JPS5922817A - Transport method of liquid containing solid particles - Google Patents

Transport method of liquid containing solid particles

Info

Publication number
JPS5922817A
JPS5922817A JP12916282A JP12916282A JPS5922817A JP S5922817 A JPS5922817 A JP S5922817A JP 12916282 A JP12916282 A JP 12916282A JP 12916282 A JP12916282 A JP 12916282A JP S5922817 A JPS5922817 A JP S5922817A
Authority
JP
Japan
Prior art keywords
liquid
pressure
valve
cylinder chamber
plunger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12916282A
Other languages
Japanese (ja)
Inventor
Shigezo Kawakami
川上 茂三
Koichi Beppu
別府 紘一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP12916282A priority Critical patent/JPS5922817A/en
Publication of JPS5922817A publication Critical patent/JPS5922817A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G53/00Conveying materials in bulk through troughs, pipes or tubes by floating the materials or by flow of gas, liquid or foam
    • B65G53/30Conveying materials in bulk through pipes or tubes by liquid pressure

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)

Abstract

PURPOSE:To prevent abrasion of a valve in a transport apparatus where liquid containing solid particle supplied to a cylinder chamber is discharged by reducing and increasing pressure by supplying and discharging liquid to and from a cylinder without differential pressure before and behind the valve. CONSTITUTION:In a reduced-pressure transport apparatus for high-pressure liquid containing solid particles, in the illustrated condition that an increasing stroke is completed, and all valves are closed, a liquid supply valve 4 is opened so that the above liquid is supplied from a high-pressure liquid supply line 7 to a cylinder chamber 6 to move a plunger 3 to the right. After a fixed quantity of liquid is supplied to the chamber 6, the liquid supply valve is closed. Subsequently, the plunger 3 is further moved to the right to reduce the pressure in the chamber 6 same as the liquid pressure in an outlet line 8 of a liquid discharge valve 5. After that, the liquid discharge valve 5 is opened, and the plunger 3 is moved to the left by external force to discharge the liquid in the chamber 6. After the completion of discharging liquid, the liquid discharge valve 5 is closed, and the pressure of remaining liquid in the chamber 6 is increased by the plunger 3. Thus, one stroke is completed.

Description

【発明の詳細な説明】 本発明は固形物粒子含有液の輸送方法、特に、シリンダ
室内を往復動可能な可動部材を備え、シリンダ室に給液
弁を介して固形物粒子含有液を供給させると共Zこ、シ
リンダ室から排液弁を介してその固形物粒子含有液を減
圧または昇圧して排出させるようにした輸送装置を用い
た固形物粒子含有液の輸送方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for transporting a liquid containing solid particles, and in particular, a method for transporting a liquid containing solid particles, which includes a movable member that can reciprocate within a cylinder chamber, and supplies the liquid containing solid particles to the cylinder chamber through a liquid supply valve. The present invention also relates to a method for transporting a solid particle-containing liquid using a transport device that reduces or increases the pressure of the solid particle-containing liquid and discharges the solid particle-containing liquid from a cylinder chamber via a drain valve.

固形物粒子あるいはさらに溶解ガスを含有する液体(以
下、固形物粒子含有液という)を減圧または昇圧する工
程を含む化学プラットとしては、従来より種々のものが
知られているが、ここては、近年、石油事情の悪化tこ
伴ない再認識されてきた石炭液化プラントを例にして説
明する。この石炭液化プラントにおいては、石炭を粉砕
、脱水した後、溶剤を加えてスラリー化し、これを外圧
、予熱した後、水素添加反応により液化させ、生じた石
炭液化生成物溶液を気液分離した後、減圧し、次いで生
成物たる重軽質油を分別蒸留する操作が行なわれる。従
来、この石炭液化生成物溶液の減圧は流濯調鉾弁の絞り
効果を利用して行なわれていたが、灰分その他の鉱物質
粒子による摩耗によりブ↑寿命が短かいことおよび石炭
液化生成物溶液の持つ王カエネルギが熱エネルギとして
浪費されていることに鑑み、近年その圧カニEネルギを
回収する装置が提案されている。この種の装置は、通常
、複数のシリンダをクランク機構により連結する一方、
流体に関しては給排液弁を介して並列接続し、順次、各
シリンダ室に給液−弁を介して石炭液化生成物溶液を供
給し、その圧力エネルギをピストンやプランジャ等に連
結されたクランク機構で回転エネルギとして回収する一
方、シリンダ室から減圧された石炭液化生成物/8液を
UI゛液方を介して排出するようにしたものであるが、
その減圧行程中に高圧の石炭液化生成物/8液中に1容
解したガスがフラッシュし、そのフラッシュガス発生用
はi’fRlIC1圧力などプラントの運転条件の変化
により変動し、弁の最適な開閉タイミンクも変動する。
Various chemical platforms have been known in the past that include a step of reducing or increasing the pressure of a liquid containing solid particles or dissolved gas (hereinafter referred to as a liquid containing solid particles). This will be explained using as an example a coal liquefaction plant, which has been re-recognized in recent years due to the deterioration of the petroleum situation. In this coal liquefaction plant, coal is pulverized and dehydrated, then a solvent is added to form a slurry, this is subjected to external pressure and preheating, and then liquefied by a hydrogenation reaction, and the resulting coal liquefaction product solution is separated into gas and liquid. , the pressure is reduced, and then the heavy and light oil products are fractionally distilled. Conventionally, this depressurization of the coal liquefaction product solution was carried out using the throttling effect of a flow control valve, but the life of the valve was short due to wear due to ash and other mineral particles, and the coal liquefaction product solution In view of the fact that the energy contained in solutions is wasted as heat energy, devices have been proposed in recent years to recover this energy. This type of device usually connects multiple cylinders using a crank mechanism, while
As for fluid, they are connected in parallel via liquid supply and drain valves, and the coal liquefaction product solution is sequentially supplied to each cylinder chamber via the liquid supply valve, and the pressure energy is transferred to a crank mechanism connected to a piston, plunger, etc. While the coal liquefaction product/liquid, which has been depressurized from the cylinder chamber, is recovered as rotational energy, it is discharged via the UI liquid channel.
During the depressurization process, the gas dissolved in the high-pressure coal liquefaction product/8 liquid flashes, and the flash gas generation varies depending on changes in plant operating conditions such as i'fRlIC1 pressure, Opening/closing timing also varies.

そのため、一定の開閉タイミングで給排液弁を開閉する
と、シリンダ室内は過、膨張または不足+1iZ張とな
ったり、引圧行程時に過圧縮寸たは不足圧縮となったり
してサージ圧を発生するなど配管系、給液Jrおよびク
ランク機構などの破損の原因となる。しかも、−ITの
前後に差圧があると、弁の開閉時に液体が加速され乱流
状態となって−J帝ブeを摩耗させるこ七になる。その
ため、プランジャの内圧を検出し、最適なタイミングで
弁を開閉させる装置が、例えは、特願昭56−’214
423号明細書により提案された。この動力回収装置の
動ヂf装置は、動力回収装置のシリンダ内の圧力を検出
する圧力検出器と、前記シリンダ内を往復動するプラン
ジャのストロークに対応するクランク軸若しくはカム軸
の回転角を検出する回転角検出器と、前記圧力検出器か
らの出力信号を前記回転角検出器の出力信号に対応する
設定圧力信号と比較演算する演算器と、該演算器からの
出力信号により給排液弁のJf体を駆動するカムの回転
角を調整するカム調整機構とからなる制御装置を有する
ことを特徴とするものであるが、クランク機構およびそ
れに同期させた動ブ「機構を前提としたもので、装置が
1い“1(、て運動変換部分が大きくなり、重用も過大
となるなと人容旧化することが困つ11Eてあった。
Therefore, when the supply and drain valves are opened and closed at a certain timing, the cylinder chamber may become over-expanded or under-tensioned +1iZ, or during the suction stroke, there may be over-compression or under-compression, generating surge pressure. This may cause damage to the piping system, liquid supply Jr., crank mechanism, etc. Moreover, if there is a pressure difference before and after the -IT, the liquid will be accelerated when the valve is opened and closed, creating a turbulent flow that will wear out the -J valve. Therefore, a device that detects the internal pressure of the plunger and opens and closes the valve at the optimal timing is required, for example, in Japanese Patent Application No. 56-'214.
It was proposed by the specification of No. 423. The movement gear of this power recovery device includes a pressure detector that detects the pressure inside the cylinder of the power recovery device, and a rotation angle of the crankshaft or camshaft that corresponds to the stroke of the plunger that reciprocates within the cylinder. a rotation angle detector, a calculation unit that compares and calculates an output signal from the pressure detector with a set pressure signal corresponding to the output signal of the rotation angle detector, and a liquid supply/drain valve based on the output signal from the calculation unit. It is characterized by having a control device consisting of a cam adjustment mechanism that adjusts the rotation angle of the cam that drives the Jf body, but it is based on a crank mechanism and a moving valve mechanism synchronized with the crank mechanism. 11E, it is difficult for the human body to become obsolete if the device is large and the motion conversion part becomes large and the heavy use becomes excessive.

他方、高圧液体からエネルギを回収する装置として、特
公昭31−3802号公報に記載の動力回収式圧力液体
給送装置がある。この装置は、送液ピストンの前面及び
背向にそれぞれ回収液及び供給液を作用させるようにし
た一刀の往復動型送液ポンプに対し、一方の送液ポンプ
の一方向行程の比較的初期及び比較的終期に於て他方の
送液ポンプの回収液側をそれぞれ、76圧器及び低圧器
とにじn換え連通せしめるようにすると共に、その供給
液側にはピストン復帰用外圧ポンプを経由して給液する
ようにしたことを特徴吉するもので、クランク機構を使
用することなく動力回収している。
On the other hand, as a device for recovering energy from high pressure liquid, there is a power recovery type pressure liquid feeding device described in Japanese Patent Publication No. 31-3802. This device has two reciprocating liquid pumps that act on the front and back sides of the liquid sending piston, respectively. At a relatively final stage, the recovery liquid side of the other liquid sending pump is connected to the 76 pressure device and the low pressure device, respectively, and the supply liquid side is connected via an external pressure pump for piston return. It is characterized by the fact that it is supplied with liquid, and power is recovered without using a crank mechanism.

しかし、この装置は、高圧回収液側に(幾械ブ「を、ま
た低圧供給液側に逆−11弁を採用1−でいるため、高
圧回収液側の弁の開閉が液流のある状態て行jλわれる
ことになり、石炭液化プラントニオケル減圧工程での動
力回収装置として使用した場合、石炭液化生成物中の灰
分や触媒などの固形物れ′l子によって4tの接液部材
が摩耗し1.弁の補(1り、交換等を頻繁に0行なわな
ければならす、また1、勇11ニブ4゛(ま設定flW
に達すると急激に開閉するため、配管系=(こ液体の急
速な流れによる衝撃を生じさせるとし)う問題があった
However, this device uses a mechanical valve on the high-pressure recovered liquid side and a reverse-11 valve on the low-pressure supply liquid side, so the valve on the high-pressure recovered liquid side cannot be opened or closed when there is liquid flow. When used as a power recovery device in the Niokel depressurization process of a coal liquefaction plant, the 4t wetted parts will wear out due to solid particles such as ash and catalyst in the coal liquefaction product. 1. Valve replacement (1, replacement, etc.) must be carried out frequently, and 1.
When this happens, the piping system suddenly opens and closes, creating a problem with the piping system (which causes shocks due to the rapid flow of liquid).

本発明は、このような問題に鑑みてなされたものであっ
て、固形物粒子あるいはそれ(こ加えて1容解ガスをも
含有する液体のシリン−ダ内外へ合赴給丑たは排出を、
)↑の前後に差圧を生じさせることなく行なわせること
ができ、従)て、弁の接液部材の摩耗を防止すると共に
、サージ圧の発生を防1Lできる固形物粒子含有液の輸
送方法を提供するものである。
The present invention has been made in view of these problems, and is aimed at dispensing or discharging solid particles or a liquid containing them (in addition, 1 ml of gas) into and out of a cylinder. ,
) A method for transporting a liquid containing solid particles that can be carried out without creating a pressure difference before and after the above, and thus prevents wear of the liquid contact parts of the valve and prevents the generation of surge pressure. It provides:

本発明に係る固形物粒子含有液の輸送方法(ま、シリン
ダ室内を往復動可能な可動部材を備え、給液弁を介して
固形物粒子含有液をシリンダ室内こ供給さぜると共に、
排液弁を介して減圧捷た6才列圧された固形物粒子含有
液をシリンダ室力1らJ$lJ3さぜるようにした輸送
装置を用いた固形物粒子含有液の輸送方法において、前
記可動部材を変位蛋可変となし、前記シリンダ室に固形
物粒子含有液を所定量供給後、シリンダ室内の固形物粒
子含有液を1シト出、輸送するに先立って前記可動部材
を変位させてシリンダ室内の液圧をI′llI液弁出口
側圧力と同圧にする一方、前記シリンダ室から固形物粒
子含有液を排出した後、該シリンダ室に固形物粒子含有
液を供給するに先立って前記rJ動部材を変位させてシ
リンダ室内の液圧を給液ジ「人[」側圧力と同圧にする
ことを特徴とするものである。
A method for transporting a liquid containing solid particles according to the present invention (equipped with a movable member that can reciprocate within a cylinder chamber, and supplying a liquid containing solid particles into the cylinder chamber through a liquid supply valve,
In a method for transporting a solid particle-containing liquid using a transport device configured to stir a pressure-reduced solid particle-containing liquid through a drain valve, the method includes: The movable member is variable in displacement, and after supplying a predetermined amount of the solid particle-containing liquid to the cylinder chamber, the movable member is displaced before one drop of the solid particle-containing liquid in the cylinder chamber is discharged and transported. While making the liquid pressure in the cylinder chamber the same as the pressure on the outlet side of the I'llI liquid valve, after discharging the solid particle-containing liquid from the cylinder chamber, and before supplying the solid particle-containing liquid to the cylinder chamber, It is characterized in that the rJ moving member is displaced to make the hydraulic pressure in the cylinder chamber the same as the pressure on the liquid supply side.

すなわち、本発明は、シリンダ室内を往復動する可動部
材の変位計を、シリンダ室内に供給された液体または残
留する液体の状態に応じて変化させ、所定圧までの減圧
および昇圧をシリンダ室内で行なわせるようにしたもの
である。
That is, the present invention changes the displacement gauge of a movable member that reciprocates within the cylinder chamber according to the state of the liquid supplied or remaining in the cylinder chamber, and reduces or increases the pressure within the cylinder chamber to a predetermined pressure. It was designed to allow

以下、添付の図面を参照して本発明を説明する。The present invention will now be described with reference to the accompanying drawings.

第1図に示す固形物粒子含有液輸送装]Cおいて、lは
プランジャ式シリンダ、2はシリンダバレル、3はプラ
ンジャ、4は固形物粒子含有液を供給する給液ヅf、5
は所定圧まで減圧寸たは昇圧された固形物粒子含有液を
排出する排液弁、6はシリンダ室、7は給液弁入口側ラ
イン、8は排液弁出口側ラインである。この装置は、高
圧液の減圧輸送に使用する場合、第2図に示すように、
給液行程(状態A→状態B)、減圧行程(状態13゜状
態C)、す1液行程(状態C−状態D〕、昇圧行程(状
態D→状態A)の四行程からなる動作サイクルを有し、
AおよびCの状態で過圧縮若しくは不足圧縮または過膨
張若しくは不足膨張を生じさせないように、プランジャ
3の変位用を可変にしてあり、その動作は本発明に従い
次のようにして行なわれる3、すなわち、第1図におい
て、今シリンダ室6内の固形物粒子含有液がライン7内
の液圧と同圧に昇圧されており、給液弁4および排液弁
4が閉である状態Aにあるものとすると、まず。
Solid particle-containing liquid transport device shown in FIG.
Reference numeral denotes a drain valve for discharging the solid particle-containing liquid whose pressure has been reduced or increased to a predetermined pressure, 6 is a cylinder chamber, 7 is a line on the inlet side of the liquid supply valve, and 8 is a line on the outlet side of the drain valve. When this device is used for transporting high-pressure liquid under reduced pressure, as shown in Figure 2,
The operation cycle consists of four strokes: liquid supply stroke (state A → state B), pressure reduction stroke (state 13° state C), first liquid stroke (state C - state D), and pressure increase stroke (state D → state A). have,
The displacement of the plunger 3 is made variable so as not to cause overcompression or undercompression or overexpansion or underexpansion in states A and C, and its operation is performed as follows according to the present invention. In FIG. 1, the pressure of the solid particle-containing liquid in the cylinder chamber 6 has been increased to the same pressure as the liquid pressure in the line 7, and the liquid supply valve 4 and drain valve 4 are in state A, which is closed. Well, first of all.

給液弁4を開き、高圧の一固形物粒子含有液をライン7
からシリンダ室6に供給させることにより給液行程が行
なわれ、プランジャ3は図の右方へ変位する。シリンダ
室6内に所定量の固形物粒子含有液を供給した後、プラ
ンジャ3の変位を停止I−,させ、次いで給液弁4を閉
じて給液行程を終る。
Open the liquid supply valve 4 and supply the high-pressure liquid containing solid particles to the line 7.
A liquid supply stroke is performed by supplying liquid from the liquid to the cylinder chamber 6, and the plunger 3 is displaced to the right in the figure. After a predetermined amount of solid particle-containing liquid is supplied into the cylinder chamber 6, the displacement of the plunger 3 is stopped I-, and then the liquid supply valve 4 is closed to complete the liquid supply process.

給液行程終了後、プランジャ3を図の右方へさらに変位
させ、シリンダ室6内の固形物粒子含有液をul液ブf
5の出口側ライン8内の液圧と同)Eに丑で減圧させる
。この時のプランジャ3の変位用はシリンダ室6内の固
形物粒子含イエ液中の溶解ガス量、液温、圧力等によっ
て変動する。この減圧行程時にプランジャ3を変位させ
る手段および前記給液行程を終了させる手段としては、
後述の実施例のように、給液弁および排液ブrを備え、
前記シリンダ1に対向して配設されたプランジャ式シリ
ンダを使用してもよく、また、アクチュエータを使用し
てもよい。
After the liquid supply stroke is completed, the plunger 3 is further displaced to the right in the figure, and the solid particle-containing liquid in the cylinder chamber 6 is transferred to the ul liquid valve f.
Same as the liquid pressure in the outlet side line 8 of 5)) Reduce the pressure in E with the ox. The displacement of the plunger 3 at this time varies depending on the amount of dissolved gas in the solid particle-containing yellowtail liquid in the cylinder chamber 6, liquid temperature, pressure, etc. The means for displacing the plunger 3 during this decompression stroke and the means for ending the liquid supply stroke are as follows:
As in the embodiments described below, it is equipped with a liquid supply valve and a liquid discharge valve r,
A plunger type cylinder disposed opposite the cylinder 1 may be used, or an actuator may be used.

シリンダ室6内の液圧がツイン8内の液圧と同圧にまで
減圧されたところで、プランジャ3を停止させ、減圧行
程を終り、状態Cに至る。次いで、υ1液ノr5を開き
、その後、外力によりプランジャ3を図の左方へ変位さ
せて減圧された固形物粒子含有液をシリンダ室6からc
ト出し輸送させる。このようにして排液行程の終りに達
すると、プランジャ3を停止させ、欠いて、排液弁5を
閉にさせることにより排液行程を終る(状態D)。その
後、プランジャ3に外力を加えてシリンダ室6内に残留
する固形物粒子含有液をライン7内の液圧と同圧にまで
昇圧させ、次いでプランジャ3を停止させることにより
ゲII]′E行程を終え、状態Aに戻り、以後、前記動
作ザイクルを繰り返す。
When the hydraulic pressure in the cylinder chamber 6 is reduced to the same pressure as the hydraulic pressure in the twin 8, the plunger 3 is stopped, the pressure reducing stroke is completed, and state C is reached. Next, the υ1 liquid nozzle r5 is opened, and then the plunger 3 is displaced to the left in the figure by an external force, and the depressurized liquid containing solid particles is discharged from the cylinder chamber 6.
Transport it out. When the end of the draining stroke is reached in this way, the plunger 3 is stopped, the draining valve 5 is closed, and the draining stroke ends (state D). Thereafter, an external force is applied to the plunger 3 to increase the pressure of the solid particle-containing liquid remaining in the cylinder chamber 6 to the same pressure as the liquid pressure in the line 7, and then the plunger 3 is stopped to perform the GeII]'E stroke. After that, the state returns to state A, and thereafter the operation cycle described above is repeated.

なお、減圧行程および昇圧行程の終了は、プランジャを
停止にさせることにより行なわれるが、その停止時期は
シリンダ室6内の圧力およびライン7・8内の圧力を圧
力七ンサで検出し、その出力信号によりプランジ−■を
停止させるようにしてもよく、1だ、後述する実施例の
ように、対向プランジャを設けて、その対向プランジャ
に接続された給液ラインおよび排液ライン内の液圧を一
定に維持するようにしてもよい。
Note that the end of the pressure reduction stroke and the pressure increase stroke is carried out by stopping the plunger, but the stop timing is determined by detecting the pressure in the cylinder chamber 6 and the pressure in the lines 7 and 8 with a pressure sensor, and checking the output. The plunger (1) may be stopped by a signal, and as in the embodiment described later, an opposing plunger is provided and the fluid pressure in the liquid supply line and drain line connected to the opposing plunger is controlled. It may be maintained constant.

前記実施例においては、プラノジャ式シリンダを使用し
ているが、これは片ロツドピストン式複動シリンダを使
用し、各シリンダ室に給液弁および排液弁を接続して、
後述の実施例と同様に動作させるようにしてもよい。
In the above embodiment, a planar cylinder is used, which is a single-rod piston double-acting cylinder, and a liquid supply valve and a liquid drain valve are connected to each cylinder chamber.
It may be made to operate similarly to the embodiment described later.

従って、本発明方法によれば、シリンダ室への固形物粒
子含有液の供給開始時およびシリンダ¥からの固形物粒
子含有液の排出開始時、給液弁および排液弁の前後に差
圧のない状態でブ↑が開かれるので弁の開度変化に伴な
う液体の加速現象を生じることがなく、弁体や弁座なと
弁の接液部材の摩耗を防止できると共に、ライン7.8
の配管Jにサージ圧を発生させることがない。また、給
液行程および排液行程終了時、液流のない状態で弁が閉
止されるので、液体に加速現象を生じることがなく、弁
の接液部材の摩耗を防、+Lできるなど、優れた効果が
得られる。
Therefore, according to the method of the present invention, at the time of starting the supply of the solid particle-containing liquid to the cylinder chamber and the start of discharging the solid particle-containing liquid from the cylinder, a differential pressure is created before and after the liquid supply valve and the liquid drain valve. Since the valve ↑ is opened when the valve is closed, there is no acceleration phenomenon of the liquid caused by changes in the opening degree of the valve, which prevents wear of the valve body, valve seat, and other liquid-contacted parts of the valve. 8
No surge pressure is generated in the pipe J. In addition, at the end of the liquid supply and drain strokes, the valve is closed with no liquid flow, so there is no acceleration phenomenon in the liquid, which prevents wear on the parts in contact with the valve and allows for +L. You can get the same effect.

第3図は、本発明を石炭液化プラントの減圧工程に組み
込まれた動力回収装置に適用した例を示−し、IA〜I
c、IIA〜iicはプランジャ形シリンダ、4A〜4
c、14A−,14Cは給液弁、5A〜5G、15A〜
15Gは排液弁、21 、23は可変吐出形ポンプ、2
2は石状スラリタンク、24は石炭スラリ供給ライン、
25は予熱器、26は石炭液化反応塔、27は高圧側気
液分離塔、28は低圧側気液分離塔、29は緊急用減圧
弁、30は液面センサ、MO,M、はポンプ駆動用モー
タである。
FIG. 3 shows an example in which the present invention is applied to a power recovery device incorporated in the pressure reduction process of a coal liquefaction plant.
c, IIA~iic are plunger type cylinders, 4A~4
c, 14A-, 14C are liquid supply valves, 5A-5G, 15A-
15G is a drain valve, 21 and 23 are variable discharge pumps, 2
2 is a stone slurry tank, 24 is a coal slurry supply line,
25 is a preheater, 26 is a coal liquefaction reaction tower, 27 is a high pressure side gas-liquid separation tower, 28 is a low pressure side gas-liquid separation tower, 29 is an emergency pressure reducing valve, 30 is a liquid level sensor, MO, M are pump drives It is a motor for

この石炭液化プラントにおいては、三対のプランジャ形
シリンダIA〜Ic、IIA〜11Cからなる動力回収
装置およびポンプ23により、通常、200〜3001
(g/c+7に昇圧され、石灰スラリ供給ライン24を
経て予熱器25に輸送されて約300〜400℃【こ予
熱された後、反応塔26に送られ、そこで触媒および水
素添加により液化反応を受け、石状液化生成物溶液とし
て反応塔26から高圧側気液分離塔27に移送される。
In this coal liquefaction plant, a power recovery device consisting of three pairs of plunger-type cylinders IA to Ic, IIA to 11C and a pump 23 are used to generate a power of 200 to 300
(The pressure is increased to g/c+7, and the lime slurry is transported to the preheater 25 via the lime slurry supply line 24 to approximately 300 to 400°C [After being preheated, it is sent to the reaction tower 26, where a liquefaction reaction is carried out using a catalyst and hydrogenation. It is transferred from the reaction tower 26 to the high-pressure side gas-liquid separation tower 27 as a stone-like liquefied product solution.

この気液分離塔27で溶液から分離されたガスは塔頂か
らライン31を介して系外へ排出され、石灰液化生成物
溶液はライン7を介して動力回収装置の減圧輸送用シリ
ンダIA、ICにより、50〜100Kg / ca程
度の所定圧に減圧された後、ライン8を介して低圧側気
液分離塔284こ輸送されて、そこで再び気液分離され
る。
The gas separated from the solution in this gas-liquid separation tower 27 is discharged from the top of the tower to the outside of the system via line 31, and the lime liquefaction product solution is passed through line 7 to cylinders IA and IC for reduced pressure transportation of the power recovery device. After being reduced to a predetermined pressure of approximately 50 to 100 kg/ca, the gas is transported via line 8 to the low-pressure side gas-liquid separation column 284, where it is separated into gas and liquid again.

この石炭液化プラントにおける石炭スラリおよび石灰液
化生成物溶液の輸送は、本発明により次のようにして行
なわれる。なお、各列のシリンダの動作は位相が異なる
のみて全く同じであるので、シリンダLA、IIAの系
統を主にして説明する。
The transportation of coal slurry and lime liquefaction product solution in this coal liquefaction plant is carried out according to the present invention as follows. Incidentally, since the operations of the cylinders in each row are completely the same except for the phase difference, the system of cylinders LA and IIA will be mainly explained.

図示の状態で、減圧輸送用シリンダIAは第1図のシリ
ンダlと同じく外圧行程を終了し、そのシリンダ1.t
 6 A内の液圧がライン7と同圧に筐で昇圧された状
態にあり、それと苅の引圧輸送用シリンダIIAのシリ
ンダ室16Aには石炭スラリか収容されシリンダ室6A
内の液圧と同圧に昇圧されている。減圧輸送用シリンダ
側の給液j?4八および排液弁5A、4圧輸送用シリン
ダ側の給液弁14Aおよび排液弁15.Aが全て閉じら
れ、シリンダIAのシリンダ室6A内の液圧がライン7
内の液圧と同圧の状態Aで、まず減圧輸送側給液弁4A
を開け、次いで昇圧輸送側排液)F15Aを開けると、
高温高圧の石状液化生成物溶液が高圧側気液分離塔27
からシリンダ室6Aに供給され、その圧力エネルギによ
ってシリンダ室6A内の石炭スラリか排液弁15Aおよ
び逆tL弁19を介して石炭スラリ供給ライン24に送
給される。このワイン24に送給された石炭スラリは、
可変吐出形ポンプ23から吐出される石炭スラリと共に
予熱器25の方へ輸送されるが、そのトータル流量は高
圧側気液分離塔27の液面を検出するレベルセンサ30
からの出力簡号により吐出量を制御されるポンプ23に
より一定に維持される。
In the illustrated state, the reduced pressure transport cylinder IA has completed its external pressure stroke in the same way as the cylinder 1 in FIG. t
The liquid pressure in 6A is raised to the same pressure as that in line 7 by the casing, and coal slurry is stored in the cylinder chamber 16A of the cylinder IIA for transportation under pressure.
The pressure is increased to the same level as the internal fluid pressure. Liquid supply on the cylinder side for reduced pressure transportation? 48, drain valve 5A, 4-pressure transport cylinder side liquid supply valve 14A, and drain valve 15. A is all closed, and the hydraulic pressure in the cylinder chamber 6A of cylinder IA is reduced to line 7.
In state A where the pressure is the same as that in the
and then open the pressurized transport side drain) F15A,
The high-temperature, high-pressure stone-like liquefied product solution is transferred to the high-pressure side gas-liquid separation tower 27.
The pressure energy causes the coal slurry in the cylinder chamber 6A to be fed to the coal slurry supply line 24 via the drain valve 15A and the reverse tL valve 19. The coal slurry fed to this wine 24 is
The coal slurry discharged from the variable discharge pump 23 is transported to the preheater 25, and its total flow rate is measured by a level sensor 30 that detects the liquid level in the high-pressure side gas-liquid separation tower 27.
The discharge amount is maintained constant by the pump 23, which is controlled by the output signal from the pump 23.

シリンダ室6Aに所定量の石炭液化生成物溶液が供給さ
れると、昇圧輸送側排液弁15Aを閉IFしてプランジ
ャ3A、13Aを停止させ、次いで減圧輸送側給液弁4
Aを閉止すると、第2図で状態Bに至る。次に外圧輸送
側給液弁14Aを開くと、ライン17内の液圧とシリン
ダ室6A内の液圧との差圧によりプランジャ3A、13
Aがさらに左方へ移動し、石灰液化生成物溶液中の溶解
ガスのフラッシュと共に該溶液および石炭スラリの減圧
が行なわれる。この時、シリンダ室16Aから排出され
る石灰スラリは、石炭スラリについて給液行程(石炭液
化生成物溶液については排液行程〕にある他のシリンダ
、例えば、llcに供給される。シリンダ室6A内の液
圧がライン17内の液圧と等しくなった後、給液ブ11
4Aを閉1にすることによりプランジャ3A、13Aが
停止し、第2図で状態Cに至る。この状態Cに至る圧力
は□ポンプ21の作用により常に一定に維持されるが、
シリンダ室6A内の容積は、該シリンダ室6Aに供給さ
れた時の石炭液化生成物溶液の性状に応じてプランジャ
の変位量が異なるため変動する。なお、ライン17とラ
イン8内の液圧は同圧に設定されている。
When a predetermined amount of coal liquefaction product solution is supplied to the cylinder chamber 6A, the pressure-increasing transport side drain valve 15A is closed IF to stop the plungers 3A and 13A, and then the pressure-reducing transport side liquid supply valve 4
Closing A leads to state B in FIG. Next, when the external pressure transport side liquid supply valve 14A is opened, the pressure difference between the liquid pressure in the line 17 and the liquid pressure in the cylinder chamber 6A causes the plungers 3A, 13 to
A moves further to the left, causing a flash of dissolved gases in the lime liquefaction product solution as well as depressurization of the solution and coal slurry. At this time, the lime slurry discharged from the cylinder chamber 16A is supplied to another cylinder, for example, llc, which is in the supply stroke for the coal slurry (drainage stroke for the coal liquefaction product solution).Inside the cylinder chamber 6A After the fluid pressure in line 17 becomes equal to the fluid pressure in line 17, fluid supply valve 11
By closing 4A, the plungers 3A and 13A are stopped, resulting in state C in FIG. The pressure that reaches this state C is always maintained constant by the action of the □ pump 21, but
The volume inside the cylinder chamber 6A varies because the amount of displacement of the plunger varies depending on the properties of the coal liquefaction product solution when it is supplied to the cylinder chamber 6A. Note that the hydraulic pressures in line 17 and line 8 are set to be the same pressure.

この−rEi炭液炭中化生成物溶液ついての減圧行程が
終ると、まず減圧輸送側排液弁5Aを開き、次いで外圧
輸送側給液:/r14Aを開くとポンプ21から吐出さ
れる石灰スラリかシリンダ室16A内に供給され、プラ
ンジャ3A、13Aを在方へ変位させるため、−シリン
ダ室6A内の減圧された石炭液化生成物溶液が排液ヅp
5hを介して排出され、低圧側気液分離塔28へ輸送さ
れる。その後、プランジャ3A、13Aが所定位置源て
変位してから給液弁14Aを閉止してプランジャ3A、
13Aを停止させ、次いで排液弁5Aを閉止することに
より、第2図で状態りに至る。その後、外圧輸送側排液
弁15Aを開くと、石炭液化生成物溶液についての給液
行程にある他のシリンダ系から排出される高圧の石灰ス
ラリをシリンダ16Aに導入させることによりシリンダ
室6A内に残留する石炭液化生成物溶液がライン7内の
液圧と同圧にまで外圧され、その後、排液ノP15’A
を閉じることにより、初めの状態、すなわち、第2図の
状態Aに戻り、以後、前記動作サイクルを繰り返す。
When the pressure reduction process for this -rEi charcoal neutralization product solution is completed, first open the reduced pressure transport side drain valve 5A, then open the external pressure transport side supply liquid: /r14A, and the lime slurry discharged from the pump 21 The depressurized coal liquefaction product solution in the cylinder chamber 6A is supplied to the cylinder chamber 16A to displace the plungers 3A and 13A in the desired direction.
5h, and transported to the low-pressure side gas-liquid separation column 28. Thereafter, after the plungers 3A and 13A are displaced from a predetermined position, the liquid supply valve 14A is closed and the plungers 3A and 13A are
By stopping 13A and then closing drain valve 5A, the state shown in FIG. 2 is reached. After that, when the external pressure transport side drain valve 15A is opened, the high pressure lime slurry discharged from other cylinder systems in the liquid supply process for the coal liquefaction product solution is introduced into the cylinder 16A, and is thereby discharged into the cylinder chamber 6A. The remaining coal liquefaction product solution is externally pressured to the same pressure as the liquid pressure in line 7, and then drained into the drain pipe P15'A.
By closing, the device returns to the initial state, that is, state A in FIG. 2, and thereafter repeats the operation cycle.

このような動作サイクルにより三対のシリンダ系は順次
、位相を異ならしめて連続的に運転され、シリンダl 
A 、 ’l B 、 l Cでは高圧の石灰液化生成
物溶液が減圧輸送され、シリンダIIA・lIB。
Through such an operation cycle, the three pairs of cylinder systems are sequentially operated with different phases, and the cylinder l
In A, 'lB, and lC, high-pressure lime liquefaction product solution is transported under reduced pressure to cylinders IIA and lIB.

11Cでは石炭スラリか外圧輸送される。At 11C, coal slurry is transported by external pressure.

以上の説明から明らかなように、本発明によれば、減圧
輸送用シリンダへの給液開始時またはシリンダからの排
液行程開始時、シリンダ内の液圧をライン7またはライ
ン8内の液圧と同圧にしてから給液弁4Aおよび排液弁
5Aがそれぞれ開かれるため、六の前後に差圧がなく、
従って、弁の開閉に伴なう液体の加速現象やサージ圧を
発生することもなく、弁の接液部組の摩耗を防止できる
と共に、配管系に衝撃等を生じさせることかない。
As is clear from the above description, according to the present invention, the hydraulic pressure in the cylinder is changed to the hydraulic pressure in line 7 or line 8 at the start of liquid supply to the cylinder for reduced pressure transportation or at the start of the liquid draining process from the cylinder. Since the liquid supply valve 4A and the liquid drain valve 5A are opened after the pressure is set to the same as that of 6, there is no pressure difference before and after the
Therefore, there is no acceleration phenomenon of the liquid or surge pressure caused by the opening and closing of the valve, and wear of the liquid-contacting parts of the valve can be prevented, and no impact or the like is caused to the piping system.

また、シリンダのプランジャ変位量を可変とし、クラン
ク機構のような回転運動への変換部もないため構造が簡
単で、大容量化も容易であるなど優れた効果が得られる
Further, since the amount of displacement of the plunger of the cylinder is variable and there is no part like a crank mechanism for converting rotational motion, the structure is simple and the capacity can be easily increased, which provides excellent effects.

なお、前記実施例においては、外圧行程終了時および減
圧行程終了時ζこ、それぞれ外圧輸送側排液弁15A〜
15Cまたは外圧輸送側給液弁14A〜14Cを一旦閉
1」―シ、減圧輸送側給液ブr4A〜4Cまたは減圧輸
送側5A〜5Cを開放した後、前記排液弁15A−15
Gまたは給液弁14A〜14cを開いて給液行程または
排液行程を行なわせるようにしているが、これらの弁は
外圧行程終了時および減圧行程終了時に必ずしも一旦閉
屯する必要はなく、減圧輸送用シリンダ室A内Ic内の
シリンダ室の内圧がライン7またはライン8内の液圧と
平衡に達した後、外圧輸送側の排液弁15A〜15Cま
たは給液弁14A〜14Cを開放したまま、外圧輸送側
の給液弁4A〜4C−!たは排液弁5A〜5Cを開いて
給液行程または排液行程を開始させるようにしてもよい
In addition, in the above embodiment, at the end of the external pressure stroke and at the end of the pressure reduction stroke, the external pressure transport side drain valves 15A to
15C or the external pressure transport side liquid supply valves 14A to 14C are closed, and after opening the reduced pressure transport side liquid supply valves 4A to 4C or the reduced pressure transport side 5A to 5C, the drain valve 15A-15 is opened.
G or the liquid supply valves 14A to 14c are opened to perform the liquid supply stroke or the liquid drain stroke, but these valves do not necessarily have to be closed once at the end of the external pressure stroke or the pressure reduction stroke, After the internal pressure of the cylinder chamber in the transport cylinder chamber A reached equilibrium with the hydraulic pressure in line 7 or line 8, the drain valves 15A to 15C or the liquid supply valves 14A to 14C on the external pressure transport side were opened. Leave the liquid supply valves 4A to 4C on the external pressure transport side! Alternatively, the liquid supply process or the liquid drain process may be started by opening the liquid drain valves 5A to 5C.

また、前記実施例では一1減圧輸送用シリンダIA−1
Gのプランジャの制御および駆動機構として、変位量を
可変としたプランジャ形シリンダおよびポンプ21で構
成しでいるが、これはアクチュエータをシリンダIA〜
ICのプランジャに連結する一方、各シリンダ室内の液
圧を検出するセンナを配設し、そのセンサからの信号に
よりアクチュエータを制御することにより行なうように
してもよい。
Further, in the above embodiment, the cylinder IA-1 for reduced pressure transportation is
The control and drive mechanism for the plunger G is composed of a plunger-type cylinder with variable displacement and a pump 21.
This may be accomplished by providing a sensor connected to the plunger of the IC and detecting the hydraulic pressure within each cylinder chamber, and controlling the actuator using a signal from the sensor.

また、前記実施例においては、石炭液化生成物溶液の減
圧輸送番とついて説明しているが、本発明は外圧輸送に
も適用できることは言うまでもない。
Further, in the above-mentioned embodiments, the transport under reduced pressure of the coal liquefaction product solution has been described, but it goes without saying that the present invention can also be applied to transport under external pressure.

なお、石炭スラリおよび石炭液化生成物溶液のいずれも
固形物粒子を含有しているが、石灰スラリは石灰液化生
成物溶液に比べて弁の接液部材を摩耗させる性質が小さ
いので、第3図の実施例において差圧のある状態てブ「
14A〜14C’、15A〜15Gを開閉しても、従来
のように弁の摩耗が大きくなることはないが、石炭スラ
リの代りに作動油、石灰スラリ製造用溶剤など固形物れ
′l了を召イ■、、しない液体を使用することによりブ
「の斤t+cを少なくできる。
Although both the coal slurry and the coal liquefaction product solution contain solid particles, the lime slurry has less tendency to wear out the parts in contact with the valve than the lime liquefaction product solution. In the example of
Even if 14A to 14C' and 15A to 15G are opened and closed, the wear on the valves will not increase as much as in the conventional case, but instead of using coal slurry, solid substances such as hydraulic oil and solvent for producing lime slurry can be used. By using liquids that don't contain liquids, the amount of t+c can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の実施に使用する固形物粒子含有液
輸送装置の構成図、第2図はその動作サイクルを示す指
圧線図、第3図は本発明方法の一実施例として石炭スラ
IJ−1’!圧輸送に使用した固形物粒子含有液減圧輸
送装置に適用した石炭液fヒプラントの系統図である。 11A−1G・・・シリンダ、  3.3A〜3C・・
・プランジャ、  4.4A〜4C・・・給液弁、  
5.5A〜5C・・・排液弁、 7・・・給液ヅ「入口
側ライン、8・・・排液弁出口側ワイン。 特 許 出 願 人  株式会社神戸製鋼所代 理 人
 弁理士  前出 葆 ほか1名第1図 第2図   ゛ 着積− 第3図 − を− tと
Fig. 1 is a block diagram of a solid particle-containing liquid transportation device used to carry out the method of the present invention, Fig. 2 is an acupressure diagram showing its operation cycle, and Fig. 3 is a coal sludge diagram as an example of the method of the present invention. IJ-1'! FIG. 2 is a system diagram of a coal liquid fhy plant applied to a reduced pressure transport device for a solid particle-containing liquid used for pressure transport. 11A-1G...Cylinder, 3.3A-3C...
・Plunger, 4.4A to 4C...liquid supply valve,
5. 5A to 5C...Drain valve, 7...Liquid supply line, 8...Drain valve outlet side.Patent applicant: Kobe Steel, Ltd. Agent: Patent attorney Figure 1, Figure 2, Figure 3, Figure 3, and t

Claims (1)

【特許請求の範囲】[Claims] (1)シリンダ室内を往復動可能な可動部材を備え、給
液弁を介して固形物粒子含有液をシリンダ室に供給させ
ると共に、排液弁を介して減圧または列座された固形物
粒子含有液をシリンダ室から排出さぜるようにした輸送
装置を用いた固形物粒子含有液の輸送方法において、前
記可動部材を変位量可敦となし、前記シリンダ室に固形
物粒子含有液を所定射供給後、シリンダ室内の固形物粒
子含有液を排出するに先立って前記可動部材を変位させ
てシリンダ室内の液圧を排液弁用[]側圧力と同圧にす
る一方、前記シリンダ室から固形物粒子含有液を排出し
た後、該シリンダ室に固形物粒子含有液を供給するに先
立って、前記可動部材を変位させてシリンダ室内の残留
液の液圧を給液弁入口側圧力と同圧にすることを特徴と
する固形物粒子含有液の輸送方法。
(1) Equipped with a movable member capable of reciprocating within the cylinder chamber, a liquid containing solid particles is supplied to the cylinder chamber via a liquid supply valve, and the liquid containing solid particles is reduced in pressure or is seated in a row via a drain valve. In a method for transporting a liquid containing solid particles using a transport device that discharges and stirs the liquid from a cylinder chamber, the movable member has a variable displacement, and the liquid containing solid particles is injected into the cylinder chamber in a predetermined amount. After supplying, before discharging the solid particle-containing liquid in the cylinder chamber, the movable member is displaced to make the liquid pressure in the cylinder chamber the same as the pressure on the side for the drain valve, while solid particles are removed from the cylinder chamber. After discharging the solid particle-containing liquid and before supplying the solid particle-containing liquid to the cylinder chamber, the movable member is displaced to bring the liquid pressure of the residual liquid in the cylinder chamber to the same pressure as the liquid supply valve inlet pressure. A method for transporting a liquid containing solid particles, the method comprising:
JP12916282A 1982-07-24 1982-07-24 Transport method of liquid containing solid particles Pending JPS5922817A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12916282A JPS5922817A (en) 1982-07-24 1982-07-24 Transport method of liquid containing solid particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12916282A JPS5922817A (en) 1982-07-24 1982-07-24 Transport method of liquid containing solid particles

Publications (1)

Publication Number Publication Date
JPS5922817A true JPS5922817A (en) 1984-02-06

Family

ID=15002672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12916282A Pending JPS5922817A (en) 1982-07-24 1982-07-24 Transport method of liquid containing solid particles

Country Status (1)

Country Link
JP (1) JPS5922817A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62205920A (en) * 1986-03-05 1987-09-10 Hitachi Ltd Forcedly feeding device for slurry

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62205920A (en) * 1986-03-05 1987-09-10 Hitachi Ltd Forcedly feeding device for slurry

Similar Documents

Publication Publication Date Title
EP1610000B1 (en) A gas compression system
US9903351B2 (en) Piston-type transfer pump device, method for transferring particulate solid matter using such a device, application of the method to the feeding of a gasification reactor
BR0308631A (en) Method and apparatus for compressing a gas
CN103079769A (en) Hydraulic impact mechanism for use in equipment for treating rock and concrete
RU2477387C2 (en) Pump system to transfer first fluid be second fluid
CN105508319A (en) Ultrahigh-pressure hydraulic pressurization system controlled by low-pressure servo source
RU2729251C2 (en) Methods and apparatus for producing granular solid carbon dioxide (versions)
US6592334B1 (en) Hydraulic multiphase pump
JPS5922817A (en) Transport method of liquid containing solid particles
CA2845370A1 (en) Drive system for surface hydraulic accumulator
CN102720671B (en) High-pressure paste delivery method and high-pressure paste delivery pump
WO1993000282A1 (en) Device for feeding bulk material into a pressurized space
US4297087A (en) Apparatus for pumping fluid from a well through a tubing string
CN106630015A (en) Apparatus for recycling pressure energy of fluid under pressure
US20120160336A1 (en) Devices and Methods for Varying the Geometry and Volume of Fluid Circuits
US4354421A (en) Energy recovery reciprocating engine
US3407044A (en) Apparatus for conserving energy in high pressure chemical reactors
JPS5922818A (en) Transport apparatus for liquid containing solid particle
TWI295344B (en) High-pressure device for operating closures of vessels for clean-room applications
US7175394B2 (en) Hydraulic multiphase pump
JPS6125411B2 (en)
JPS5920574A (en) Power recovery device
JPS58220979A (en) Collective device of power
CN202756236U (en) Paste material high-pressure delivery pump
JPS5929778A (en) Power recovery device