JPS59226326A - Optical function device - Google Patents

Optical function device

Info

Publication number
JPS59226326A
JPS59226326A JP10097883A JP10097883A JPS59226326A JP S59226326 A JPS59226326 A JP S59226326A JP 10097883 A JP10097883 A JP 10097883A JP 10097883 A JP10097883 A JP 10097883A JP S59226326 A JPS59226326 A JP S59226326A
Authority
JP
Japan
Prior art keywords
optical
nonlinear
light
refractive index
interferometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10097883A
Other languages
Japanese (ja)
Other versions
JPS6152451B2 (en
Inventor
Kenjiyu Otsuka
建樹 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP10097883A priority Critical patent/JPS59226326A/en
Publication of JPS59226326A publication Critical patent/JPS59226326A/en
Publication of JPS6152451B2 publication Critical patent/JPS6152451B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F3/00Optical logic elements; Optical bistable devices

Abstract

PURPOSE:To obtain an optical function device which performs easily fundamental optical logic operations by connecting nonlinear interferometer units, where a nonlinear medium whose refractive index is dependent upon the intensity of light is inserted into a triangular optical ring constituted with prescribed elements, through anoptical isolator to constitute the device. CONSTITUTION:In the unit constitution of the nonlinear optical interferometer, an input light 1, a transmitted light 2, a reflected light 3, a beam splitter 4 where the light intensity distribution rate is not 50%, 100% reflective mirrors 5 and 6, and a nonlinear medium 7 whose refractive index is changed in proportional to the intensity of light are provided. The device is constituted with one stage of the nonlinear optical interferometer unit where the nonlinear medium 7 is inserted into the triangular optical ring or these nonlinear optical interferometer units are connected in many stages through optical isolators to constitute the device.

Description

【発明の詳細な説明】 本発明は小形にして動作速度の速い光機能装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical functional device that is small in size and operates at high speed.

本発明はその屈折率が光強度により変化する光非線形媒
質を用いて非線形の光学リング干渉計を構成することを
特徴とし、その目的は高速の光論理素子を実現すること
にある。
The present invention is characterized in that a nonlinear optical ring interferometer is constructed using an optical nonlinear medium whose refractive index changes depending on the light intensity, and its purpose is to realize a high-speed optical logic element.

第1図は本発明の実施例図であって、非線形光干渉計単
位の構成を示す。第1図において、1は入力光2,8は
それぞれ透過光および反射光、4は光強度分配率が50
%以外のビームスプリッタ5.6は100%反射主反射
、7は屈折率が光強度に比例して変化する光非線形媒質
(たとえばas、等の光力−(Kerr )効果媒質ま
たはGaAS 。
FIG. 1 is an embodiment of the present invention, showing the configuration of a nonlinear optical interferometer unit. In Figure 1, 1 indicates input light 2 and 8 are transmitted light and reflected light, respectively, and 4 indicates a light intensity distribution ratio of 50.
The beam splitter 5.6 is 100% main reflection, and the beam splitter 7 is an optical nonlinear medium whose refractive index changes in proportion to the light intensity (for example, an optical power-(Kerr) effect medium such as AS or GaAS).

InSb 、 S土等の半導体材料で、いずれも3次の
非線形感受率を有する媒質)である。
Semiconductor materials such as InSb and S soil, both of which are media with third-order nonlinear susceptibility.

ビームスプリッタの光電界振幅反射率をr・同透過率を
tとすると、透過光の電界振幅E。ut、tおよび反射
光の電界振幅E。ut、rは次のようになる0 Eout、t −(tgeXp(−ioF)−r”eX
l)(−ioB))Ein(1)Eout、r −rt
CeXp(−土uF)+8Xp(−iOB))E、IH
(2)ここでyF、および稲は、次の(8)式および(
4)式で与えられる位相量である。
If the beam splitter's optical electric field amplitude reflectance is r and its transmittance is t, then the electric field amplitude of transmitted light is E. ut, t and the electric field amplitude E of the reflected light. ut, r becomes 0 Eout, t − (tgeXp(-ioF) − r”eX
l)(-ioB))Ein(1)Eout, r -rt
CeXp(-SuF)+8Xp(-iOB))E, IH
(2) Here, yF and rice are expressed by the following equation (8) and (
4) is the phase amount given by formula.

J’y  −l()  ”  IB  (t g + 
 2r 2 ンl  ”in  l”        
(8)91iB−1(、+ $2 (2t” + r”
 )l ”in l”   (4)ここでpIoは光が
リングを形成する光干渉計の中を1回通過する間におけ
る位相量、ダ2は媒質の非線形性の大きさを表わす定数
、Einは入射光電界振幅である。
J'y −l() ” IB (t g +
2r 2 nl “in l”
(8) 91iB-1(, + $2 (2t" + r"
)l "in l" (4) Here, pIo is the phase amount during one pass of the light through the optical interferometer forming a ring, Da2 is a constant representing the magnitude of nonlinearity of the medium, and Ein is is the incident light electric field amplitude.

したがって透過光および反射光強度はそれぞれ次のよう
に表わされる。
Therefore, the transmitted light and reflected light intensities are respectively expressed as follows.

pout、t −(1−2r2t”(1+oosβ(r
g−t2)Pin))Pin(5)”Out、r −2
r2t”(1+cosβ(r”−t”)Pin)Pin
)Pi、 (6)ここでP。ut、tは透過光強度’ 
”out、rは反射光強度、Pinは入射光強度であり
、βは媒質の非線形屈折率係数で、β−,12S (S
 :ビーム断面積ンで表わされる。r  −t  −0
,5のときは、(5) s (a)式より”out、r
 −”in t Pout、t ”−0となり、光学リ
ングは単なる100%反射のミラーとして働き、非線形
干渉は起こらないが・r”vt”の場合には、出力光は
入力光の変化に対して、振動的な解を持つことになる。
pout, t −(1−2r2t”(1+oosβ(r
g-t2)Pin))Pin(5)”Out, r −2
r2t"(1+cosβ(r"-t")Pin)Pin
) Pi, (6) where P. ut, t are transmitted light intensity'
"out, r is the reflected light intensity, Pin is the incident light intensity, β is the nonlinear refractive index coefficient of the medium, and β-,12S (S
: Expressed in beam cross section. r −t −0
, 5, from equation (5) s (a), "out, r
−”in t Pout, t ”-0, and the optical ring acts as a mere 100% reflective mirror, and nonlinear interference does not occur. However, in the case of r”vt”, the output light is , will have an oscillatory solution.

物理的には2分割された光ビームがビームスプリッタに
戻って来た時に、互いの相対位相が(5) # (6)
式の008項で表わされるように、入力光強度に応じて
変化し、同相、逆相の関係が交互に生ずることに対応す
る。
Physically, when the two divided light beams return to the beam splitter, their relative phases are (5) # (6)
As expressed by term 008 in the equation, it changes depending on the input light intensity, and corresponds to an in-phase and anti-phase relationship occurring alternately.

第2図に非線形媒質として厚さ200μmのInSbを
用い入力光波長5μm、ビーム断面積1−1−1r 0
.6 、 t” −0,4としたときの入出力特性を示
す。この場合β−0,8ラジアン777LWであり、第
2図より明らかなように、光入力強度に対する出力光強
度の変化が負の傾きを有する領域が存在する。この特性
は・光インバータ(NOT回路)・波形変換へ容易に応
用できる。
In Fig. 2, InSb with a thickness of 200 μm is used as a nonlinear medium, the input light wavelength is 5 μm, and the beam cross section is 1-1-1r 0.
.. 6, shows the input/output characteristics when t" -0.4. In this case, it is β-0.8 radian 777LW, and as is clear from Fig. 2, the change in output light intensity with respect to light input intensity is negative. There exists a region with a slope of .This characteristic can be easily applied to optical inverters (NOT circuits) and waveform conversion.

第8図にβ−0,8ラジアン/mW、rB−0,8(t
 −0,2)としたときの光インバータ特性〔第8図(
a)〕および波形変換(正弦波→パルス)特性〔第3図
の)〕を示す。
Figure 8 shows β-0,8 rad/mW, rB-0,8(t
-0,2) Optical inverter characteristics [Figure 8 (
a)] and waveform conversion (sine wave→pulse) characteristics [in Fig. 3].

第4図は光アイソレータ8を介して、前記非線形光干渉
計単位を多段に接続した装置の実施例図である。多段化
により、インバータ特性が顕著になる段数をNとすると
、N−1〜5についての入出力特性を第5図に示す。β
−0,8ラジアン/?7LW。
FIG. 4 is an embodiment of an apparatus in which the nonlinear optical interferometer units are connected in multiple stages via an optical isolator 8. Assuming that the number of stages at which the inverter characteristics become remarkable due to multi-stage design is N, the input/output characteristics for N-1 to N-5 are shown in FIG. β
-0.8 radian/? 7LW.

r”−0,6、t  −0,4である。段数の増加とと
もに、曲線の傾きが急峻になり、光論理回路へ容易に応
用できる。
r"-0,6, t-0,4. As the number of stages increases, the slope of the curve becomes steeper, and it can be easily applied to optical logic circuits.

第6図に第4図に示した回路を用いた(a) AND。(a) AND using the circuit shown in FIG. 4 in FIG.

(b) OR,(c) NAND 、 (d) NOR
動作の例と真理値表を示す。(a)の場合・光のDoバ
イアス”in 、i)qを0〈Pin、DC<Pi、。
(b) OR, (c) NAND, (d) NOR
An example of the operation and a truth table are shown. In the case of (a), Do bias of light "in", i) q is 0<Pin, DC<Pi,.

とじ、入力パルスの波高値Pi、bをPi、a/ 2 
< Pi、b< Pi、c / 2に選ぶことニヨリ、
第1図の入力として二つの光パルスヲ入射させれば、第
6図(a)の真理値表のような論理動作が可能である。
Binding, input pulse peak value Pi,b is Pi,a/2
< Pi, b< Pi, c / 2.
If two optical pulses are input as the input shown in FIG. 1, a logical operation as shown in the truth table shown in FIG. 6(a) is possible.

第6図(b)〜((1)についても、”in、DC’ 
”irbを図示のように選ぶことにより、各々の論理動
作が可能である。
For FIG. 6(b) to (1), “in, DC”
``By selecting irb as shown, each logical operation is possible.

以上説明したように、本発明の光機能装置は1極めて簡
単な構成により、N、OT、 AND、 OR,NAN
D。
As explained above, the optical functional device of the present invention has an extremely simple configuration, and has the following functions: N, OT, AND, OR, NAN.
D.

NORなど基本的な光論理動作を容易に行わせることが
可能である。ビーム径を大きくとり、画像情報の一括並
列処理を実時間で実行できる利点がある。応答時間は光
非線形媒質の屈折率の変化の速度で決まり、通常ピコ秒
と考えられるから、超高速の処理が実現できる。
Basic optical logic operations such as NOR can be easily performed. It has the advantage of having a large beam diameter and being able to perform batch parallel processing of image information in real time. The response time is determined by the speed of change in the refractive index of the optical nonlinear medium, and is usually thought to be picoseconds, so ultra-high-speed processing can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置の一実施例図、 第2図は本発明装置の光入出力特性図、第8図(a)は
本発明装置の光インノく一タ(NOT)特性を示す図、 第8図(b)は本発明装置の波形変換(正弦波→パルス
)特性を示す図、 第4図は光アイソレータを介して、非線形光干渉計単位
を多段に接続した装置の実施例図、第5図は多段接続型
装置の入出力特性図、第6図(a) 、 (b) 、 
(C) 、 (d)は本発明装置を用いた2人力光論理
動作のそれぞれAND 、 OR。 NAND 、 NOHの実施例図である。 1・・・入力光、2・・・透過光、8・・・反射光、4
・・・ビームスプリッタ、5,6・・・100%反射主
反射、7・・・光非線形屈折率媒質、9・・・光アイソ
レータ。 (AI&ン4’7no、tgh αw)J’門「吻 A鴫’(N)7”7”D、( ラドρ ゴ[に う(家
FIG. 1 is a diagram showing an embodiment of the device of the present invention, FIG. 2 is a diagram of optical input/output characteristics of the device of the present invention, and FIG. , FIG. 8(b) is a diagram showing the waveform conversion (sine wave → pulse) characteristics of the device of the present invention, and FIG. 4 is an example diagram of a device in which nonlinear optical interferometer units are connected in multiple stages via optical isolators. , Figure 5 is an input/output characteristic diagram of the multi-stage connection type device, Figure 6 (a), (b),
(C) and (d) are AND and OR, respectively, of two-man optical logic operations using the device of the present invention. It is an example diagram of NAND and NOH. 1...Input light, 2...Transmitted light, 8...Reflected light, 4
... Beam splitter, 5, 6... 100% main reflection, 7... Optical nonlinear refractive index medium, 9... Optical isolator. (AI & N 4'7no, tgh αw) J'mon 'nose A' (N) 7'7'D, (rad ρ go [niu (home)

Claims (1)

【特許請求の範囲】[Claims] 1 光強度分配率が50%以外のビームスプリッタと2
枚の反射鏡で構成される三角形の光学リング内に、屈折
率が光強度に依存する光非線形媒質を挿入してなる非線
形光干渉計単位を、1段で構成するか・もしくは該非線
形光干渉計単位を光アイソレータを介して多段に接続し
て構成することを特徴とする光機能装置。
1 Beam splitter with a light intensity distribution ratio other than 50% and 2
A nonlinear optical interferometer unit is constructed in one stage by inserting an optical nonlinear medium whose refractive index depends on the light intensity into a triangular optical ring composed of two reflecting mirrors, or the nonlinear optical interference An optical functional device characterized in that it is configured by connecting measuring units in multiple stages via optical isolators.
JP10097883A 1983-06-08 1983-06-08 Optical function device Granted JPS59226326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10097883A JPS59226326A (en) 1983-06-08 1983-06-08 Optical function device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10097883A JPS59226326A (en) 1983-06-08 1983-06-08 Optical function device

Publications (2)

Publication Number Publication Date
JPS59226326A true JPS59226326A (en) 1984-12-19
JPS6152451B2 JPS6152451B2 (en) 1986-11-13

Family

ID=14288431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10097883A Granted JPS59226326A (en) 1983-06-08 1983-06-08 Optical function device

Country Status (1)

Country Link
JP (1) JPS59226326A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61502844A (en) * 1984-07-31 1986-12-04 ヒユ−ズ・エアクラフト・カンパニ− Phase-insensitive optical logic gate device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61502844A (en) * 1984-07-31 1986-12-04 ヒユ−ズ・エアクラフト・カンパニ− Phase-insensitive optical logic gate device
JPH0585889B2 (en) * 1984-07-31 1993-12-09 Hughes Aircraft Co

Also Published As

Publication number Publication date
JPS6152451B2 (en) 1986-11-13

Similar Documents

Publication Publication Date Title
Shamir et al. Optical computing and the Fredkin gates
Kumar et al. Design of optical reversible logic gates using electro-optic effect of lithium niobate based Mach–Zehnder interferometers
US5033826A (en) High temporal resolution optical instrument
JPH03185430A (en) Superspeed logic device
JPS60108824A (en) Optical logic gate using etalon
Verber et al. Correlator based on an integrated optical spatial light modulator
Garai Novel method of designing all optical frequency-encoded Fredkin and Toffoli logic gates using semiconductor optical amplifiers
Campos Three-photon Hong-Ou-Mandel interference at a multiport mixer
US3356438A (en) Light modulator employing multiplereflective light path
JPS59226326A (en) Optical function device
US5283843A (en) Optical switches
JPH0397317A (en) Optical logic circuit device
US3418604A (en) High frequency phase-synchronized signal synthesizer
JP3805286B2 (en) Method and apparatus for realizing all-optical half-adder using semiconductor optical amplifier
JPH0585889B2 (en)
US3644846A (en) Optical modulation by submillimeter-wave signals and applications thereof
Gottlieb et al. Optoacoustic Processing of Large Time–Bandwidth Signals
Kumar et al. Polarization-based optical logic using laser-excited gratings
US3609001A (en) Nonreciprocal optical device using polarized second harmonic generated radiation
Guilfoyle Digital optical computer fundamentals, implementation, and ultimate limits
RU2119182C1 (en) Optical analog-to-digital converter
McManus et al. Construction of an optical-carry adder
RU2106063C1 (en) Optical comparator
Gallagher Real-time optical signal processors employing optical feedback: amplitude and phase control
US6515784B2 (en) Refractive index manipulating optical inverter