・・・・中央部側面 16− 19・・・−・膨張吸収材を充てんした膨張吸収化 20・・・・・稼動後の高温側端部の圧壊までに消失す
る膨張吸収化 21・・・・・比較用炭素質ブロック 22・・・・・突起部 出 願 人 新日本製鐵株式会社 第1図 第2図 第3図            年414−巧図   
                         
       で:>6”)”。 第10図 第1図 ・・ 14゛     、 :mニー1’:E、二 一−−−−−−−−−−− 一−j −−1−−−−−− 第1211!1 竿14図
Figure 1 is an explanatory diagram of the structure of the blast furnace from the lower shaft to the hearth.
Figure 2 is an explanatory diagram of a horizontal cross section of the blast furnace hearth wall, Figures 3, 4, 5, and 6 are explanatory diagrams of an example of setting an expansion allowance.
The figure is an explanatory diagram of an example of a carbonaceous refractory block according to the present invention, and Figures 8, 9-a, 9-b, 9-0, 10, and 11 are in accordance with the present invention. Fig. 12 is an explanatory diagram of the construction status of the blast furnace hearth section constructed using refractory blocks related to
Figures 13 and 14 are explanatory diagrams of the construction status of the experimental reactor, Figure 12 is an explanatory diagram of the horizontal cross section of the D-D section shown in Figure 14, and Figure 13 is the illustration of the C-D section shown in Figure 14. Figure 14 is an explanatory diagram of a horizontal cross section of the -0 part, Figure 14 is an explanatory diagram of a vertical cross section of the experimental reactor, Figure 15 is an explanatory diagram of the carbonaceous refractory block according to the present invention used in the experiment, and Figure 16 is an explanatory diagram of the experimental reactor. FIG. 3 is an explanatory diagram of a comparative carbonaceous block used in the above. 15-1...・Blast furnace hearth section 2...Blast furnace hearth bottom refractory layer 3...Blast furnace hearth wall section large-scale layer 4...Furnace body cooling layer 5... Stamp layer 6... Hearth part refractory layer 7... Carbonaceous block 8... Expansion absorption 9... Morning glory 10... ...Furnace belly 11...Shaft 12...Expansion absorbing material 13...Brick for front covering or protection 14°...
・Carbonaceous block 15... Surface 16 of the carbonaceous block that has cylinder temperature...
...Low temperature surface 17 of carbonaceous block...1 day of expansion and absorption...Central side surface 16-19...-Expansion and absorption filled with expansion absorbing material 20... ...Expansion and absorption that disappears before the high-temperature side end collapses after operation 21 ... Carbonaceous block for comparison 22 ... Protrusion Applicant Nippon Steel Corporation Figure 1 Figure 2 Figure 3 Year 414-Takumizu

So: >6”)”. Figure 10 Figure 1... 14゛, :m knee 1':E, 21----------- 1-j--1------ 1211!1 Rod 14 figure

Claims (1)

【特許請求の範囲】[Claims] 耐火物ブロックの一面に、一端部に稼動時に圧壊する突
起部を設けると共に突起部後方に凹状熱膨張吸収式を形
成した耐火物ブロック。
A refractory block that has a protrusion that collapses during operation on one side of the refractory block at one end, and a concave thermal expansion absorption type formed behind the protrusion.
JP10397583A 1983-06-10 1983-06-10 Refractory block Pending JPS59229405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10397583A JPS59229405A (en) 1983-06-10 1983-06-10 Refractory block

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10397583A JPS59229405A (en) 1983-06-10 1983-06-10 Refractory block

Publications (1)

Publication Number Publication Date
JPS59229405A true JPS59229405A (en) 1984-12-22

Family

ID=14368327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10397583A Pending JPS59229405A (en) 1983-06-10 1983-06-10 Refractory block

Country Status (1)

Country Link
JP (1) JPS59229405A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001141372A (en) * 1999-09-01 2001-05-25 Nippon Steel Corp Refractory block, manufacturing method and molten material container

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001141372A (en) * 1999-09-01 2001-05-25 Nippon Steel Corp Refractory block, manufacturing method and molten material container

Similar Documents

Publication Publication Date Title
TW421705B (en) Method of repairing coke oven and apparatus for taking-in bricks for repair
US3528647A (en) Insulating structure for use between the steel shell and the internal refractory lining in a metallurgical furnace
JP5842573B2 (en) Skid post
US4450872A (en) Fiber pipe protection for water cooled pipes in reheat furnaces
CN103464734A (en) Safe steel ladle lining and building method thereof
US4539055A (en) Fiber pipe protection for water cooled pipes in reheat furnaces
KR100430069B1 (en) Stave cooler
EP0051622B1 (en) Method of forming furnace cooling elements
JPS59229405A (en) Refractory block
CN103557695B (en) Furnace building method for rotary kiln tube body inner liner
US3802833A (en) Refractory masonry wall bounding a space which receives hot gas
US4892293A (en) Brick casting method of making a stave cooler
CN101168673B (en) Heat-insulation water-sealing groove for coke dry quenching furnace and preparation method thereof
JPS5891090A (en) Okinokogosayotosonoketsukaoboshimatahateigensuruho
CN218955476U (en) Special-shaped refractory brick and kiln lining structure
JPS5910973B2 (en) hot stove wall structure
CN114150097B (en) Hot-blast pipeline valve quick replacement structure
CN110849147A (en) Heat accumulating type steel pushing heating furnace bottom structure
CN217556115U (en) Dry quenching furnace cover
CN205188202U (en) Dust remover barricade of dry quenching device
JP7072420B2 (en) Skid post
CN214148837U (en) Boiler wall
CN218555551U (en) Masonry structure of hot-metal bottle
CN220750800U (en) Medium-density high-energy-saving ultrahigh-strength heat-insulating refractory brick
CN218380457U (en) Masonry structure capable of preventing cavitation damage of heat preservation layer