JPS59227720A - Oxidative destruction of organic substance in sodium aluminate solution - Google Patents

Oxidative destruction of organic substance in sodium aluminate solution

Info

Publication number
JPS59227720A
JPS59227720A JP58097957A JP9795783A JPS59227720A JP S59227720 A JPS59227720 A JP S59227720A JP 58097957 A JP58097957 A JP 58097957A JP 9795783 A JP9795783 A JP 9795783A JP S59227720 A JPS59227720 A JP S59227720A
Authority
JP
Japan
Prior art keywords
mother liquor
solution
temperature
oxidizing gas
sodium aluminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58097957A
Other languages
Japanese (ja)
Other versions
JPH0256284B2 (en
Inventor
Mikio Kanehara
金原 幹夫
Kazuo Horiba
堀場 一雄
Shoji Tanaka
正二 田中
Tokuji Tsuneizumi
常泉 徳次
Atsushi Okawa
淳 大川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP58097957A priority Critical patent/JPS59227720A/en
Publication of JPS59227720A publication Critical patent/JPS59227720A/en
Publication of JPH0256284B2 publication Critical patent/JPH0256284B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PURPOSE:To subject an organic substance in a sodium aluminate solution to oxidative destruction efficiently, and to remove it easily, by treating the solution prepared by Bayer's process with an oxidizing gas having a dew point higher than the temperature of the solution. CONSTITUTION:In preparation of alumina by Bayer's process, a sodium aluminate solution circulating in the process is sealed in a pressure container, steam is added to an oxidizing gas such as oxygen or an oxygen-containing gas, e.g., air, etc., the dew point of the gas is made higher than the circulating mother liquor, and the gas is introduced to the pressure container by pressure. By this treatment, an organic substance contained in the solution is efficiently decomposed, finally processed into oxalate, carbonate, etc., and exhausted easily form Bayer's process to the outside of the system, and total amounts of organic substances can be reduced.

Description

【発明の詳細な説明】 本発tlll ld、バイヤー法のアルミナ製造におい
て。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the production of alumina using the Bayer process.

工程中を循環しているアルミン酸ソーダ溶液(以下、循
環母液という)中の有機物、特に高分子の有妓物を酸化
分解する方法に関するものである。
This invention relates to a method for oxidatively decomposing organic substances, particularly polymeric substances, in a sodium aluminate solution (hereinafter referred to as circulating mother liquor) that is circulated in a process.

バイヤー法ではボーキサイト中に含まれる微量の高分子
有機物が循環母液中に溶出し、該母液を繰9返し使用す
るに伴い次第に該母液に蓄積されるが、該高分子有機物
は赤泥の沈降や水酸化アルミニウムの析出に悪影響をお
よぼすことが知られている。
In the Bayer method, trace amounts of high-molecular organic matter contained in bauxite are eluted into the circulating mother liquor, and as the mother liquor is used nine times, it gradually accumulates in the mother liquor. It is known to have an adverse effect on the precipitation of aluminum hydroxide.

循環母液中に溶出した高分子有機物は酸化分解すると分
子量の小さい有機物に変化し、最終的には蓚酸塩、炭酸
塩などの低分子量化合物になる。乙の様にして生成した
蓚酸塩および炭酸塩は既知の方法によっても該母液から
除去することができるが、一般に該母液中での蓚酸塩の
溶解度は小さいので溶解度以上に生成した蓚酸塩は該母
液中で自然に析出して赤泥や析出水酸化アルミニウムと
共にバイヤ一工程の系外へ排出される。この様々性質を
利用して従来から循IR母液中の高分子有機物を酸化分
解して蓚酸塩として析出除去する方法がいろいろ提案さ
れている。即ち2本発明者らによる循環母液に加圧酸素
を接触させる方法(特公昭45−30458)。
When the high-molecular-weight organic substances eluted into the circulating mother liquor undergo oxidative decomposition, they change into organic substances with small molecular weights, and eventually become low-molecular weight compounds such as oxalates and carbonates. The oxalate and carbonate produced in the manner described in (B) can be removed from the mother liquor by known methods, but generally the solubility of oxalate in the mother liquor is low, so the oxalate produced above the solubility is removed from the mother liquor. It naturally precipitates in the mother liquor and is discharged from the Bayer 1 process system together with red mud and precipitated aluminum hydroxide. Utilizing these various properties, various methods have been proposed in the past for oxidatively decomposing high-molecular organic substances in circulating IR mother liquor and precipitating and removing them as oxalate. Namely, 2. A method of bringing pressurized oxygen into contact with circulating mother liquor by the present inventors (Japanese Patent Publication No. 45-30458).

240℃以上で加圧空気と接触させる方法(特開昭55
−62809)、120〜350℃で加圧酸素′−!た
は酸素を含有するガスを接触させる方法(特開昭55−
71626)などである。
Method of contacting with pressurized air at 240°C or higher (Unexamined Japanese Patent Publication No. 55
-62809), pressurized oxygen'-! at 120-350°C! or a method of contacting with a gas containing oxygen (Japanese Patent Application Laid-open No. 1986-
71626).

しかし乍ら、これらの方法で有機物の酸化分解反応を促
進するためには高圧容器内(通常。
However, in order to promote the oxidative decomposition reaction of organic matter using these methods, it is necessary to use a high-pressure vessel (usually in a high-pressure vessel).

高圧蒸気パイプを内部に設けて、それとの熱交換によっ
て、ないしは生蒸気を直接吹き込んで昇温する)に釧大
した循環母液の温度を高温にしなければならない。その
結果、酸素または酸素を含有するガス(以下、酸化ガス
という)を高圧容器内へ吹き込むための装置および高圧
容器に大きな耐圧が袈求され、設備に多大外費用を要す
るという欠点を持っていた。
The temperature of the circulating mother liquor must be raised to a high temperature by installing a high-pressure steam pipe inside and increasing the temperature by exchanging heat with the pipe or by directly blowing live steam into the pipe. As a result, a device for blowing oxygen or oxygen-containing gas (hereinafter referred to as oxidizing gas) into the high-pressure container and the high-pressure container were required to have a high pressure resistance, which had the disadvantage of requiring a large amount of extra cost for the equipment. .

本発明者等は種々研究の過程で加圧容器内に封入した循
環母液に水蒸気を添加した酸化ガスを圧入1分散させた
とζろ、     。
In the course of various studies, the present inventors discovered that an oxidizing gas with water vapor added to the circulating mother liquor sealed in a pressurized container was injected and dispersed under pressure.

゛  2       °     単に酸化ガスのみ
を圧入1分散させた場合よりも該母液中の高分子有機物
の酸化分解が著しく早く進行することを見いだし1本発
明を完成した。
゛ 2 ° It was discovered that the oxidative decomposition of the polymeric organic matter in the mother liquor proceeded much faster than when only the oxidizing gas was simply introduced under pressure and dispersed, and the present invention was completed.

本発明の目的は、従来方法より効率゛よ〈高分子有機物
を酸化分解させることであって、循環母液の温度よシ高
い露点を有する酸化ガスによって該母液を処理すること
を特徴とするものである。
An object of the present invention is to oxidize and decompose polymeric organic substances more efficiently than conventional methods, and is characterized in that the mother liquor is treated with an oxidizing gas having a dew point higher than the temperature of the circulating mother liquor. be.

本発明において、水蒸気を含んだ酸化ガスの温度は該母
液の温度よシ高いことが必要であることは勿論のこと、
水蒸気を含有する該酸化ガスの露点は該母液の温度より
高くなければならない。水蒸気を含有した酸化ガスの露
点が循環母液の温度より低いと、高分子有機物の酸化分
解効率の向上は認められない。好ましくは、酸化ガスは
水蒸気で飽和されていることである。
In the present invention, it goes without saying that the temperature of the oxidizing gas containing water vapor must be higher than the temperature of the mother liquor.
The dew point of the oxidizing gas containing water vapor must be higher than the temperature of the mother liquor. If the dew point of the oxidizing gas containing water vapor is lower than the temperature of the circulating mother liquor, no improvement in the efficiency of oxidative decomposition of the polymeric organic matter will be observed. Preferably, the oxidizing gas is saturated with water vapor.

水蒸気を添加した酸化ガスを循環母液に圧入する時点で
、酸化ガスと水蒸気とは出来るだけ均一に混合されてい
ることが望ましい。酸化ガス(露点が循環母液の温度よ
り低い)と水蒸気とを高圧容器内へ封入した循環母液に
、各々異なる個所から圧入2分散したのでは1本発明の
効果は達せられない。
It is desirable that the oxidizing gas and the steam be mixed as uniformly as possible when the oxidizing gas to which water vapor has been added is pressurized into the circulating mother liquor. The effects of the present invention cannot be achieved if oxidizing gas (with a dew point lower than the temperature of the circulating mother liquor) and water vapor are injected and dispersed into the circulating mother liquor sealed in a high-pressure container from different locations.

本発明方法による処理を行うことによって。By processing according to the method of the invention.

高分子有機物は酸化分解されて最終的には蓚酸塩、炭酸
塩などとなシ、既述のように、容易にバイヤ一工程から
系外に排出されるので、系内の有機物の総督も低下する
ことに力木。
High-molecular organic matter is oxidized and decomposed and ultimately becomes oxalate, carbonate, etc. As mentioned above, it is easily discharged from the system from the first step, so the amount of organic matter in the system is also reduced. Rikiki decides to do that.

本法と従来法とで同一の有機物分解率を達成しようとす
ると1本法での方が循環母液の処理温度は低くて済むこ
ととなり、従って蒸気の使用値は少なくなって設備に求
められる耐圧強度も小さくなる。また9両方法で同一の
温度で循環母液を処理する時は、有機物の酸化分解率は
本法での方が大きくなり、従ってその分、設備規模が小
さくて済むことになる。
If we try to achieve the same organic matter decomposition rate with this method and the conventional method, the treatment temperature of the circulating mother liquor will be lower in the single method, and therefore the usage value of steam will be lower and the pressure resistance required for the equipment will be lower. The strength also decreases. Furthermore, when the circulating mother liquor is treated at the same temperature in both methods, the oxidative decomposition rate of organic matter is higher in this method, and therefore the equipment scale can be reduced accordingly.

ところで1本法によって循環母液中の高分子有機物の酸
化分解率が大巾に向上する理由は必ずしも明らかではな
いが1次の如く推察される。
By the way, the reason why the oxidative decomposition rate of high-molecular organic substances in the circulating mother liquor is greatly improved by one method is not necessarily clear, but it is presumed to be as follows.

即ち、水蒸気を含有した酸化ガスは、循環母液中に圧入
9分散されると該母液と接触して冷却される。その時、
酸化ガスと循環母液との気液界面では該ガス中に含まれ
る水蒸気が凝縮して大量の凝縮熱を発生し、該気液界面
近傍で局部的に該母液の温度が上昇する。その結果、該
母液中に存在する有機物の酸化分解反応が増大する。こ
のように、極めて局部的かつ急速に有機物の酸化分解反
応が起こると、その時発生する反応熱は短時間のうちに
は放散しがたいので該反応部の温度は更に上昇し、よっ
て酸化分解反応が一層加速されることになる。
That is, when the oxidizing gas containing water vapor is pressurized and dispersed into the circulating mother liquor, it comes into contact with the mother liquor and is cooled. At that time,
At the gas-liquid interface between the oxidizing gas and the circulating mother liquor, water vapor contained in the gas condenses to generate a large amount of heat of condensation, and the temperature of the mother liquor locally increases near the gas-liquid interface. As a result, the oxidative decomposition reaction of organic matter present in the mother liquor increases. In this way, when the oxidative decomposition reaction of organic matter occurs extremely locally and rapidly, the reaction heat generated at that time is difficult to dissipate in a short period of time, so the temperature of the reaction area further increases, and therefore the oxidative decomposition reaction will be further accelerated.

なお、水蒸気を含有する酸化ガスの露点が処理する循環
母液の温度より低い場合は、大きな熱量である水蒸気の
凝縮熱を利用することが出来ないので有機物の酸化分解
効率の向上が認められないものと考えられる。
Note that if the dew point of the oxidizing gas containing water vapor is lower than the temperature of the circulating mother liquor being treated, the heat of condensation of the water vapor, which has a large amount of heat, cannot be used, so no improvement in the efficiency of oxidative decomposition of organic matter is observed. it is conceivable that.

本発明法を実施するに当っては循環母液をバイヤ一工程
の系外へ取り出して処理するだけでなく、ボーキサイト
からアルミナ分を抽出する工程において9例えばオート
クレーブ中に水蒸気を含有する酸化ガスを圧入してアル
ミナ抽出と同時に有機物を分解させることもできる。
In carrying out the method of the present invention, not only is the circulating mother liquor taken out of the system in the first step of the buyer and treated, but also an oxidizing gas containing water vapor is injected into an autoclave in the step of extracting alumina from bauxite. It is also possible to decompose organic matter at the same time as alumina extraction.

以下に比較例とともに本発明の実施例を示す。Examples of the present invention are shown below along with comparative examples.

ここで00とは被処理液中に含まれる分子量500以上
の有機物による有機炭素の濃度(f/l)であシ、その
測定法は既知の方法(LEvBR。
Here, 00 is the concentration (f/l) of organic carbon due to organic substances with a molecular weight of 500 or more contained in the liquid to be treated, and its measurement method is a known method (LEvBR).

G、、LIG)IT   MBTAL8  107,7
1(197B))によって、限外濾過を行い、被処理液
中の分子量500以上の有機物を分画回収して、この有
機物の有機炭素を00分析針(例えば、島津Too−1
0B)に注入して燃焼させて炭素量を定量するものであ
る。
G,,LIG)IT MBTAL8 107,7
1 (197B)), ultrafiltration is performed to fractionate and collect organic substances with a molecular weight of 500 or more in the liquid to be treated, and the organic carbon of this organic substance is extracted using a 00 analysis needle (for example, Shimadzu Too-1
0B) and combust it to quantify the amount of carbon.

実施例1 実開1fi55−2468の原理に基づく回転かご型気
液接触装置を内包したステンレス銅製加圧容器(内径1
60M、内高600M )内にバイヤ一工程から採取し
た析出終了液(Nan。
Example 1 Pressurized stainless steel vessel (inner diameter 1
60M, internal height 600M), the precipitation finished liquid (Nan.

130 f/l * At、 OB  71 ?/l*
 OO9−2f/1)7tを封入し、加圧容器を外部か
ら加熱または冷却して被処理液の温度を200℃に保持
した。
130 f/l * At, OB 71? /l*
OO9-2f/1)7t was sealed, and the temperature of the liquid to be treated was maintained at 200°C by heating or cooling the pressurized container from the outside.

該接触装置に内紙する回転かごを牽磁駆動装置によfi
loooRPMで回転しながら、加圧容器の底部に設け
た気体送入管を通じて水蒸気を飽和し7’c250℃の
空気を!ht7ft−(常圧、常温の乾き空気換算、以
下同様)の流速で容器中へ120分間圧入した。被処理
液へ吸収されずに残った空気は加圧容器の上部に設けた
保圧弁を通じて外部へ放出した。なお、保圧弁の放出圧
は析出液の飽和水蒸気圧と空気圧(常温での8ky/a
rt (絶対圧)に相当する所定の処理液温度での空気
圧)との複合圧となるように設定した。
The rotating cage contained in the contact device is fied by a magnetic diversion drive device.
While rotating at loooRPM, water vapor is saturated through the gas inlet pipe installed at the bottom of the pressurized container, and air at 7'C250℃ is released! The mixture was pressurized into the container for 120 minutes at a flow rate of 7 ft - (in terms of dry air at normal pressure and room temperature, hereinafter the same). The remaining air that was not absorbed into the liquid to be treated was released to the outside through a pressure-holding valve provided at the top of the pressurized container. The release pressure of the pressure holding valve is the saturated water vapor pressure of the precipitate and the air pressure (8ky/a at room temperature).
The pressure was set to be a composite pressure of rt (air pressure at a predetermined processing liquid temperature corresponding to absolute pressure).

酸化分解処理中は被処理液の温度が一定に保たれるよう
に制御した。処理終了後、冷却してから被処理液を取シ
出して、室温で過飽和の蓚酸塩等を自然に析出させて除
去した後、被処理液中の0OCf/l)を測定した。
During the oxidative decomposition treatment, the temperature of the liquid to be treated was controlled to be kept constant. After the treatment was completed, the liquid to be treated was cooled and taken out, and supersaturated oxalate and the like were naturally precipitated and removed at room temperature, and then 0OCf/l) in the liquid to be treated was measured.

実施例2 温度250℃、露点230℃の空気を酸化ガスとして使
用した以外は実施例1と全く同じ条実施例 実施例3 被処理液の温度を170℃に保持した以外は実施例1と
全く同じ条件で実施した。
Example 2 Exactly the same as Example 1 except that air with a temperature of 250°C and a dew point of 230°C was used as the oxidizing gas Example 3 Exactly the same as Example 1 except that the temperature of the liquid to be treated was maintained at 170°C It was conducted under the same conditions.

実施例4 水蒸気で飽和した酸素(常温換算での酸素の絶対分圧は
6 ktlal )を酸化ガスとして使用した以外は実
施例1と全く同じ条件で実施した。
Example 4 The experiment was carried out under exactly the same conditions as in Example 1, except that oxygen saturated with water vapor (absolute partial pressure of oxygen in terms of room temperature was 6 ktlal) was used as the oxidizing gas.

比較例1 温度250℃の乾き空気をS 17%の流量で。Comparative example 1 Dry air at a temperature of 250°C at a flow rate of 17% S.

またこれとは14る個所を通じて温度250℃の飽和水
蒸気を&3r/分(冥施例1における水蒸気流量と同じ
)の流量で、酸化ガスとして使用した以外は実施例1と
全く同じ条件で実施した。
In addition, this was carried out under exactly the same conditions as in Example 1, except that saturated steam at a temperature of 250°C was passed through 14 points at a flow rate of &3r/min (same as the steam flow rate in Example 1) and was used as an oxidizing gas. .

比較例2 温度250℃、動点170℃の空気を酸化ガスとして使
用した以外は実施例1と全く同じ条実施例 前記の各実施例および各比較例で得られたデータを詔1
表へ示した。
Comparative Example 2 Exactly the same as Example 1 except that air with a temperature of 250°C and a moving point of 170°C was used as the oxidizing gas.
Shown in the table.

以上の結果から1本願発明による有機物の酸化分解方法
は従来法による有機物の酸化分解方法の持つ欠点を大巾
に数倍していることが明らかである。
From the above results, it is clear that the method for oxidative decomposition of organic matter according to the present invention greatly exceeds the drawbacks of the conventional method for oxidative decomposition of organic matter.

Claims (1)

【特許請求の範囲】[Claims] バイヤー法におけるアルミン酸ソーダ溶液を酸素または
酸素を含有するガスで処理しで、該溶液中に含有する有
板物を酸化分解する方法において、該溶液の温度より高
い鰐点を有する該ガスで処理することを特徴とするアル
ミン酸ソーダ溶液中の有機物の酸化分解方法。
A method in which a sodium aluminate solution is treated with oxygen or a gas containing oxygen to oxidize and decompose the platelets contained in the solution in the Bayer method, which is treated with the gas having a crocodile point higher than the temperature of the solution. A method for oxidative decomposition of organic matter in a sodium aluminate solution.
JP58097957A 1983-06-03 1983-06-03 Oxidative destruction of organic substance in sodium aluminate solution Granted JPS59227720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58097957A JPS59227720A (en) 1983-06-03 1983-06-03 Oxidative destruction of organic substance in sodium aluminate solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58097957A JPS59227720A (en) 1983-06-03 1983-06-03 Oxidative destruction of organic substance in sodium aluminate solution

Publications (2)

Publication Number Publication Date
JPS59227720A true JPS59227720A (en) 1984-12-21
JPH0256284B2 JPH0256284B2 (en) 1990-11-29

Family

ID=14206143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58097957A Granted JPS59227720A (en) 1983-06-03 1983-06-03 Oxidative destruction of organic substance in sodium aluminate solution

Country Status (1)

Country Link
JP (1) JPS59227720A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4663133A (en) * 1985-09-06 1987-05-05 Kaiser Aluminum & Chemical Corporation Removal of high molecular weight organic compounds from Bayer process caustic liquor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10337237B2 (en) * 2017-02-07 2019-07-02 Disney Enterprises, Inc. Acoustical seal system for doors

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4663133A (en) * 1985-09-06 1987-05-05 Kaiser Aluminum & Chemical Corporation Removal of high molecular weight organic compounds from Bayer process caustic liquor

Also Published As

Publication number Publication date
JPH0256284B2 (en) 1990-11-29

Similar Documents

Publication Publication Date Title
US2050796A (en) Recovery of phosphorus
JPS59227720A (en) Oxidative destruction of organic substance in sodium aluminate solution
US2348328A (en) Process of and apparatus for treating sulphuric acid containing dissolved nitro bodies
US1923652A (en) Recovery of molybdenum
JPS63239128A (en) Production of uranium oxide
US997237A (en) Preparation of iron compounds.
BR112015001292B1 (en) method for removing an ester from a steam mixture, apparatus for its execution, and its use
TW201231148A (en) Method and device for reducing nitrosamines formed in removing CO2 from flue gases using an aqueous amine solution
US4399111A (en) Process for removal of sour gases by scrubbing
US2562549A (en) Treatment of steam systems
US2128527A (en) Process for the absorption, in highly concentrated nitric acid, of nitrous gases formed by the combustion of ammonia
JPH011738A (en) Manufacturing method of heat-resistant polyimide polymer film
JP2007136341A (en) Concentration method of carbon dioxide and apparatus
US2173877A (en) Recovery of sulphur dioxide from gas mixtures
US364552A (en) Ernest solvay
JPS6241698B2 (en)
GB1389566A (en) Apparatus for and a method of purifying waste liquor
US1937508A (en) Process for recovering manganese values
JP2004340769A (en) Disposing method and device of organic acid decontamination waste liquid
EP0078780A1 (en) A method in the production of hydrogen peroxide
US2455260A (en) Regeneration of activated carbon by inorganic liquid treatment
US843524A (en) Process of revivifying gas-purifying materials.
JP2625993B2 (en) Regeneration method of ion exchange resin
Black et al. The oxidation of irradiated polyethylene—II thermal oxidation
JPS6159192B2 (en)