JPS59226999A - Optical detector - Google Patents

Optical detector

Info

Publication number
JPS59226999A
JPS59226999A JP10181983A JP10181983A JPS59226999A JP S59226999 A JPS59226999 A JP S59226999A JP 10181983 A JP10181983 A JP 10181983A JP 10181983 A JP10181983 A JP 10181983A JP S59226999 A JPS59226999 A JP S59226999A
Authority
JP
Japan
Prior art keywords
light
light source
output
receiving element
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10181983A
Other languages
Japanese (ja)
Inventor
行雄 佐井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP10181983A priority Critical patent/JPS59226999A/en
Publication of JPS59226999A publication Critical patent/JPS59226999A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は光ファイバを用いた光学的検出装置に関し、例
えば温度あるいは機械的変位などの測定に利用すること
ができる。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an optical detection device using an optical fiber, and can be used, for example, to measure temperature or mechanical displacement.

[発明の技術的背景] 第1図はこの種の光学的検出装置の従来構成を示す。[Technical background of the invention] FIG. 1 shows a conventional configuration of this type of optical detection device.

第1図において、1は波長λ1の光を発する第1の光源
、2はλ1と異なる波長λ2の光を発する第2の光源、
3aおよび3bは光源1およひ2の光を受け入れる入射
用ファイバ、4は入射用ファイバ3aまたは3bの導波
光を入力用ファイバ5およびモニタ用ファイバ6に導く
光結合器、7は入力用ファイバ5の導波光を受する物理
変化検出部、8は物理変化検出部7の出力光を導波する
出力用ファイバ、9は出力用ファイバ8の導波光を受け
る受光素子、10は前記モニタ用ファイバ6の導波光を
受けるモニタ受光素子である。物理変化検出部7は、第
1の光源1の波長λ1の光を温度あるいは機械的受位な
どの物理変化に応じて強度変調して出力し、これと異な
る第2の光源2の波長λ2の光については上記強度変調
を与えることなくほぼそのまま出力する。11は第1の
光源1と第2の光源2を時間交番的に発光駆動すると共
に次に述べる割算器12および記憶演算部13が各光源
の駆動に同期して動作するように制御する制御部、12
は受光素子9 iJ3よびモニタ受光素子10の光電出
力を入力して両出力間の除算値を演算出力する割算器、
13は一時記憶機能を有し第1の光源1の発光に基づく
除算値と第2の光源2の発光に基づく除算値との間の比
を求めこれを物理変化検出信号として出力する記憶演算
部である。
In FIG. 1, 1 is a first light source that emits light with a wavelength λ1, 2 is a second light source that emits light with a wavelength λ2 different from λ1,
3a and 3b are input fibers that receive the light from the light sources 1 and 2; 4 is an optical coupler that guides the guided light from the input fiber 3a or 3b to the input fiber 5 and the monitoring fiber 6; 7 is an input fiber 5 is a physical change detection section that receives the guided light; 8 is an output fiber that guides the output light of the physical change detection section 7; 9 is a light receiving element that receives the guided light of the output fiber 8; 10 is the monitoring fiber. This is a monitor light-receiving element that receives the guided light of No. 6. The physical change detection unit 7 outputs the light having a wavelength λ1 from the first light source 1 after modulating the intensity according to physical changes such as temperature or mechanical reception, and outputs the light having a wavelength λ2 from the second light source 2, which is different from this. The light is output almost as is without being subjected to the intensity modulation described above. Reference numeral 11 indicates control for driving the first light source 1 and the second light source 2 to emit light in a time-alternative manner, and for controlling the divider 12 and the storage calculation section 13, which will be described below, to operate in synchronization with the driving of each light source. Part, 12
is a divider that inputs the photoelectric outputs of the light receiving element 9 iJ3 and the monitor light receiving element 10 and calculates and outputs a division value between both outputs;
Reference numeral 13 denotes a memory calculation unit having a temporary memory function and calculating the ratio between the division value based on the light emission of the first light source 1 and the division value based on the light emission of the second light source 2 and outputting this as a physical change detection signal. It is.

以上のごとき構成で、まず第1の光源1が発光駆動され
るものとすると、この光源1による波長λ1の光は、入
射用ファイバ3a,光結合器4および入力用ファイバ5
を経て検出部7に入り温度あるいは変位などの物理変化
に応じて強度変調を受けた後出力用ファイバ8を経て受
光素子9に至ると共に、光結合器4およびモニタ用ファ
イバ6を経てモニタ受光素子に至る。受光素子9および
モニタ受光素子10の第1の光源1の発光に基づく各光
電出力は割算器12に与えられ、ここで両出力間の除算
が行なわれた後、その除算値が記憶演算部13に与えら
れて次に述ベる第2の光源に基づく除算値が与えられる
まで一時記憶される。
With the above configuration, when first the first light source 1 is driven to emit light, the light of wavelength λ1 from this light source 1 is transmitted through the input fiber 3a, the optical coupler 4 and the input fiber 5.
After entering the detection unit 7 through the optical fiber 8 and receiving intensity modulation according to physical changes such as temperature or displacement, the output fiber 8 leads to the light receiving element 9, and the optical coupler 4 and the monitoring fiber 6 lead to the monitor light receiving element. leading to. Each photoelectric output based on the light emission of the first light source 1 of the light receiving element 9 and the monitor light receiving element 10 is given to the divider 12, and after division between both outputs is performed here, the divided value is stored in the storage calculation section. 13 and is temporarily stored until a division value based on the second light source, which will be described next, is given.

次に第1の光源1に代わって第2の光源2が発光駆動さ
れると、光源2による波長λ2の光は、入射用ファイバ
31)を経て第1の光源1の光と同様に受光素子9およ
びモニタ受光素子10に至る。
Next, when the second light source 2 is driven to emit light instead of the first light source 1, the light of wavelength λ2 from the light source 2 passes through the input fiber 31) and passes through the light receiving element in the same way as the light from the first light source 1. 9 and a monitor light receiving element 10.

これらの光電出力は割算器12で両出力間の除算が行な
われた後、演算部13に与えられる。記憶演算部13は
、第2の光源2に基づく除算値と先の第1の光源1に基
づく除算値との間で割算し、その商を物理変化検出信号
として出力する。
After these photoelectric outputs are divided by a divider 12, they are given to an arithmetic unit 13. The storage calculation unit 13 divides the division value based on the second light source 2 and the division value based on the first light source 1, and outputs the quotient as a physical change detection signal.

[背景技術の問題点] 上記構成によれば、それぞれの波長の光が受光素子9、
モニタ受光素子10で受光され、割算器12で商をとら
れているので各光源からの光出力の変動は補償すること
ができる。
[Problems with Background Art] According to the above configuration, light of each wavelength is transmitted to the light receiving element 9,
Since the light is received by the monitor light receiving element 10 and the quotient is taken by the divider 12, fluctuations in the light output from each light source can be compensated for.

しかしながら、各光源の駆動電流の変動、発光素子の光
変換効率の変動および発光素子−受光素子間と発光素子
−モニタ受光素子間のファイバの長さの違により、さら
にファイバの接合部の接続のしかたによるファイバ部分
の光伝送効率の変動により、ダイナミックレンジの大き
い割算器を用いる必要があり、また、受光素子の全出力
レベルについて十分な演算精度を得るために高精度のア
ナログ割算器あるいは高分解能をもつ△/ [)変換器
を必要どしコスト高になるなどの欠点がある。
However, due to fluctuations in the driving current of each light source, fluctuations in the light conversion efficiency of the light emitting element, and differences in the length of the fiber between the light emitting element and the light receiving element and between the light emitting element and the monitor light receiving element, the connection of the fiber joint may be further affected. Due to variations in the optical transmission efficiency of the fiber section due to the method, it is necessary to use a divider with a large dynamic range, and in order to obtain sufficient calculation accuracy for the entire output level of the photodetector, a high-precision analog divider or It has drawbacks such as requiring a Δ/[) converter with high resolution, resulting in high cost.

[発明の目的] 本発明は従来の技術の上記欠点を改善するもので、その
目的は、光源の変動や光ファイバの伝送距離などの伝送
損失の変動に対して受光素子が一定の出力レベルを維持
することの可能な光学的検出装置を提供することにある
[Object of the Invention] The present invention is intended to improve the above-mentioned drawbacks of the conventional technology, and its purpose is to enable the light receiving element to maintain a constant output level in response to fluctuations in transmission loss such as fluctuations in the light source and transmission distance of the optical fiber. The object of the present invention is to provide an optical detection device that can be maintained.

[発明の概要] 上記目的を達成するための本発明の特徴は、波長λ1の
光を物理変化に応じて強度変調しこれと異なる波長λ2
の光をほぼそのまま出力する物理変化検出部と、前記波
長λ1の光を発する第1の光源と、前記波長λ2の光を
発する第2の光源とこれら光源からの光を物理変化検出
部を介して導波する光ファイバと、この光ファイバの導
波出力光を受ける受光部と、各光源の発光強度をモータ
するモニタ受光部と、前記第2の光源の受光部出力が一
定となるように当該第2の光源の駆動電流を制御する第
1の制御手段と、前記第1の光源の前記モニタ受光部で
の出力が前記第2の光源のそれに等しくなるように前記
第1の光源の駆動電流を制御する第2の制御手段とを有
し、前記第1の光源の受光部出力を出力信号とするよう
にしたこちき光学的検出装置にある。
[Summary of the Invention] A feature of the present invention for achieving the above object is to intensity-modulate light with a wavelength λ1 according to physical changes, and generate light with a different wavelength λ2.
a first light source that emits light with the wavelength λ1, a second light source that emits the light with the wavelength λ2, and a physical change detector that outputs the light almost as it is; an optical fiber that guides the wave, a light receiver that receives the guided output light of the optical fiber, a monitor light receiver that motors the emission intensity of each light source, and a light receiver that controls the output of the second light source to be constant. a first control means for controlling a drive current of the second light source; and a first control means for driving the first light source so that an output of the first light source at the monitor light receiving section is equal to that of the second light source. and a second control means for controlling the current, and the light receiving section output of the first light source is used as an output signal.

[発明の実施例] 第2図は本発明による光学的検出装置の一実施例を示す
構成図で、第1図と同符号のものは同一物を示す。
[Embodiment of the Invention] FIG. 2 is a block diagram showing an embodiment of an optical detection device according to the present invention, and the same reference numerals as in FIG. 1 indicate the same components.

第2図において、第1の光源1の波長λ1の光および第
2の光源2の波長/jl2の光を入射用ファイバ3a,
3b,光結合器4,入力用ファイバ55,物理変化検出
部7および出力用ファイバ8を介して受光素子9に与え
る構成、各光源からの光を光結合器4およびモニタ用フ
ァイバ6を介してモニタ受光素子に与える構成について
は、第1図と同様である。
In FIG. 2, light with a wavelength λ1 from a first light source 1 and light with a wavelength /jl2 from a second light source 2 are transmitted through an input fiber 3a,
3b, a configuration in which the light from each light source is supplied to the light receiving element 9 via the optical coupler 4, the input fiber 55, the physical change detection unit 7 and the output fiber 8, and the light from each light source is transmitted via the optical coupler 4 and the monitoring fiber 6. The configuration provided to the monitor light receiving element is the same as that shown in FIG.

本発明においては、光源の駆動電流の変動および光ファ
イバの伝送損失の変動による受光素子の出力レベルへの
影響を除くために、第2の光源2の発光による受光素子
7つの光電出力が一定となるように当法第2の光源2の
駆動電流を制御する第1の制御手段と、第1の光源1の
発光によるモ二タ受光素子10の光電出力が第2の光源
2の発光によるモニタ受光素子10の光電出力に等しく
なるように第1の光源1の駆動電流を制御する第2の制
御手段がもうけられる。
In the present invention, in order to eliminate the influence on the output level of the light receiving element due to fluctuations in the drive current of the light source and fluctuations in the transmission loss of the optical fiber, the photoelectric output of the seven light receiving elements due to light emission from the second light source 2 is kept constant. The first control means controls the drive current of the second light source 2 so that the photoelectric output of the photodetector 10 is monitored by the light emission of the second light source 2. A second control means is provided for controlling the drive current of the first light source 1 so that it becomes equal to the photoelectric output of the light receiving element 10.

第1の制御手段は、第2の光源2の発光による受光素子
9の光電出力を増幅回路20およびスイッチSW−1を
介して入力しその直流分を取り出して出力するフィルタ
2lと、フイルタ21の出力と基準電源ESとの偏差を
取り出す偏差検出回路22と、該回路22の偏差出力に
したがって当該偏差を零にするような調節電圧を出力す
る調節回路23と、調節回路23の出力を電流変換して
第2の光源2の駆動電流として光源2に与えるV/I変
換回路24を有する。第2の制御手段は、第2の光源2
0発光によるモニタ受光素子10の光電出力を増幅回路
25およびスイツチSW−2を介して入力しその直流分
を取り出して出力するフィルタ26と、第1の光源1の
発光によるモ二タ受光素子10の光電出力を増幅回路2
5およびスイッチS W −3を介して入力しその直流
分を取り出して出力するフィルタ27と、フィルタ26
の第2の光源2による出力とフィルタ27の第1の光源
による出力との偏差を取り出す偏差検出回路28と、回
路28の偏差出力にしたがって当該偏差を零にするよう
な調節電圧を出力する調節回路2つと、調節回路29の
出力を電流変換して第1の光源1の駆動電流として光源
2に与えるV/I変換回路30を有する。
The first control means includes a filter 2l and a filter 21 which input the photoelectric output of the light receiving element 9 due to light emission from the second light source 2 via the amplifier circuit 20 and the switch SW-1, and take out and output the DC component. A deviation detection circuit 22 that extracts the deviation between the output and the reference power source ES, an adjustment circuit 23 that outputs an adjustment voltage that makes the deviation zero according to the deviation output of the circuit 22, and a current conversion circuit for the output of the adjustment circuit 23. The second light source 2 has a V/I conversion circuit 24 which supplies the current to the light source 2 as a drive current for the second light source 2. The second control means controls the second light source 2
A filter 26 inputs the photoelectric output of the monitor light receiving element 10 due to 0 emission through the amplifier circuit 25 and switch SW-2, extracts the DC component and outputs it, and a monitor light receiving element 10 due to the light emission of the first light source 1. Amplifying circuit 2
5 and switch SW-3, a filter 27 which takes out the DC component and outputs it, and a filter 26.
a deviation detection circuit 28 that extracts the deviation between the output from the second light source 2 of the filter 27 and the output from the first light source of the filter 27; and an adjustment circuit 28 that outputs an adjustment voltage that makes the deviation zero according to the deviation output of the circuit 28. It has two circuits and a V/I conversion circuit 30 that converts the output of the adjustment circuit 29 into a current and supplies it to the light source 2 as a drive current for the first light source 1.

物理変化検出信号は、第1の光源1の発光による受光素
子9の光電出力を増複回路20およびスイツチSW4−
を介して入力しその直流分を取り出すフィルタ31の出
力として与えられる。
The physical change detection signal increases the photoelectric output of the light receiving element 9 caused by the light emission of the first light source 1 through the multiplication circuit 20 and the switch SW4-.
It is input as the output of the filter 31 which takes out the DC component.

32はクロツクで、前述のスイッチSW−1.SW−2
,SW−3,SW−4を開閉すうと共に、第1の光源1
に並列挿入のスイッチSWl/−5および第2の光源2
に並列挿入のスイッチSW−6を開閉する。クロツク3
2は、スイッチSW−1,S W −2およびS W 
−5にいは夫々インバータ34,35、36を介して与
えられる。したがって、クロック32のオンでSW−3
,SW−4およびSW−6が開成状態となり、A11の
光源1が発光駆動され(これによる波長λ1の光が、受
光素子9、増幅回路20、スイッチS. W −4およ
びフイルタ3)1を経て出力されると共に、モニタ受光
素子10、増幅回路25,スイッチSW−3およびフィ
ルタ27を経て偏差検出回路28に与えられる。
32 is a clock, and the aforementioned switch SW-1. SW-2
, SW-3, SW-4, and the first light source 1
Switch SWl/-5 and second light source 2 inserted in parallel to
Switch SW-6 inserted in parallel is opened and closed. clock 3
2 are switches SW-1, SW-2 and SW
-5 are provided through inverters 34, 35, and 36, respectively. Therefore, when clock 32 is turned on, SW-3
, SW-4, and SW-6 are opened, and the light source 1 of A11 is driven to emit light (the resulting light with wavelength λ1 passes through the light receiving element 9, the amplifier circuit 20, the switch SW-4, and the filter 3) 1. The signal is output through the monitor light receiving element 10, the amplifier circuit 25, the switch SW-3, and the filter 27, and is then applied to the deviation detection circuit 28.

一方、クロック32のオフでは、SW−1.8W−”2
 およびSW−5が開成状態となり、第2の)光源2が
発光駆動されてこれによる波長λ2の光が、受光素子9
、増幅回路20、スイッチS W−1dおよびフィルタ
21を経て偏差検出回路22に与えられると共に、モニ
タ受光素子10、増複回路25、スイッチSW−2およ
びフィルタ2Gを介して偏差検出回路28に与えられろ
ことになる。
On the other hand, when the clock 32 is off, SW-1.8W-"2
and SW-5 are in the open state, the second) light source 2 is driven to emit light, and the resulting light of wavelength λ2 is transmitted to the light receiving element 9.
, the amplifier circuit 20, the switch SW-1d and the filter 21 to the deviation detection circuit 22, and the monitor light receiving element 10, the multiplying circuit 25, the switch SW-2 and the filter 2G to the deviation detection circuit 28. It's going to happen.

以上のごとき構成の動作を以下に説明する。The operation of the above configuration will be explained below.

クロツク32のオフで第2の光源2が発光駆動されると
、これによる波長λ2の光がファイバ3bに照射される
。そしてこの光に基づく受光素子9の光電出力が増幅回
路20,スイッチSW−1およびフィルタ21を介して
第1の制御手段の偏差検出回路22に与えられると共に
、波長λ2の光に基づくモニタ受光素子10の光電出力
が増幅回路25,スイッチS W −2およびフィルタ
26を介して第2の制御手段の偏差検出回路28に与え
られる。第1の制御手段の偏差検出回路22は、第2の
光源2の発光に基づく受光素子9の光電出力の基準電源
ESに対する偏差を検出する。偏差が存在する場合には
、調節回路23およびV/■−変換回路24により当該
偏差が零になるように第2の光源2の駆動電流が制御さ
れる。この結果、第2の光源2の光の強度の変動が補償
される。第2の制御手段の偏差検出回路28は、第2の
光源2の発光に基づくモニタ受光索子10の光電出力套
、クロツク32のオンで第1の光源1の発光によるモニ
タ受光素子10の光電出力が当該検出回路28に与えら
れるまで、保持する。
When the second light source 2 is driven to emit light when the clock 32 is turned off, the fiber 3b is irradiated with light having a wavelength λ2. The photoelectric output of the light-receiving element 9 based on this light is given to the deviation detection circuit 22 of the first control means via the amplifier circuit 20, switch SW-1 and filter 21, and the monitor light-receiving element based on the light of wavelength λ2 The photoelectric output of 10 is given to the deviation detection circuit 28 of the second control means via the amplifier circuit 25, switch SW-2 and filter 26. The deviation detection circuit 22 of the first control means detects the deviation of the photoelectric output of the light receiving element 9 based on the light emission from the second light source 2 with respect to the reference power source ES. If a deviation exists, the drive current of the second light source 2 is controlled by the adjustment circuit 23 and the V/■-conversion circuit 24 so that the deviation becomes zero. As a result, fluctuations in the intensity of the light from the second light source 2 are compensated for. The deviation detection circuit 28 of the second control means detects the photoelectric output of the monitor light receiving element 10 based on the light emission of the second light source 2, and detects the photoelectric output of the monitor light receiving element 10 due to the light emission of the first light source 1 when the clock 32 is turned on. It is held until the output is given to the detection circuit 28.

次に、クロック32がオンに転じて第1の光源1が発光
駆動されると、これによる波長λ1の光に基づく受光素
子9の光電出力が増幅器20、スイッチSW −4およ
びフィルタ31を介して温度あるいはは変位などの物理
変化に対応ずる検出信号として出力されるとともに、波
長λlの光に基づくモニタ受光素子10の光電出力が増
幅回路25,スイツチSW−3およびフィルタ27を介
して第2の制御手段の偏差検出回路28に与えられる。
Next, when the clock 32 is turned on and the first light source 1 is driven to emit light, the photoelectric output of the light receiving element 9 based on the light with the wavelength λ1 is transmitted via the amplifier 20, the switch SW-4, and the filter 31. In addition to being output as a detection signal corresponding to a physical change such as temperature or displacement, the photoelectric output of the monitor light receiving element 10 based on the light of wavelength λl is transmitted to the second filter via the amplifier circuit 25, switch SW-3, and filter 27. It is applied to the deviation detection circuit 28 of the control means.

第2の制御手段の偏差検出回路28は、第1の光源1の
発光によるモニタ受光素子10の光電出力と先の第2の
光源20発光によるモニタ受光素子10の光電出力との
偏差を検出する。偏差が存在する場合には、調節回路2
9およびV/I変換回路30により当該偏差が零になる
ように第1の光源1の駆動電流が制御される。この結果
、第1の光源1の変動が補償される。
The deviation detection circuit 28 of the second control means detects the deviation between the photoelectric output of the monitor light receiving element 10 caused by the light emission of the first light source 1 and the photoelectric output of the monitor light receiving element 10 caused by the light emission of the second light source 20. . If a deviation exists, the adjustment circuit 2
9 and the V/I conversion circuit 30 control the drive current of the first light source 1 so that the deviation becomes zero. As a result, fluctuations in the first light source 1 are compensated for.

第1の光源1および第2の光源2に関して以上のような
制御が行なわれる結果、光ファイバ5,8などのファイ
バの伝送損失による検出信号への影響もまた補償される
ことになる。すなわち、入力用ファイバ5及び/又は出
力用ファイバ8の伝送損失に変動が生じたどすると、第
2の光源2の発光に基づく受光素子9の光電出力は上記
変動に応じて当然変動するので、第1の制御手段の偏差
検出回路22で基準電源ESとの間に偏差が検出される
。その結果、当該偏差が零になるように第2の光源2の
駆動電流が制御されることになるので、第2の光源2の
発光に基づくモニタ受光素子10の光電出力も変化する
。したがって、第2の制御手段においては、ファイバの
伝送損失の変動に応じて変化した第2の光源2の発光に
よるモニタ受光素子10の光電出力を基準に、第1の光
源1の駆動電流を制御することになり、ファイバの伝送
損失による第1の光源1に基づく受光素子9の光源出力
の変動が補償されることになる。
As a result of the above-described control regarding the first light source 1 and the second light source 2, the influence on the detection signal due to transmission loss of the optical fibers 5, 8, etc. is also compensated for. That is, if a change occurs in the transmission loss of the input fiber 5 and/or the output fiber 8, the photoelectric output of the light receiving element 9 based on the light emission of the second light source 2 will naturally change in accordance with the above change. A deviation from the reference power source ES is detected by the deviation detection circuit 22 of the first control means. As a result, the drive current of the second light source 2 is controlled so that the deviation becomes zero, so the photoelectric output of the monitor light receiving element 10 based on the light emission of the second light source 2 also changes. Therefore, in the second control means, the drive current of the first light source 1 is controlled based on the photoelectric output of the monitor light receiving element 10 due to the light emission of the second light source 2, which has changed in accordance with the fluctuation of the transmission loss of the fiber. As a result, fluctuations in the light source output of the light receiving element 9 based on the first light source 1 due to fiber transmission loss are compensated for.

[発明の効果] 以上説明したように本発明によれば、第2の光源の駆動
電流を当該第2の光源の発光パワーが一定になるように
制御すると共にこの第2の光源の発光パワーを基準とし
て第1の光源の駆動電流を制御するようにしたので、光
源の変動や光ファイパの伝送距離などの伝送損失の変動
による受光素子の出力レベルの変動を除去することがで
き、従来技術のような変動補償のための割弾処理を行な
う必要のない光学的検出装置を提供することができる。
[Effects of the Invention] As explained above, according to the present invention, the drive current of the second light source is controlled so that the light emission power of the second light source is constant, and the light emission power of the second light source is controlled. Since the driving current of the first light source is controlled as a reference, it is possible to eliminate fluctuations in the output level of the light receiving element due to fluctuations in the light source and fluctuations in transmission loss such as the transmission distance of the optical fiber. It is possible to provide an optical detection device that does not require bullet splitting processing for compensation for such fluctuations.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は光学的検出装置の従来構成図、第2図は本発明
による光学的検出装置の一実施例を示す構成図である。 1・・・第1の光源 2・・・第2の光源 5・・・入力用ファイバ 7・・・物理変化検出部 8・・・出力用ファイバ 9・・・受光素子 10・・・モニタ受光素子 21.26.27.31・・・フィルタ22.28・・
・偏差検出回路 23.29・・・調節回路 24.30・・・V/I変換回路
FIG. 1 is a configuration diagram of a conventional optical detection device, and FIG. 2 is a configuration diagram showing an embodiment of the optical detection device according to the present invention. 1... First light source 2... Second light source 5... Input fiber 7... Physical change detection section 8... Output fiber 9... Light receiving element 10... Monitor light reception Element 21.26.27.31...Filter 22.28...
- Deviation detection circuit 23.29... Adjustment circuit 24.30... V/I conversion circuit

Claims (1)

【特許請求の範囲】[Claims] 波長λ1の光を物理変化に応じて強度変調しこれど異な
る波長λ2の光をほぼそのまま出力する物理変化検出部
と、前記波長λ1の光を発する第1の光源と、前記波長
λ2の光を発する第2の光源と、これら光源からの光を
物理変化検出部を介して導波する光ファイバと、この光
ファイバの導波出力光を受ける受光部と、各光源の発光
強度をモニタするモニタ受光部と、前記第2の光源の受
光部出力が一定となるように当該第2の光源の駆動電流
を制御する第1の制御手段と、前記第1の光源の前記モ
ニタ受光部での出力が前記第2の光源のそれに等しくな
るように前記第1の光源の駆動電流を制御する第2の制
御手段とを有し、前記第1の光源前記の受光部出力を出
力信号とするようにしたことを特徴とする光学的検出装
置。
a physical change detection unit that modulates the intensity of light with a wavelength λ1 according to a physical change and outputs light with a different wavelength λ2 almost unchanged; a first light source that emits the light with the wavelength λ1; and a first light source that emits the light with the wavelength λ2. A second light source that emits light, an optical fiber that guides the light from these light sources via a physical change detection section, a light receiving section that receives the guided output light of this optical fiber, and a monitor that monitors the emission intensity of each light source. a light receiving section; a first control means for controlling a drive current of the second light source so that the output of the light receiving section of the second light source is constant; and an output of the first light source at the monitor light receiving section; a second control means for controlling a driving current of the first light source so that the current is equal to that of the second light source, and the output signal of the light receiving section of the first light source is used as an output signal. An optical detection device characterized by:
JP10181983A 1983-06-09 1983-06-09 Optical detector Pending JPS59226999A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10181983A JPS59226999A (en) 1983-06-09 1983-06-09 Optical detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10181983A JPS59226999A (en) 1983-06-09 1983-06-09 Optical detector

Publications (1)

Publication Number Publication Date
JPS59226999A true JPS59226999A (en) 1984-12-20

Family

ID=14310726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10181983A Pending JPS59226999A (en) 1983-06-09 1983-06-09 Optical detector

Country Status (1)

Country Link
JP (1) JPS59226999A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6438520U (en) * 1987-09-01 1989-03-08
JP2015169445A (en) * 2014-03-04 2015-09-28 東京エレクトロン株式会社 Temperature measurement device, light projection module, and temperature measurement method
JP2017207458A (en) * 2016-05-21 2017-11-24 日鐵住金溶接工業株式会社 Physical quantity measuring device using FBG

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6438520U (en) * 1987-09-01 1989-03-08
JP2015169445A (en) * 2014-03-04 2015-09-28 東京エレクトロン株式会社 Temperature measurement device, light projection module, and temperature measurement method
US10139289B2 (en) 2014-03-04 2018-11-27 Tokyo Electron Limited Temperature measurement device, light emitting module and temperature measurement method
JP2017207458A (en) * 2016-05-21 2017-11-24 日鐵住金溶接工業株式会社 Physical quantity measuring device using FBG

Similar Documents

Publication Publication Date Title
EP0615665B1 (en) Wavelength stabilization
US4861131A (en) Displacement transducer with staggered optical fibres
ATE254759T1 (en) OPTICAL PHASE DETECTOR
JP3175935B2 (en) Optical fiber sensor
KR900013476A (en) Method for determining monitor sensitivity of radiation emitting device and control system of the device
EP0462580B1 (en) Fiber optic gyro with self-diagnostic function
CA1281367C (en) Method and device for automatic frequency control of semiconductor lasers
EP0551874A2 (en) Fiber optic gyro
JPS59226999A (en) Optical detector
KR980004421A (en) Laser Output Stabilization Servo (ALPC)
US4095098A (en) Ratiometric transparency meter
US5012097A (en) Radiation measuring apparatus
JP2000200922A (en) Optical signal detecting device and its method
JPH04232417A (en) Apparatus and method for measuring absolute rotations in plurality of directions in space
JPH05256768A (en) Method and apparatus for measuring gas concentration
JPS599526A (en) Temperature measuring device
KR100246772B1 (en) Device for driving laser
JP3317025B2 (en) Optical frequency division multiplex transmission equipment
JP2532326B2 (en) Optical interference gyro
KR100495965B1 (en) Sensing method and apparatus
JPH11251674A (en) Optical transmitter and control method for optical output and wavelength in the optical transmitter
JP2004191239A (en) Method of judging failure in optical fiber gyroscope
JPS6488373A (en) Optical fiber sensor
RU1568683C (en) Radiant energy meter
SU1476357A1 (en) Moisture meter