JPS59227412A - Preparation of molded synthetic resin article from fluidized polymerizable substance - Google Patents

Preparation of molded synthetic resin article from fluidized polymerizable substance

Info

Publication number
JPS59227412A
JPS59227412A JP10287783A JP10287783A JPS59227412A JP S59227412 A JPS59227412 A JP S59227412A JP 10287783 A JP10287783 A JP 10287783A JP 10287783 A JP10287783 A JP 10287783A JP S59227412 A JPS59227412 A JP S59227412A
Authority
JP
Japan
Prior art keywords
cell
heat exchanger
heat
gap
compression spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10287783A
Other languages
Japanese (ja)
Inventor
Takao Yamada
孝雄 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP10287783A priority Critical patent/JPS59227412A/en
Publication of JPS59227412A publication Critical patent/JPS59227412A/en
Pending legal-status Critical Current

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To make it possible to repeatedly use a gasket and to obtain a molded article faithful to the surface state of a mold, by moving each heat exchanger by transmitting the thickness change based on the volumetric change of cell content to the same through a compression spring. CONSTITUTION:The volume of the content in each cell 6 changes according to the advance of polymerization reaction but pressing force generated by the reduction in the interval of heat exchangers 1 at both ends is transmitted by each compression spring 10 and each heat exchanger 1 small enough in moving resistance is easily moved by the pressing force of the compression spring 10 and intervals between the cells 6 are equally reduced. Because the reduced portion of the interval between the heat exchangers at both ends corresponds only to the sum total of the thickness reduced portion caused by the volumetric reduction of the content in each cell 6, a gap and pressing force are not generated at all between the content and the heat exchange surface 1a in each cell 6. Therefore, a molded article becomes faithful to the surface state of a mold, that is, the heat exchange surface 1a.

Description

【発明の詳細な説明】 本発明は、複数の型枠を同時に使用してキャスティング
法で合成樹脂成型物を製造するに当り、熱交換体を順次
並べて設けた各間隙の上方の一部を除いてガスケットで
シールして構成したセルを型枠として使用し、その内容
物の体41< K化に追従して各熱交換体を変位せしめ
る押圧力をガスケントを経ることなく熱交換体に設けら
れた圧縮ばねにより伝え、従ってガスケットを繰り返し
使用することができると共に型の面状悪通りの成型物が
得られる流動性の重合性物質から合成41111&成型
物を製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION In manufacturing a synthetic resin molded product by a casting method using a plurality of molds at the same time, the present invention provides a method for manufacturing a synthetic resin molded product by using a plurality of molds at the same time. A cell configured by sealing with a gasket is used as a formwork, and a pressing force that displaces each heat exchanger as the contents change to K is applied to the heat exchanger without passing through a gasket. The present invention relates to a method for producing synthetic 41111 & molded products from a fluid polymerizable material which is conveyed by a compressed spring, thus making it possible to repeatedly use the gasket and to obtain molded products with irregular surface contours.

従来、例えばメタアクリル酸メチル単量体または一部重
合したメタアクリル酸メチル等の如き流動性の重合性物
質を型枠中上重合させるいわゆるキャスティング法で合
成樹脂成型物特に合成樹脂板を製造する方法は種々行な
われ或は提案されている。例えば、2枚のガラス板の如
き平板で圧縮性ガスケットを挾むか、または平板と圧縮
性ガスケットとを交互に配置することにより1個または
複数個のセルを構成し、このセル内に流動性の重合性物
質を注入した後、湯浴または熱交′換器など適当な手段
で加熱して重合させる方法がめる。
Conventionally, synthetic resin moldings, especially synthetic resin plates, have been produced by the so-called casting method, in which a fluid polymerizable substance such as methyl methacrylate monomer or partially polymerized methyl methacrylate is polymerized in a mold. Various methods have been implemented or proposed. For example, one or more cells are constructed by sandwiching a compressible gasket between two flat plates such as glass plates, or by arranging the flat plates and compressible gaskets alternately, and the fluid is contained in the cell. After the polymerizable substance is injected, it is heated in a hot water bath, heat exchanger, or other appropriate means to polymerize.

また、圧力調整可能な密封室内に、7枚のガラスの間隙
をスペーサーで規定して圧縮性ガスケットでシールして
構成した頂部が開放されたセルを、前記密封室内との間
に均圧管を有する熱媒体回路を連結された中空金属板と
接触せしめて交互に配置し、セル中の重合性物質を減圧
脱泡しながら温度円節下に重合する方法も知られている
(特公昭51−15833号)。このような従来の方法
で使用される圧縮性ガスケットとして一般に軟質塩化ビ
ニル、シリコン系合成ゴム、弗素系合成ゴム、ポリエチ
レン、ポリプロピレン等の合成樹脂から成るガスケット
が使用されている。しかしながら、このような材質のガ
スケットでは、例えば軟質塩化ビニルの場合、セルに注
入される重合性物質にガスケット中の可塑剤が重合中に
抽出されて次第に硬くなって弾性を失ったり、或はガス
ケットが他の材質の場合でも重合中の温度上昇によって
ガスケットを圧縮している力が弾性限界外になってガス
ケットに永久ひずみが残り、いずれも繰り返し使用する
ことができず、重合の度毎にガスケットを取り代える必
要がある欠点があった。また、重合性物質特にメタアク
リル酸メチル等は重合が進行するに従って体積が変化(
この場合収縮ンしてセルの壁との間に空隙を不規則に生
ぜしめて型の面状態通りの表面を形成せず、しばしば成
型品を不良にする。従って重合の進行と共に生じる体積
変化に追従してセルを構成する相対する平板の面の間隙
を変化してゆく必要かめるが、上記従来の方法ではこの
ような体積変化に対処する有効な手段が採られていない
欠点があった。
In addition, a pressure-adjustable sealed chamber includes a cell with an open top formed by defining gaps between seven glass sheets with spacers and sealing with a compressible gasket, and a pressure equalizing pipe is provided between the sealed chamber and the sealed chamber. A method is also known in which heating medium circuits are placed alternately in contact with connected hollow metal plates, and polymerizable substances in the cells are polymerized under reduced temperature while defoaming under reduced pressure (Japanese Patent Publication No. 51-15833). issue). As compressible gaskets used in such conventional methods, gaskets made of synthetic resins such as soft vinyl chloride, silicone-based synthetic rubber, fluorine-based synthetic rubber, polyethylene, and polypropylene are generally used. However, with gaskets made of such materials, for example, in the case of soft vinyl chloride, the plasticizer in the gasket is extracted during polymerization by the polymerizable substance injected into the cell, and the gasket gradually becomes hard and loses its elasticity. Even if the gasket is made of other materials, the force compressing the gasket will exceed its elastic limit due to the temperature rise during polymerization, leaving permanent strain on the gasket, making it impossible to use it repeatedly, and the gasket will be damaged each time it is polymerized. There was a drawback that it was necessary to replace it. In addition, the volume of polymerizable substances, especially methyl methacrylate, changes as the polymerization progresses (
In this case, the material shrinks and irregularly creates voids between the cell wall and the surface of the mold, which does not conform to the surface condition of the mold, often resulting in defective molded products. Therefore, it is necessary to change the gap between the facing surfaces of the flat plates constituting the cell to follow the volume change that occurs as polymerization progresses, but the conventional method described above does not adopt effective means to deal with such volume changes. There were some drawbacks that were not addressed.

本発明者は上記従来技術の欠点をなくし、ガスケットを
繰り返し使用することができると共に型の面状態通りの
成型物の得られる合成樹r)=成型物を製造する方法を
提供することを目的に研究した結果、セルを構成する面
の間1!lit’を縮小する押圧力をガスケットを経る
ことなく圧縮ばねのみによって伝えることにより目的を
達成できることを北門して本発明を構成した。
The present inventor has aimed to eliminate the drawbacks of the above-mentioned prior art, and to provide a method for manufacturing a synthetic resin molded product that allows the gasket to be used repeatedly and that also allows the molded product to conform to the surface condition of the mold. As a result of research, 1 between the faces that make up the cell! The present invention was constructed based on the fact that the object can be achieved by transmitting the pressing force that reduces lit' only by a compression spring without passing through a gasket.

すなわち本発明は、少なくとも片側に温度制御される熱
交換面を41ifiえた6個以上の熱交換体をその熱交
換面が実質的に鉛直になるように同軸上に間隙を設けて
順次対向せしめて並べるときの該間隙の上方の少なくと
も一部を除いて残部を帯状のガスケットの片側面でシー
ルして2組以上のセルを構成すると共に各熱交換体をそ
の並び方向に移動自在に配置し、各熱変換体の移動抵抗
に対して充分大きい抗力を発生せしめることができ且つ
相互にほぼ等しいばね弾性係数を有する圧縮ばねを各熱
交換体間に装着し、端部の熱交換体を押圧して各セルを
構成する相対する熱交換面の間隙を所定の大きさに調整
し、次いで各セル内に流動性の重合性物質を注入して熱
交換体により各セルの温度調節全行ない、各セル内にお
ける重合の進行に従って生じる各セル内容物の体積変化
による厚さ変化分の総和だけ両端の熱交換体間の間隔を
変化せしめる抑圧力を、前記圧縮ばねを介して各熱交換
体に伝達してそれぞれ移動せしめることにより、各セル
における間隙の犬@さを均等に変化せしめることを特徴
とする流動性の重合性物質から合成樹脂成型物を製造す
る方法に関するものである。
That is, the present invention has six or more heat exchange bodies each having a temperature-controlled heat exchange surface on at least one side of 41ifi, which are arranged coaxially and facing each other with a gap so that the heat exchange surfaces are substantially vertical. When arranging the heat exchangers, the heat exchangers are arranged so as to be movable in the direction in which they are arranged, by sealing the remaining part with one side of a band-shaped gasket, excluding at least a part above the gap when arranging the heat exchangers to form two or more sets of cells; Compression springs that can generate a sufficiently large drag force against the movement resistance of each heat exchanger and have substantially the same spring elasticity coefficients are installed between each heat exchanger, and press the heat exchanger at the end. The gap between the opposing heat exchange surfaces that make up each cell is adjusted to a predetermined size, and then a fluid polymeric substance is injected into each cell, and the temperature of each cell is fully controlled by the heat exchanger. A suppressing force that changes the distance between the heat exchangers at both ends by the sum of changes in thickness due to changes in the volume of the contents of each cell that occur as polymerization progresses within the cell is transmitted to each heat exchanger via the compression spring. The present invention relates to a method for producing a synthetic resin molded article from a fluid polymerizable material, characterized in that the size of the gap in each cell is uniformly changed by moving the cell.

以下、本発明方法を図面によって詳細に説明する。Hereinafter, the method of the present invention will be explained in detail with reference to the drawings.

第1図は各熱交換体間に圧縮はねを装着して配置した状
態の一例を示す断面説明図、第2図は第1図中のA−A
線端面図、第6図イ)及び(ワはそれぞれガスケットに
よるシール部分の例を示す説明図、第4図は第1図に相
当する他の例を示す断面説明図、第5図はガスケットの
取付部分の一例の要部を示す断面説明図、第6図は両端
の熱交換体の間隔を縮小せしめながら重合を進行させる
状態の1例を簡略化して示す全体説明図、第7図は重合
時における熱交換体回りの拡大配管説明図である。
Fig. 1 is a cross-sectional explanatory diagram showing an example of a state in which compression springs are installed and arranged between each heat exchanger, and Fig. 2 is an A-A in Fig. 1.
Line end view, Fig. 6 A) and (W) are explanatory diagrams showing examples of sealing parts by gaskets, Fig. 4 is a cross-sectional explanatory diagram showing another example corresponding to Fig. A cross-sectional explanatory view showing a main part of an example of the attachment part, Fig. 6 is an overall explanatory view showing a simplified example of a state in which polymerization proceeds while reducing the distance between the heat exchangers at both ends, and Fig. 7 shows a state in which polymerization is progressed. FIG. 2 is an enlarged explanatory diagram of piping around a heat exchanger at a time.

本発明方法においてぼ成型用型枠として次に説明するよ
うにセルを構成してこれを使用する。すなわち、先ず第
1図及び第4図の如く、少なくとも片側に温度制御され
る熱交換面1aを備えた熱交換体1を6個以上準備する
。この熱交換体1としては第1図の如く熱交換器ンの片
側または両側に例えばガラス板、金属板の如き平板6を
密着させて平板乙の面を熱交換面1aとする場合と、第
4図の如く熱交換器そのものを熱交換体1として熱交換
器の片側または両側の面を熱交換面1aとする場合とが
ある。前者の場合、熱交換器2への平板乙の取付けは適
宜な方法によれば良いが、第1図の例では第2図でも示
すように熱交換器ンに固定された係合枠4に係合させて
いる。図面では熱交換器の内部を空洞に描いであるが、
公知の種々な構造のものを使用することができる。この
ような6個以上の熱交換体1を熱交換面1aが実質的に
鉛直になるように同軸上に水平に並べてその熱交換面1
aを間隙を設けて順次対向せしめるときの該間隙の上方
の一部を除いて残部を帯状のガスケット5の片側面でシ
ールして2組以上のセル6を構成する。ガスケット5で
熱交換面1aの間隙をシールする時期に関しては、例え
ば熱交換体1として熱交換器そのものを使用する場合は
、熱交換体1を配置してからシールするか、或は第4図
について後記する如く片側の熱交換体1に予めガスケッ
ト5を取り付けておき、熱交換体1を配置すると同時に
7−ルするようにし、また第1図の如く熱交換体1とし
て熱交換器2と平板6とを使用する場合は上記の場合と
同様の手順でシールする他、2枚の平板6tそれぞれ両
側の熱交換器2に取り付ける前にその間隙をガスケット
5で予めシールし、その状態で各平板6を前記の如く所
定の位置に水平に並べられた熱交換器ンにそれぞれ係合
等により取り付けることもできる。このようにガスケッ
ト5により熱交換面1aをシールする時期は後記するガ
スケット5の取付方法によって変化し得るものである。
In the method of the present invention, a cell is constructed and used as a mold for molding the warp as described below. That is, first, as shown in FIGS. 1 and 4, six or more heat exchange bodies 1 each having a heat exchange surface 1a whose temperature is controlled on at least one side are prepared. As shown in FIG. 1, this heat exchanger 1 has two cases in which a flat plate 6 such as a glass plate or a metal plate is closely attached to one or both sides of the heat exchanger and the surface of the flat plate A is used as the heat exchange surface 1a. As shown in FIG. 4, there is a case where the heat exchanger itself is used as the heat exchange body 1, and one or both sides of the heat exchanger is used as the heat exchange surface 1a. In the former case, the flat plate A may be attached to the heat exchanger 2 by any appropriate method, but in the example of FIG. 1, as shown in FIG. It is engaged. In the drawing, the inside of the heat exchanger is drawn as a cavity, but
Various known structures can be used. Six or more such heat exchange bodies 1 are arranged horizontally on the same axis so that the heat exchange surfaces 1a are substantially vertical.
When cells a are placed facing each other in sequence with a gap provided, two or more sets of cells 6 are formed by removing a part above the gap and sealing the remaining part with one side of a band-shaped gasket 5. As for when to seal the gap in the heat exchange surface 1a with the gasket 5, for example, if the heat exchanger itself is used as the heat exchanger 1, it should be sealed after the heat exchanger 1 is placed, or as shown in FIG. As will be described later, a gasket 5 is attached to the heat exchanger 1 on one side in advance, and the heat exchanger 2 is connected to the heat exchanger 2 as the heat exchanger 1 as shown in FIG. When using flat plates 6t, in addition to sealing them using the same procedure as above, seal the gaps with gaskets 5 before attaching the two flat plates 6t to the heat exchangers 2 on both sides, and then The flat plates 6 can also be attached to the heat exchangers arranged horizontally at predetermined positions as described above by engaging with each other. As described above, the timing at which the heat exchange surface 1a is sealed by the gasket 5 can vary depending on the method of attaching the gasket 5, which will be described later.

ガスケット5によりシールする部分は、第6図の如く相
対する熱交換面1aの間隙の上方の一部〔同図イ)〕ま
たは全部〔同図(切〕を除く残部であり、従ってシール
後は上方にセル乙の開口部6aが形成される。
The part to be sealed by the gasket 5 is a part (a) above the gap between the opposing heat exchange surfaces 1a as shown in Fig. 6 or the entire part (excluding the cutout); An opening 6a of cell B is formed above.

帯状のガスケット5によるシールは、間隙を形成する相
対する熱交換面1aのそれぞれの面にガスケット5の同
じ側の片面を密着させることによる。
Sealing by the band-shaped gasket 5 is achieved by bringing one side of the gasket 5 on the same side into close contact with each of the opposing heat exchange surfaces 1a forming a gap.

従ってその取付方法として次のようにいくつかの方法が
示される。第1図中に示すガスケット5の取付けは、ガ
スケット5t−長さ方向に沿って断面U字状に曲げて開
口部6aを除いた間隙の周囲に挿入し、奥側の面を相対
する熱交換面1aのそれぞれに密着せしめた状態でガス
ケット5の両側縁部をねじまたは接着剤などで例えば係
合枠4に固着してシールする方法によったものである。
Therefore, several methods of attachment are shown below. The gasket 5 shown in FIG. 1 is installed by bending the gasket 5t into a U-shaped cross section along the length direction and inserting it around the gap excluding the opening 6a, and then facing the inner surface for heat exchange. This method uses a method in which both side edges of the gasket 5 are fixed to, for example, the engagement frame 4 with screws or an adhesive to seal the gasket 5 in close contact with each of the surfaces 1a.

このようなシールは前記の如く間隙の上方の一部を除い
て残部に行ない、側方については第2図に示す状態とな
る。また、第4図に示すガスケット5の取付は、上記第
1図の場合の方法においてU字状に曲けたガスケット5
の片側の縁部のみを熱交換面1aの延長面に固着し、U
字状の内側に弾性スポンジ7を充填して他側の縁部を反
対側の熱交換面1aの延長面に圧接せしめる状態にする
ことによりシールする方法によったものである。更に、
第5図に示すガスケット5の取付は、第1図の場合の変
形であり、ガスケット5t−U字状に曲げることなく中
央部を弛緩させてその両側縁部を相対する係合枠4のそ
れぞれに挾持せしめることにより熱交換面1aの外側で
シールする方法によったものでおる。
As described above, such sealing is performed on the remaining part except for the upper part of the gap, and the side part is in the state shown in FIG. 2. In addition, the gasket 5 shown in FIG. 4 is attached using the method shown in FIG.
Only one edge of U is fixed to the extended surface of the heat exchange surface 1a, and
This is a method of sealing by filling the inside of the letter shape with elastic sponge 7 and bringing the other edge into pressure contact with the extended surface of the heat exchange surface 1a on the opposite side. Furthermore,
The installation of the gasket 5 shown in FIG. 5 is a modification of the case shown in FIG. The heat exchange surface 1a is sealed by sandwiching the heat exchange surface 1a between the heat exchange surfaces 1a and 1a.

このように6個以上の熱交換体1をその相対する熱交換
面1aの間隙をガスケット5でシールしてセル6を構成
するように水平に並べるに当り、各熱交換体1を並び方
向に例えば次のような方法により移動自在に配置する。
When arranging six or more heat exchangers 1 horizontally to form cells 6 by sealing the gaps between the opposing heat exchange surfaces 1a with gaskets 5, each heat exchanger 1 is arranged in the direction of arrangement. For example, it can be arranged movably by the following method.

第1図に示す方法は、熱交換体1の上縁部の上鍔部1b
に摺動孔を穿設し、所定方向に固定軸8を設けて、これ
に各熱交換体1の上記摺動孔を外挿して移動自在に懸吊
するのである。筐た、第4図に示す方法は、熱交換挟体
1の下面に移動抵抗の小さいスライドペアリング付の直
線移動具9を移動自在に装着する方法である。
The method shown in FIG. 1 is based on the method shown in FIG.
A sliding hole is bored in the heat exchanger 1, a fixed shaft 8 is provided in a predetermined direction, and the sliding hole of each heat exchanger 1 is inserted into the fixed shaft 8 so that the heat exchanger 1 is movably suspended. The method shown in FIG. 4 is a method in which a linear moving tool 9 with a slide pairing having low movement resistance is movably mounted on the lower surface of the heat exchanger sandwich 1.

一方、各熱交換体10間に圧縮ばね10を装着する。こ
の圧縮ばね10は各熱交換体1の移動抵抗に対して充分
大きい抗力を発生せしめることができ且つ相互に等しい
はね弾性係数を有しているものである。このように各圧
縮ばね10のばね弾性係数が相互に等しいことは最も好
ましいが、こめような圧縮ばね10の製造は困難である
から、後記するように熱交換体1を実質的に鉛直な状態
に保持して移動せしめ得る限り、相互にほぼ等しい弾性
係数であっても良い。熱交換体1の移動抵抗は上記の例
における上鍔部1bの摺動孔と固定軸8との摺動抵抗や
直線移動具9のベアリングの転り抵抗であり、従ってこ
れらの移動抵抗を小さくする程圧縮ばね10の弾性係数
は小さくて済む。
On the other hand, a compression spring 10 is installed between each heat exchanger 10. This compression spring 10 is capable of generating a sufficiently large resistance against the movement resistance of each heat exchanger 1, and has the same spring elastic coefficient. It is most preferable that the spring elastic modulus of each compression spring 10 is equal to each other in this way, but since it is difficult to manufacture such a compression spring 10, the heat exchanger 1 is placed in a substantially vertical state as described later. They may have substantially the same elastic modulus as long as they can be held and moved. The movement resistance of the heat exchanger 1 is the sliding resistance between the sliding hole of the upper flange 1b and the fixed shaft 8 in the above example, and the rolling resistance of the bearing of the linear moving tool 9. Therefore, these movement resistances can be reduced. The smaller the elastic modulus of the compression spring 10 becomes, the smaller the compression spring 10 becomes.

このように熱交換体1はその移動抵抗より充分大きい押
圧力を圧縮ばね10から受けて容易に移動せしめられる
のである。圧縮ばね10としては図に示すコイルはねの
他、竹の子ばね、皿ばねなども使用することができる。
In this way, the heat exchanger 1 receives a pressing force from the compression spring 10 that is sufficiently greater than its movement resistance, and can be easily moved. As the compression spring 10, in addition to the coil spring shown in the figure, bamboo springs, disc springs, etc. can also be used.

熱交換体1の1つの間隙当りの圧縮ばね10の装着数は
後記する押圧力を均等に伝えるために複数が好筐しく、
例えば第1図では熱交換体1の上鍔部1b間と下鍔部1
0間とに、また第4図では熱交換体1の上部及び下部に
それぞれ装着しており、更に好1しくに熱交換体1の全
周縁部に亘りほぼ均等な間隔で4個、8個など複数個を
装着する。このような圧縮ばね10の装着はガスケット
5の取付方法との関係でガスケット5の取付の先に行っ
ても後で行ってもいずれでも良い。
It is preferable to install a plurality of compression springs 10 per gap in the heat exchanger 1 in order to evenly transmit the pressing force described later.
For example, in FIG. 1, between the upper flange 1b of the heat exchanger 1 and the lower flange 1
0, and in FIG. 4, they are installed at the upper and lower parts of the heat exchanger 1, respectively, and more preferably 4 or 8 at approximately equal intervals over the entire periphery of the heat exchanger 1. Attach multiple items such as The compression spring 10 may be attached before or after the gasket 5 is attached, depending on the method of attaching the gasket 5.

このようにして6個以上の熱交換体1が並び方向に移動
自在に配置され、各間隙はガスケット5でシールされて
セル6が形成され、また各熱交換体1間には圧縮ばね1
Uが装着され、例えば第1図。
In this way, six or more heat exchangers 1 are arranged so as to be movable in the line direction, each gap is sealed with a gasket 5 to form a cell 6, and a compression spring 1 is inserted between each heat exchanger 1.
U is attached, for example in FIG.

第4図の如く構成される。この状態から以下のようにし
て流動性の重合性物質の組合を行なう。
It is constructed as shown in FIG. From this state, a fluid polymerizable substance is combined as follows.

例えば第6図の如く、加圧装置11の間に熱交換体1等
を第1図の如く構成し、各セル6を構成する相対する熱
交換面1aの間隙(以下、セル6の間隙ということがあ
る)を所定の大きさに調整する。この調整は例えば加圧
装置11のピストンロッド11aを作動させて両端の間
隔を調整することにより行なうことができる。熱交換面
1aの間隙の調整が終れば、次いで第7図に示す熱交換
体1回りの注入管12により流動性の重合性吻貞t−各
セル乙に開口部6aから所定量またはWr定Lしへ/l
/葦で注入する。そして温度調節された熱媒体を各熱交
換体1に熱媒体入口管16から導入し熱媒体出口管14
から送り出して谷熱交換面1aを進じてセル乙の内容物
の温度調節を行なう。熱交換面1aは通常の場合、重合
開始時には熱媒体によって重合性物質を加熱する状態に
おき、重合が開始されl【含熱が発生し始めた後は熱媒
体の温度を低くして亜含熱を系外に除去する状態におき
、重合反応の終了直前では再び熱媒の温度′f:尚めて
重合反応を完了させるようにする。このような止金時の
温度条件は使用する■合原料の種類によって適切に設定
すれば良い。
For example, as shown in FIG. 6, the heat exchanger 1 and the like are configured between the pressurizing devices 11 as shown in FIG. ) to the specified size. This adjustment can be performed, for example, by operating the piston rod 11a of the pressurizing device 11 to adjust the distance between both ends. Once the gap between the heat exchange surfaces 1a and 1a has been adjusted, a predetermined amount or Wr is injected into each cell from the opening 6a using the injection pipe 12 around the heat exchanger shown in FIG. L Shihe/l
/ Infuse with reeds. Then, the temperature-controlled heat medium is introduced into each heat exchanger 1 from the heat medium inlet pipe 16 and the heat medium outlet pipe 14
The temperature of the contents of cell B is adjusted by sending it out through the valley heat exchange surface 1a. Normally, the heat exchange surface 1a is placed in a state where the polymerizable substance is heated by a heating medium at the start of polymerization. The system is kept in a state where heat is removed from the system, and just before the end of the polymerization reaction, the temperature of the heating medium is increased again to complete the polymerization reaction. The temperature conditions at the time of fastening may be appropriately set depending on the type of composite material used.

このようにして重合反応が進行するに従って一般にセル
乙の内容物の体積が変化してゆくが、本発明方法におい
ては次に説明する如く、各セル乙の内容物の体積変化に
追従してそれによる厚さ変化分の総和だけ両端の熱交換
体1の間隔を変化せしめてゆき、それによって生じる押
圧力は圧縮ばね10を介して各熱交換体1に伝達されて
それぞれを実質的に鉛直な状態に保持して移動せしめる
ことにより、各セル乙の間隙を均等に縮小せしめるので
ある。以下、セル乙の内容物の体積が収縮する場合を例
にして説明する。例えば第6図の如き熱交換器1の配列
を考え予め求めた各セル乙の内容物の体積収縮による厚
さ減少分の総和の経時的変化に従って両端の熱交換体1
の間隔を縮小してゆくのである。具体的には加圧装置1
11のピストンロッド11aの移動速製を各セル6の内
容物の厚さ減少分の総和の経時的変化に合わせてプログ
ラムドコントロールする。第6図では熱交換体1の配列
を両側の加圧装置11で挾んでいるが、両端の熱交換体
1の間隔を縮小するには必ずしも両側の加圧装置11の
ピストンロッド11aを移動させる必要はなく、片方の
ピストンロッド11aは停止させておいて他方を移動せ
しめても良く、この場合停止しているピストンロッド1
1aの代わりに固定された壁等を使用しても良い。この
ようにしてピストンロッド11aの移動により両端の熱
交換体1の間隔が縮小する。圧縮ばね10は熱交換体1
の上鍔部1bの移動抵抗に対して充分に大きい抗力を発
生せしめることができ且つ各圧縮ばね10のばね弾性係
数が相互にほぼ等しいものである。そのため、両端の熱
交換体1の間隔が縮小することにより生じる押圧力は各
圧縮ばね10によって伝達され、複数本の圧縮ばね10
はあたかもばね弾性係数が均一な1本の圧縮ばねの様に
一斉に且つ一様に収縮しようとする。その結果、移動抵
抗の充分に小さい各熱交換体1は圧縮ばね10の押圧力
によって容易に移動せしめられ、且つ各セル乙の間隙が
均等に縮小せしめられるのである。両端の熱交換体1の
間隔の長さは、不変である各熱交換体1の厚さの和と可
変である各セル乙の間隙の和との合計である。従って上
記のような両端の熱交換体1の間隔の縮小は可変である
各セル6の間隙だけを縮小せしめ、しかもこの縮小分は
各セル乙の内容物の体積収縮による厚さ減少分の総和だ
けであルカら、各セル乙においては内容物と熱交換面1
aとの間には空隙も押圧力も全く生じることがない。従
って成形物は型すなわち熱交換面1aの面状態通りのも
のとなる。葦だ、ガスケット5は、熱交換体1の移動の
際には全く負荷がかからないからその変形、変質はそれ
だけ少ない上、ガスケット50作用は熱交換面1a間の
間隙をシールするだけで足りるから多少の変形、変質は
シール作用に影響しない限り差し支えなく、従って繰り
返し使用することができる。上記はセル6の内容物の体
積が収縮する場合について説明したが、体積が増加する
場合でも厚さ増加分の総オlたけ両端の熱交換体10間
隔を拡大せしめ、それによって生じる圧縮ばね10によ
る押圧力が各圧縮ばね1Uを介して各熱交換体1を移動
せしめ、各セル乙の間隙を均等に拡大せしめて収縮の場
合と同様に作用するのである。
In this way, as the polymerization reaction progresses, the volume of the contents of cell B generally changes, but in the method of the present invention, as explained below, the volume of the contents of each cell B is changed. The spacing between the heat exchangers 1 at both ends is changed by the sum of the thickness changes due to By holding the cells in the same state and moving them, the gaps between the cells B can be uniformly reduced. Hereinafter, a case where the volume of the contents of cell B shrinks will be explained as an example. For example, considering the arrangement of the heat exchangers 1 as shown in FIG. 6, the heat exchangers 1 at both ends are
This will reduce the distance between the two. Specifically, pressurizing device 1
The moving speed of the 11 piston rods 11a is programmed and controlled according to the change over time of the total thickness reduction of the contents of each cell 6. In FIG. 6, the array of heat exchangers 1 is sandwiched between the pressure devices 11 on both sides, but in order to reduce the distance between the heat exchangers 1 at both ends, it is not necessary to move the piston rods 11a of the pressure devices 11 on both sides. It is not necessary, and one piston rod 11a may be stopped while the other is moved; in this case, the stopped piston rod 1
A fixed wall or the like may be used instead of 1a. In this way, the distance between the heat exchangers 1 at both ends is reduced by the movement of the piston rod 11a. Compression spring 10 is heat exchanger 1
A sufficiently large drag force can be generated against the movement resistance of the upper flange portion 1b, and the spring elastic modulus of each compression spring 10 is substantially equal to each other. Therefore, the pressing force caused by the reduction in the distance between the heat exchangers 1 at both ends is transmitted by each compression spring 10, and the plurality of compression springs 10
tend to contract all at once and uniformly, as if they were a single compression spring with a uniform elastic modulus. As a result, each heat exchanger 1 having a sufficiently small movement resistance can be easily moved by the pressing force of the compression spring 10, and the gap between each cell B can be uniformly reduced. The length of the interval between the heat exchangers 1 at both ends is the sum of the constant thickness of each heat exchanger 1 and the variable sum of the gaps between the cells. Therefore, reducing the gap between the heat exchangers 1 at both ends as described above reduces only the variable gap between each cell 6, and this reduction is equal to the total thickness reduction due to volumetric contraction of the contents of each cell A. In each cell, the contents and heat exchange surface 1
There is no gap or pressing force between the material and the material a. Therefore, the molded product conforms to the surface condition of the mold, that is, the heat exchange surface 1a. Well, the gasket 5 is not subjected to any load when the heat exchanger 1 moves, so its deformation and deterioration are that much less, and the gasket 50 only needs to seal the gap between the heat exchange surfaces 1a, so it is somewhat There is no problem with deformation or alteration as long as it does not affect the sealing action, and therefore it can be used repeatedly. The above explanation deals with the case where the volume of the contents of the cell 6 shrinks, but even when the volume increases, the gap between the heat exchangers 10 at both ends is expanded by the total thickness increase, and the compression spring 10 generated thereby The pressing force caused by this moves each heat exchanger 1 through each compression spring 1U, and uniformly expands the gap between each cell B, thereby acting in the same manner as in the case of contraction.

上記の如くにして重合反応は終了に近づき、セル乙の内
容物の体積が変化しなくなると共て両端の熱交換体10
間隔を変化させることを停止し、重合が完了すればガス
ケット5を必要に応じて取り外し、熱交換体1を互に引
き離して成型物を取り出す。次いで同じガスケットを使
用して以上の作業を繰り返す。
As described above, the polymerization reaction approaches completion, and the volume of the contents of cell A no longer changes, and the heat exchangers 10 at both ends
When changing the interval is stopped and polymerization is completed, the gasket 5 is removed as necessary, the heat exchangers 1 are separated from each other, and the molded product is taken out. Then repeat the above steps using the same gasket.

以上の如く、本発明方法によれば、圧縮ばねを各熱交換
体間に装着し、各熱交換面間の間vJi、’tガスケッ
トの面でシールしてセルを構成し、重合の進行に伴うセ
ルの内容物の体積変化に追従するだけ両端の熱交換体の
間隔を変化せしめることにより、それによって生じる押
圧力は複数本の圧縮はねを介して各熱交換体に伝達され
、しかも各圧縮ばねは各熱交換体の移動抵抗に対して充
分大きい抗力を発生せしめ且つ相互にほぼ等しいばね弾
性係数を有することから、複数本の圧縮はねはあたかも
一本の圧縮ばねの様に一斉に且つ一様に収縮又は伸長し
、その結果両端の熱交換体の間隔の変化は各セルの間隙
を内容物の体積変化による厚さ変化分だけ均等に変化せ
しめるから各セルにおいては内容物と熱交換面との間に
は空隙も圧力も全く生じることがなく、従って成型物は
型の面状態通りのものとなり、′!たガスケットにはシ
ール作用のみを果させれば足りるから繰り返し使用する
ことができる。このような優れた効果を有する本発明H
キャスティング法による合成樹脂成型物の品質向上とそ
の製造容易化に貢献するところ大である。
As described above, according to the method of the present invention, a compression spring is installed between each heat exchanger, and the space between each heat exchanger surface is sealed with vJi,'t gasket surface to form a cell, thereby controlling the progress of polymerization. By changing the distance between the heat exchangers at both ends to follow the volume change of the contents of the cell, the resulting pressing force is transmitted to each heat exchanger through a plurality of compression springs, and each Compression springs generate a sufficiently large drag force against the movement resistance of each heat exchanger, and have approximately the same spring elasticity coefficients, so multiple compression springs can act simultaneously as if they were a single compression spring. It contracts or expands uniformly, and as a result, the change in the gap between the heat exchangers at both ends causes the gap in each cell to change equally by the change in thickness due to the change in volume of the contents, so in each cell, the content and heat are There are no gaps or pressure between the exchange surface and the mold, so the molded product remains exactly as it is on the surface of the mold. Since the gasket only needs to perform a sealing function, it can be used repeatedly. The present invention H having such excellent effects
This will greatly contribute to improving the quality of synthetic resin molded products using the casting method and facilitating their manufacture.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は各熱交換体間に圧縮ばねを装着して配置した状
態の一例を示す断面説明図、第2図11−1:第1図中
のA−A線端面図、第6図1−()及び(ロ)はそれぞ
れガスケットによるシール部分の例を示す説明図、第4
図は第1図に相当する他の例を示す断面説明図、第5図
はガスケットの取付部分の一例の要部を示す断面説明図
、第6図は両端の熱交換体の間隔を縮小せしめながら重
合を進行させる状態の1例を簡略化して示す全体説明図
、第7図i−f重合時における熱交換体回りの拡大配管
説明図である。 1・・熱交換体 1a・・熱交換面 1b・・上鍔部 1c・・下鍔部 2・・熱交換器 6・・平板 4・・係合枠 5・・ガスケット 6−優セル 6a・・開口部 7・・弾性スポンジ 8・・固定軸 9・・直線移動具 10・・圧縮ばね 11・・加圧装置 11a・・ピストンロッド 12・・注入管 16・・熱媒体入口管 14・・熱媒体出口管 11図 第2図 第3図 (イ)                      
(ロ)第4図
Fig. 1 is a cross-sectional explanatory diagram showing an example of a state where compression springs are installed and arranged between each heat exchanger, Fig. 2 11-1: End view taken along line A-A in Fig. 1, Fig. 6 1 - () and (b) are explanatory diagrams showing examples of sealing parts by gaskets, respectively.
The figure is a cross-sectional explanatory diagram showing another example corresponding to Figure 1, Figure 5 is a cross-sectional explanatory diagram showing the main part of an example of the gasket mounting part, and Figure 6 is a cross-sectional explanatory diagram showing the main part of an example of the gasket mounting part. Fig. 7 is an overall explanatory diagram showing a simplified example of a state in which polymerization is allowed to proceed, and Fig. 7 is an enlarged explanatory diagram of piping around a heat exchanger during polymerization. 1. Heat exchange body 1a. Heat exchange surface 1b. Upper flange 1c. Lower flange 2. Heat exchanger 6. Flat plate 4. Engagement frame 5. Gasket 6. Excellent cell 6a. - Opening 7 - Elastic sponge 8 - Fixed shaft 9 - Linear moving tool 10 - Compression spring 11 - Pressure device 11a - Piston rod 12 - Injection pipe 16 - Heat medium inlet pipe 14 - Heat medium outlet pipe 11 Figure 2 Figure 3 (A)
(b) Figure 4

Claims (1)

【特許請求の範囲】[Claims] 1 少なくとも片側に温度制御される熱交換面を備えた
6個以上の熱交換体をその熱交換面が実質的に鉛直にな
るように同軸上に間隙を設けて順次対向せしめて並べる
ときの該間隙の上方の少なくとも一部を除いて残部を帯
状のガスケットの片側面でシールして2組以上のセルを
構成すると共に各熱交換体をその並び方向に移動自在に
配置し、各熱交換体の移動抵抗に対して充分大きい抗力
を発生せしめることができ且つ相互にほぼ等しいはね弾
性係数を有する圧縮ばねを各熱交換体間に装着し、端部
の熱交換体を押圧して各セルf:構成する相対する熱交
換面の間隙を所定の大きざにa1m整し、次いで各セル
内に流動性の重合性物質を注入して熱交換体により各セ
ルの温度調節を行ない、各セル内における重合の進行に
従って生じる各セル内容物の体積変化による厚さ変化分
の総和だけ両端の熱交換体間の間隔を変化せしめる押圧
力を、前記圧縮ばねを介して各熱交換体に伝達してそれ
ぞれ移動せしめるCとにより、各セルにおける間隙の大
きさを均等に変化せしめることを特徴とする流動性の重
合性物質から合成樹脂成型物を製造する方法。
1 This applies when six or more heat exchangers each having a temperature-controlled heat exchange surface on at least one side are arranged coaxially and facing each other with a gap so that the heat exchange surfaces are substantially vertical. At least a part above the gap is removed and the remaining part is sealed with one side of a band-shaped gasket to form two or more sets of cells, and each heat exchanger is arranged so as to be movable in the direction in which each heat exchanger is arranged. A compression spring capable of generating a sufficiently large drag force against the movement resistance of f: Adjust the gap between the opposing heat exchange surfaces to a predetermined size of a1m, then inject a fluid polymeric substance into each cell and adjust the temperature of each cell using a heat exchanger. A pressing force is transmitted to each heat exchanger through the compression spring to change the distance between the heat exchangers at both ends by the sum of thickness changes due to volume changes of the contents of each cell as the polymerization progresses within the cell. 1. A method for producing a synthetic resin molded article from a fluid polymerizable material, characterized in that the size of the gap in each cell is uniformly changed by moving each cell.
JP10287783A 1983-06-10 1983-06-10 Preparation of molded synthetic resin article from fluidized polymerizable substance Pending JPS59227412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10287783A JPS59227412A (en) 1983-06-10 1983-06-10 Preparation of molded synthetic resin article from fluidized polymerizable substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10287783A JPS59227412A (en) 1983-06-10 1983-06-10 Preparation of molded synthetic resin article from fluidized polymerizable substance

Publications (1)

Publication Number Publication Date
JPS59227412A true JPS59227412A (en) 1984-12-20

Family

ID=14339117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10287783A Pending JPS59227412A (en) 1983-06-10 1983-06-10 Preparation of molded synthetic resin article from fluidized polymerizable substance

Country Status (1)

Country Link
JP (1) JPS59227412A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005021227A1 (en) * 2003-08-28 2005-03-10 Zeon Corporation Apparatus for producing polymer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005021227A1 (en) * 2003-08-28 2005-03-10 Zeon Corporation Apparatus for producing polymer
JPWO2005021227A1 (en) * 2003-08-28 2006-10-26 大見 忠弘 Polymer production equipment

Similar Documents

Publication Publication Date Title
US4076780A (en) Programmable velocity and force control method for compression molding
US4946526A (en) Method for compression molding of laminated panels
US7866969B2 (en) Manufacture of composites by a flexible injection process using a double or multiple cavity mold
RU2616939C2 (en) Plastic deformation of profiled structural element made from composite plastic semi-finished product
US20060272278A1 (en) Polymeric door facing with textured interior surface, and method of forming same
CN114647975A (en) Composite material component forming quality control method based on digital twinning and intelligent algorithm
CN106975670A (en) A kind of ultrasonic assistant pressurizing unit and method
KR910005199B1 (en) Molding with in-mold coating
DE2922675C2 (en) Casting mold for the production of moldings from reactive casting resins
JPH02256782A (en) Element for window, door and the like and manufacturing method and device thereof
US3655847A (en) Method for forming concrete panels under compression
JPS59227412A (en) Preparation of molded synthetic resin article from fluidized polymerizable substance
CN206643147U (en) A kind of ultrasonic assistant pressurizing unit
US20120205835A1 (en) Apparatus for forming a composite component
GB2057340A (en) Press mould for ceramic mouldings
JPH0229009B2 (en)
JPH07266389A (en) Method and device for producing molded article of multi-component plastic substance
US3689022A (en) Apparatus for the production of case polymer sheets
MXPA95001287A (en) Procedure and device for the manufacture of molded pieces of plastic materials of various components
JPS60141513A (en) Manufacture of synthetic resin molded item from fluid polymerizable material
CN114919208A (en) Molding apparatus and molding method
CN111136262A (en) Forming die for magnetic material and pressing method thereof
GB2108422A (en) Compression moulding and coating plastics sheet
JP2004535313A (en) Mold for manufacturing molded articles with diaphragm
GB2108894A (en) Compression moulding reinforced plastics sheet