JPS59229073A - Rotary compressor - Google Patents
Rotary compressorInfo
- Publication number
- JPS59229073A JPS59229073A JP10372583A JP10372583A JPS59229073A JP S59229073 A JPS59229073 A JP S59229073A JP 10372583 A JP10372583 A JP 10372583A JP 10372583 A JP10372583 A JP 10372583A JP S59229073 A JPS59229073 A JP S59229073A
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- casing
- pipe
- liquefied
- compressor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Compressor (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、冷凍サイクル等に使用する回転式圧縮機に関
し、特に圧縮機の冷却方式に係わる。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a rotary compressor used in a refrigeration cycle or the like, and particularly to a cooling system for the compressor.
従来例の構成とその問題点
従来の構成を第1図にて説明する。1は密閉ケーシング
であり、その内部には圧縮機構部2を収納している。3
は吸入管、4は吐出管であり、吸入管3は密閉ケーシン
グ1を介して圧縮機構部2と直接連通し、また吐出管4
は密閉ケーシング1内に開放している。6はフィン部6
aを有する冷却管であり、一端が圧縮機構部2の吐出孔
(図示せず)と直接連通し他端が密閉ケーシング1に開
放している。Conventional configuration and its problems The conventional configuration will be explained with reference to FIG. Reference numeral 1 denotes a hermetic casing, and a compression mechanism section 2 is housed inside the casing. 3
4 is a suction pipe, and 4 is a discharge pipe. The suction pipe 3 directly communicates with the compression mechanism section 2 through the sealed casing 1, and the discharge pipe
is open into the closed casing 1. 6 is the fin part 6
It is a cooling pipe having a diameter of 1.a, one end of which directly communicates with a discharge hole (not shown) of the compression mechanism section 2, and the other end of which is open to the closed casing 1.
しかして冷凍サイクル(図示せず)より吸入管3を介し
て流入する冷媒ガスは、図中矢印で示す如く圧縮機構部
2内にて圧縮され、高温高圧ガスとなり直接冷却管6に
吐出される。そしてフィン部5aに至り、フィンの放熱
効果により冷媒ガスは冷却された後、密閉ケーシング1
内に至り、吐出管4より冷凍サイクルに吐出される。The refrigerant gas flowing from the refrigeration cycle (not shown) through the suction pipe 3 is compressed in the compression mechanism 2 as shown by the arrow in the figure, and becomes a high-temperature, high-pressure gas that is directly discharged into the cooling pipe 6. . Then, the refrigerant gas reaches the fin portion 5a, where it is cooled by the heat dissipation effect of the fins, and then the airtight casing 1
It is discharged from the discharge pipe 4 into the refrigeration cycle.
上記従来の構成においては、圧縮機構部2にて圧縮され
た冷媒ガスの全てが直接、冷却管6に吐出される為、吐
出ガスの脈動による冷却管6の共振が発生し、従って振
動が大きい問題があった。In the above conventional configuration, all of the refrigerant gas compressed by the compression mechanism section 2 is directly discharged into the cooling pipe 6, so resonance of the cooling pipe 6 occurs due to the pulsation of the discharged gas, resulting in large vibrations. There was a problem.
つぎに、別の従来の構成を第2図にて示す。尚、第1図
に示す従来例と同一部品は同一符号を付し説明を省略す
る。6は環状の封止管であり、閉回路を形成すると共に
、封止管e内には、冷媒が封入されている。この封止管
6は、密閉ケーシング1内の潤滑油7内に一部又は全部
がつかる受熱部8と、密閉ケーシング1外で、受熱部8
より高位置にある放熱部9及び立上り管10.11によ
り構成される。受熱部8は、ループ形状をなし、ループ
入口管8aは、ループ出口管8bより上方に位置し、そ
れぞれ密閉ケーシング1に固定される。Next, another conventional configuration is shown in FIG. Incidentally, parts that are the same as those in the conventional example shown in FIG. Reference numeral 6 denotes an annular sealed tube that forms a closed circuit, and a refrigerant is sealed in the sealed tube e. This sealed tube 6 has a heat receiving part 8 which is partially or completely submerged in the lubricating oil 7 inside the sealed casing 1, and a heat receiving part 8 which is outside the sealed casing 1.
It is composed of a heat dissipation section 9 and a riser pipe 10.11 located at a higher position. The heat receiving part 8 has a loop shape, the loop inlet pipe 8a is located above the loop outlet pipe 8b, and each is fixed to the closed casing 1.
この構成において、第1図に示す従来例と同様K、圧縮
機構部2にて圧縮された冷媒ガスは、矢印で示す如く吐
出孔(図示せず)より密閉ケーシング1内に吐出され/
こ後、吐出管4よシ冷凍システム(図示せず)に吐出さ
れると共に、圧縮機の運転中、密閉ケーシング1内の冷
媒ガス及び潤滑油7が高温となると、封止管6の受熱部
8が加熱され、停止時に受熱部8に溜っていた封入液冷
媒は気化し、ループ出口管8bを介して、密閉ケーシン
グ1外の立上り管10部に流出する。立上り管1oより
放熱部9に至る間に、ガス冷媒は徐々に冷却され、放熱
部9で徐々に液化を始める。そのため、液冷媒は、自重
により滴下を始め立上り管11を介して放熱部に戻る。In this configuration, similar to the conventional example shown in FIG.
Thereafter, when the refrigerant gas and lubricating oil 7 in the sealed casing 1 become high temperature while the compressor is operating, the heat receiving part of the sealed pipe 6 8 is heated, and the sealed liquid refrigerant that had accumulated in the heat receiving part 8 when stopped is vaporized and flows out to the riser 10 section outside the closed casing 1 via the loop outlet pipe 8b. The gas refrigerant is gradually cooled while reaching the heat radiation part 9 from the riser pipe 1o, and gradually begins to liquefy in the heat radiation part 9. Therefore, the liquid refrigerant begins to drip due to its own weight and returns to the heat radiating section via the riser pipe 11.
第2図中鎖線矢印で示す様に順次このサイクルを繰返し
受熱部8において液冷媒が気化する際に、密閉ケーシン
グ1内の潤滑油及び高圧ガスを冷却する。This cycle is repeated in sequence as shown by the chain line arrows in FIG. 2, and as the liquid refrigerant vaporizes in the heat receiving section 8, the lubricating oil and high pressure gas in the sealed casing 1 are cooled.
上記構成においては、封止管6内に封入する冷媒量が少
ないと、受熱部に供給される冷媒量が途切れ冷却不足と
なることにより、冷媒封入量を封入管6の長さに対して
適正化する必要があり、密閉状の別回路を設ける為、圧
縮機の構成が複雑になる問題があった。In the above configuration, if the amount of refrigerant sealed in the sealed tube 6 is small, the amount of refrigerant supplied to the heat receiving section will be interrupted and cooling will be insufficient, so the amount of refrigerant sealed will be adjusted to an appropriate amount for the length of the sealed tube 6. The problem was that the configuration of the compressor was complicated because it required a separate sealed circuit.
発明の目的
本発明の目的は、密閉ケーシング内の高温ガスを直接利
用して、密閉ケーシング外の上部に設けた放熱部でこの
ガスを冷却し、一部液化さぜ、これを自重により下方に
滴下させることにより冷媒の流れを作り出し、液冷媒を
密閉ケーシング内に返すことにより圧縮機を冷却し、効
率及び信頼性の向上を図ることにある。Purpose of the Invention The object of the present invention is to directly utilize the high-temperature gas inside the hermetically sealed casing, cool this gas with a heat radiation section provided at the top outside the hermetically sealed casing, partially liquefy it, and then push it downward under its own weight. The objective is to create a flow of refrigerant by dripping, and cool the compressor by returning the liquid refrigerant into the sealed casing, thereby improving efficiency and reliability.
発明の構成
この目的を達成するために、密閉ケーシング内の潤滑油
の油面よシ上方の密閉ケーシング壁面に2個の開口部を
設け、この2個の開口部を、開口部より上方に位置する
連通管により連通し、この連通管の一部に、2つの開口
部のどちらか一方に傾斜する傾斜部を設けると共に、開
口部から傾斜部の頂部に延びた部分の連通管を断熱する
ことにより、断熱された連通管内でのガスの冷却度合を
減じて、液化をおさえ、冷媒の一方向の円滑な流れを作
り、傾斜部にて液化した冷媒を密閉ケーシング内に滴下
させ冷却を図るものである。Structure of the Invention In order to achieve this object, two openings are provided in the wall of the sealed casing above the lubricating oil level in the sealed casing, and these two openings are positioned above the opening. A part of the communicating pipe is provided with an inclined part that slopes toward one of the two openings, and the part of the communicating pipe extending from the opening to the top of the inclined part is insulated. This reduces the degree of cooling of the gas in the insulated communication pipe, suppresses liquefaction, creates a smooth flow of refrigerant in one direction, and allows the liquefied refrigerant to drip into the sealed casing at the slope for cooling. It is.
実施例の説明
以下本発明の一実施例を第3図を用いて説明する。尚、
従来と同一部分は同一符号を付し説明を省略する。DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG. still,
The same parts as the conventional one are given the same reference numerals and the explanation is omitted.
12.13は密閉ケーシング1の壁面に設けた入口開口
部、出口開口部であり、それぞれ潤滑油7の油面より上
方位置に設けられている。入口開口部12及び出口開口
部13は、圧縮機1より上方に配設した連通管14で連
通している。16は連通管14の頂部に形成した傾斜部
であり、入口開口部12.出口開口部13とそれぞれ立
上り管A16、立上り管B17を介して連通している。Reference numerals 12 and 13 designate an inlet opening and an outlet opening provided on the wall surface of the sealed casing 1, and each is provided at a position above the oil level of the lubricating oil 7. The inlet opening 12 and the outlet opening 13 communicate with each other through a communication pipe 14 disposed above the compressor 1. 16 is an inclined portion formed at the top of the communication pipe 14, and includes an inlet opening 12. It communicates with the outlet opening 13 via a riser pipe A16 and a riser pipe B17, respectively.
18は断熱材であり、立上り管A16を断熱している。18 is a heat insulating material, which insulates the riser pipe A16.
上記構成において、圧縮機の運転中、密閉ケーシング1
及び連通管14内は高温高圧の冷媒ガスで充たされるが
、特に傾斜部16において放熱し、冷媒が液化すると、
液冷媒は自重により傾斜部15を伝って滴下を始め、立
上り管B17.出ロ開ロ部13を介して密閉ケーシング
1内に至る。この液冷媒の滴下により、傾斜部15近傍
の連通管14内の圧力が低下し、密閉ケーシング1内の
高温冷媒ガスが、入口開口部12立上り管A16を介し
て傾斜部16に補充される。更に立上り管16は断熱さ
れているため、立上り管A16内でのガスの冷却度合が
おさえられ、完全なガス状冷媒となっており、入口開口
部12を介して密閉ケーシング1内に液冷媒が逆流して
滴下することはない。In the above configuration, during operation of the compressor, the closed casing 1
The inside of the communication pipe 14 is filled with high-temperature and high-pressure refrigerant gas, but when the heat is radiated particularly at the inclined portion 16 and the refrigerant liquefies,
The liquid refrigerant begins to drip down the slope 15 due to its own weight, and rises to the riser pipe B17. It reaches the inside of the sealed casing 1 via the outlet opening part 13. This dripping of liquid refrigerant lowers the pressure in the communication pipe 14 near the inclined portion 15, and the high temperature refrigerant gas in the sealed casing 1 is replenished into the inclined portion 16 via the riser pipe A16 of the inlet opening 12. Furthermore, since the riser pipe 16 is insulated, the degree of cooling of the gas in the riser pipe A16 is suppressed, and the refrigerant becomes a completely gaseous refrigerant, and the liquid refrigerant flows into the sealed casing 1 through the inlet opening 12. No backflow and dripping.
従って、連通管14内では、入口開口部12.立上り管
A16を介して傾斜部15へ向かう高温冷媒ガスの流れ
と傾斜部15にて一部液化した冷媒が、立上シ管B17
.出ロ開ロ部13を介して舌1崩ケーンング1内に向か
う流れが第3図で矢印フ示す如く連続して生じることに
なる。この結果、密閉ケーシング1内には、常に液冷媒
が供給されることとなり、この液冷媒が、密閉ケーシン
グ1内の高温部に接し気化する時に熱を奪い圧縮機力冷
却される。発明者の実験では、1ooW程度C圧縮機の
場合、連通管14の全長を約2m、立」シ管A1eを断
熱しない時で、圧縮機の密閉ケーシング1の温度は約1
5〜18度低下し、立上シ管A16を断熱した時は、密
閉ケーシング1の瀞度は約20〜23度低下する結果を
得ている。Therefore, within the communicating tube 14, the inlet opening 12. The flow of high-temperature refrigerant gas toward the inclined portion 15 via the riser pipe A16 and the refrigerant partially liquefied at the inclined portion 15 flow into the riser pipe B17.
.. A flow toward the inside of the tongue 1 collapse caning 1 via the protrusion opening portion 13 occurs continuously as shown by the arrow in FIG. 3. As a result, liquid refrigerant is always supplied into the hermetic casing 1, and when this liquid refrigerant comes into contact with a high temperature part within the hermetic casing 1 and vaporizes, it removes heat and is cooled by the compressor force. In the inventor's experiment, in the case of a C compressor of about 1ooW, the total length of the communication pipe 14 is about 2m, the vertical pipe A1e is not insulated, and the temperature of the closed casing 1 of the compressor is about 1.
When the riser pipe A16 is insulated, the stiffness of the sealed casing 1 is reduced by about 20 to 23 degrees.
発明の効果
以上の説明から明らかなように、本発明は密閉ケーシン
グ内の潤滑油の油面よシ上方の密閉ケーシング壁面に2
つの開口部を設け、この2つの開口部を、開口部より上
方に位置する連通管により連通し、この連通管の一部に
2つの開口部のどちらか一方に傾斜する傾斜部を設ける
と共に、密閉ケーシング壁面に設けた開口部と傾斜部頂
部とを連通ずる立上シ管を断熱したものであり、傾斜部
にて液化した冷媒が自重により密閉ケーシング内に滴下
することにより、連通管内に冷媒の一方向流れを連続的
に発生させ、密閉ケーシング内に流入する液冷媒により
圧縮機を確実に冷却するものであり、圧力脈動のない密
閉ケーシング内の冷媒を利用するため、従来のような振
動を生じることがなく、静かな運転をできると共に、密
閉状のループ管でないため、その組立が容易であり容易
に圧縮機の効率及び信頼性の向上を図ることができる。Effects of the Invention As is clear from the above explanation, the present invention provides a method of applying two or more layers to the wall surface of the hermetic casing above the lubricating oil level in the hermetic casing.
providing two openings, communicating the two openings through a communication pipe located above the opening, and providing a part of the communication pipe with an inclined part that slopes toward one of the two openings, This is an insulated riser pipe that communicates between the opening provided in the wall of the sealed casing and the top of the sloped part, and the refrigerant liquefied at the slope drips into the sealed casing due to its own weight, causing the refrigerant to flow into the communicating pipe. This system generates continuous unidirectional flow and reliably cools the compressor with the liquid refrigerant flowing into the sealed casing.As it utilizes the refrigerant inside the sealed casing without pressure pulsations, there is no vibration like in the past. Since the compressor is not a closed loop pipe, it is easy to assemble, and the efficiency and reliability of the compressor can be easily improved.
更に立上り管の一方を断熱しているため、この管内での
冷媒の液化が阻止され、ガス状冷媒の流れに逆行する冷
媒流れが生じないため、冷媒循環が円滑に行なえるため
、その冷却効果を向上できる。Furthermore, because one side of the riser pipe is insulated, the liquefaction of the refrigerant in this pipe is prevented, and the flow of refrigerant against the flow of gaseous refrigerant does not occur, allowing for smooth refrigerant circulation, thereby increasing its cooling effect. can be improved.
第1図、第2図はそれぞれ従来の回転式圧縮機を示す要
部断面の側面図、第3図は本考案の一実施例を示す回転
式圧縮機の要部断面の側面図である。
1・・・・・・密閉ケーシング、2・・・・・・圧縮機
構部、14・・・・・・連通管、15・・・・・・傾斜
部、18・・・・・・断熱材。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図
第2図
第3図
484−FIGS. 1 and 2 are side views showing a cross-section of a main part of a conventional rotary compressor, respectively, and FIG. 3 is a side view of a cross-section of a main part of a rotary compressor showing an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Sealed casing, 2... Compression mechanism part, 14... Communication pipe, 15... Inclined part, 18... Heat insulation material . Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 3 484-
Claims (1)
満された密閉ケーシングと、前記密閉ケーシングを貫通
し、前記潤滑油面よシ上方で両端が開放し、上方に延び
、且つ傾斜部を上端部分に有する連通管と、前記密閉ケ
ーシングより前記傾斜部頂部に到る前記連通管外周に配
設した断熱材とを備えた回転式圧縮機。A closed casing that houses a compression mechanism, lubricating oil, etc. and is filled with high-temperature, high-pressure gas; and a closed casing that penetrates the sealed casing, opens at both ends above the lubricating oil level, extends upward, and is inclined. A rotary compressor comprising: a communicating pipe having an upper end portion thereof; and a heat insulating material disposed on the outer periphery of the communicating pipe extending from the closed casing to the top of the inclined portion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10372583A JPS59229073A (en) | 1983-06-09 | 1983-06-09 | Rotary compressor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10372583A JPS59229073A (en) | 1983-06-09 | 1983-06-09 | Rotary compressor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59229073A true JPS59229073A (en) | 1984-12-22 |
Family
ID=14361638
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10372583A Pending JPS59229073A (en) | 1983-06-09 | 1983-06-09 | Rotary compressor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59229073A (en) |
-
1983
- 1983-06-09 JP JP10372583A patent/JPS59229073A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5940270A (en) | Two-phase constant-pressure closed-loop water cooling system for a heat producing device | |
JP2002168547A (en) | Cpu cooling device using siphon | |
JPH062678A (en) | Closed type rotary compressor | |
EP1910676B1 (en) | Hermetic compressor with a heat dissipation system | |
JPS59229073A (en) | Rotary compressor | |
JP4682596B2 (en) | Hermetic compressor | |
JP2021508365A (en) | Independent auxiliary thermosiphon for cheaply extending active cooling to the other interior walls of the freezer. | |
JPS59206686A (en) | Rotary compressor | |
JPS6221890Y2 (en) | ||
JPS5810588B2 (en) | Rotary compressor cooling system | |
JPS6056188A (en) | Cooling system for compressor | |
JPS6050296A (en) | Rotary compressor | |
JPS6027797A (en) | Rotary compressor | |
CA2064324A1 (en) | Cryopump | |
JPS597038B2 (en) | Cooling structure of rotary compressor | |
KR100498369B1 (en) | Hermetic compressor with accumulator | |
JPS59215977A (en) | Rotary compressor | |
JPS61155692A (en) | Rotary compressor | |
JPS614877A (en) | Compressor | |
JPS6019981A (en) | Rotary compressor | |
JPS6019983A (en) | Rotary compressor | |
JPS6019982A (en) | Rotary compressor | |
JP3040255B2 (en) | Rotary compressor | |
JPS60237184A (en) | Compressor | |
KR100314022B1 (en) | Radiating structure for lubricationless pulse tube refrigerator |