JPS59226140A - Production of fiber-reinforced composite material - Google Patents

Production of fiber-reinforced composite material

Info

Publication number
JPS59226140A
JPS59226140A JP58101890A JP10189083A JPS59226140A JP S59226140 A JPS59226140 A JP S59226140A JP 58101890 A JP58101890 A JP 58101890A JP 10189083 A JP10189083 A JP 10189083A JP S59226140 A JPS59226140 A JP S59226140A
Authority
JP
Japan
Prior art keywords
fiber
fibers
composite material
short fibers
reinforced composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58101890A
Other languages
Japanese (ja)
Other versions
JPH0470372B2 (en
Inventor
Mikio Kubo
久保 幹夫
Masashi Shimoda
下田 正志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HONDA KINZOKU GIJUTSU KK
Honda Motor Co Ltd
Original Assignee
HONDA KINZOKU GIJUTSU KK
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HONDA KINZOKU GIJUTSU KK, Honda Motor Co Ltd filed Critical HONDA KINZOKU GIJUTSU KK
Priority to JP58101890A priority Critical patent/JPS59226140A/en
Publication of JPS59226140A publication Critical patent/JPS59226140A/en
Publication of JPH0470372B2 publication Critical patent/JPH0470372B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a fiber-reinforced composite material having an intricate shape by pressurizing intermixedly long fibers and short fibers and preforming the mixture to a desired member shape then impregnating the base phase of a molten metal therein. CONSTITUTION:Metallic or inorg. long fibers 3a are arranged in the housing parts 1a, 2a of primary forming molds 1, 2 and a prescribed amt. of short fibers 3b are successively inserted therein while the short fibers are bridged between the long fibers 3a and are superposed thereon generally like sponge. The long and short fiber groups 3a, 3b are molded under pressure by using pressing plates 4, 5. Such molding is housed in secondary forming molds having a desired shape and after the short fibers 3b are replenished in the required part, the molds are heated to cure the molding. A molten base phase material is impregnated with such molding to obtain a fiber-reinforced composite material. The fiber density in the composite material is made uniform by such method and the strength of the material is stabilized. Since adquate voids are formed among the fibres, the impregnation of the base phase is easy.

Description

【発明の詳細な説明】 本発明は繊維強化複合材料の製造方法に関する。[Detailed description of the invention] The present invention relates to a method for manufacturing fiber reinforced composite materials.

物理的または化学的方法によって2種類以上の素材を合
体させ、あるいは2つ以上の相を形成させて得られる、
いわゆる複合材料の一種に、長繊維状の強化材と母相材
とを合体して製造される繊維強化複合材料がある。
Obtained by combining two or more materials or forming two or more phases by physical or chemical methods,
A type of so-called composite material is a fiber-reinforced composite material manufactured by combining a long fiber reinforcing material and a matrix material.

繊維強化複合材料を製造する場合、強化用長繊維を所定
形状に予備成形し、得られた成形体に溶融した母相材を
含浸させる方法が多く用いられている。しかしながら、
成形形状が複雑であると長繊維を形状に合わせて予備成
形することが難しく、成形体中に繊維密度の不均一な箇
所が生じてしまい材質が不均一となるという不都合があ
った。また、かかる不都合を補う為に特別な冶具を用い
て長繊維を複雑な形状に合わせて配向せしめ、該冶具を
取シ付けたまま母相材を浸み込ませるという方法も利用
されているが、完成品の中の冶具を取り残さなければな
らないという問題があった。
When manufacturing fiber-reinforced composite materials, a method is often used in which reinforcing long fibers are preformed into a predetermined shape and the resulting molded body is impregnated with a molten matrix material. however,
If the molded shape is complicated, it is difficult to preform the long fibers to match the shape, and there are areas in the molded product where the fiber density is non-uniform, resulting in non-uniform material quality. In order to compensate for this inconvenience, a method has also been used in which a special jig is used to orient the long fibers according to a complex shape, and the matrix material is soaked in with the jig attached. , there was a problem that the jig had to be left behind in the finished product.

本発明は上記した点に鑑みてなされたものであって、そ
の目的とするところは複雑な形状の繊維強化複合材料を
容易に製造することの出来る製造方法を提供するとする
The present invention has been made in view of the above-mentioned points, and its purpose is to provide a manufacturing method that can easily manufacture a fiber-reinforced composite material having a complicated shape.

本発明による繊維強化複合材料の製造方法は長繊維と短
繊維とを混在せしめ、これを加圧することによって予め
部材形状に成形し、得られる成形一体に溶融した母相材
を含浸せしめることを特徴とする。
The method for producing a fiber-reinforced composite material according to the present invention is characterized in that long fibers and short fibers are mixed, the fibers are pressurized to form a member shape in advance, and the resulting molded body is impregnated with a molten matrix material. shall be.

以下、本発明に係る繊維強化複合材料の製造方法を用い
て自動車用4サイクルエンジンに使用されるバルブの予
備成形体を製作する工程を図面を参照しつつ説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a process for producing a preformed body of a valve used in a four-stroke automobile engine using the method for producing a fiber-reinforced composite material according to the present invention will be described with reference to the drawings.

まず、対称形状に成形された2分割形式の1次成形型l
及び2を互いに重ね合わせる。次いで、金属繊維貰たは
無機質繊維などの長繊維3aを成形の型に合せ指向させ
て配列し、且つ短繊維3zを各長繊維3α間に橋掛させ
るべく成形型1及び2に各々設けられた繊維収納部1α
及び2a内で略海綿状に互い((重合させつつ所定量挿
入する。
First, a two-part primary mold l is molded into a symmetrical shape.
and 2 are superimposed on each other. Next, the long fibers 3a, such as metal fibers or inorganic fibers, are arranged in a direction that matches the mold, and the short fibers 3z are provided in the molds 1 and 2, respectively, in order to bridge between the long fibers 3α. Fiber storage section 1α
and 2a, into each other in a substantially spongy manner (((insert a predetermined amount while polymerizing).

ここで、長繊維と、1屯その外径及び長さをd及びtと
するならば4/cI1.〉5oooOものを称し、これ
に対して短繊維はl/d≦5000のものを称する。短
繊維3bの材質としては例えば、炭化けい素(SiC)
及びゴロ/@などがあげられる。炭化けい素はその裂刃
によって長繊維及び短繊維のいずれ姉も成形することが
出来、長繊維として成形したものを所定寸法に切断して
短繊維とすることも行われる。
Here, if the outer diameter and length of one ton of long fiber are d and t, then 4/cI1. 〉5oooO, on the other hand, short fibers with l/d≦5000 are referred to as short fibers. Examples of the material of the short fibers 3b include silicon carbide (SiC).
and grounder/@. Silicon carbide can be formed into both long fibers and short fibers by its tearing blades, and short fibers can also be obtained by cutting long fibers into predetermined dimensions.

また、ぎロンについてはその組成の過程において、既に
上記したような短繊維としての寸法条件を満たしておυ
、これをそのまま使用する。短繊維3bの他の材質に、
ポリアクリルニトリル系カーボ繊維(PAN)があるが
、これについては上記炭化けい素と同様に長繊維として
形成したものを切断して短繊維として使用する。
In addition, during the composition process of Giron, it has already been made to satisfy the dimensional conditions as a short fiber as mentioned above.
, use this as is. Other materials for the short fibers 3b include
There is polyacrylonitrile carbon fiber (PAN), which is formed as long fibers and then cut to be used as short fibers, similar to the silicon carbide described above.

長繊維3α及び短、繊維3bの繊維収納部1a及び2α
内への挿入が完了したら次に、対称形状を有する2枚の
加圧板4及び5を重ね合わせて繊維収納部1a及び2α
内に挿入し、該加圧板に印加される力によって長繊維3
α及び短繊維3hから成る繊維群を加圧成形する。繊維
収納部1α及び2αの各底部と加圧板4及び5の各加圧
端部とは全体として円柱状の空隙を形成するように構成
されておシ、加圧成形によって得られる成形体は円柱状
となる。尚、長繊維3αと短繊維3bとを混在せしめる
場合、短繊維3hに所定の液体を混ぜて半液状とすれば
成形が容易になる。また、かかる液体に適当な結合剤を
混入されることによって、成形体の離型及び後の複合化
工程での取扱いが楽になる。
Fiber storage parts 1a and 2α for long fibers 3α and short fibers 3b
After the insertion into the fiber storage areas 1a and 2α is completed, the two symmetrical pressure plates 4 and 5 are placed one on top of the other.
the long fibers 3 by the force applied to the pressure plate.
A fiber group consisting of α and short fibers 3h is pressure-molded. The bottoms of the fiber storage sections 1α and 2α and the pressurizing ends of the pressurizing plates 4 and 5 are configured to form a cylindrical void as a whole, and the molded product obtained by pressure forming is circular. It becomes columnar. In addition, when the long fibers 3α and the short fibers 3b are mixed, molding becomes easier if a predetermined liquid is mixed with the short fibers 3h to make them semi-liquid. Furthermore, by mixing a suitable binder into the liquid, the molded product can be easily released from the mold and handled in the subsequent composite process.

上記のようにして得られた成形体6を2分割形式の2次
成形型7及び8のいずれか一方に収納する。2次成形型
7及び8は互いに対称な形状であシ、該両2次成形型に
は成形体6の軸径に相当する内径を有する収納部7α及
び8αと、収納部7α及び8αにチー・9部7b及び8
hを介して連続する大径部7C及び8Cとが形成されて
いる。第4図(α)に示されるように、成形体6は収納
部7α(または8α)に収納されるのである。チーi4
部7h及び8αはパルプの傘部を成形するためのもので
ある。第4図(A) K示されるように、例えば収納部
7α収納された成形体6のテーパ部7h側の端部を、該
チーΔ部に合わせて開花状にほぐす。次いで、はぐした
部分に短繊維3bを補充する。
The molded body 6 obtained as described above is placed in one of the two-part secondary molds 7 and 8. The secondary forming molds 7 and 8 have symmetrical shapes, and each of the secondary forming molds has storage portions 7α and 8α having an inner diameter corresponding to the axial diameter of the molded body 6, and a chime in the storage portions 7α and 8α.・9 parts 7b and 8
Continuous large diameter portions 7C and 8C are formed via h. As shown in FIG. 4(α), the molded body 6 is stored in the storage portion 7α (or 8α). Qi i4
Sections 7h and 8α are for forming pulp umbrellas. As shown in FIG. 4(A)K, for example, the end portion of the molded body 6 stored in the storage portion 7α on the tapered portion 7h side is loosened into a flower shape in line with the chi Δ portion. Next, short fibers 3b are replenished into the stripped portion.

はぐした部分への短繊維3hの補充が完了したら、2次
成形型7及び8を重ね合わせ、第4図(c)に示される
ように大径部7c及び8c内に加圧ピストン9を挿通さ
せる。また、収納部7α及び8αの端部は底、型IOに
よって閉塞しておく。加圧ピストン9にょ゛り加られる
圧力によって後から補充された短繊維3hが成形体6の
ほぐされた部分に完全に充填される@加圧ピストン9に
よる加圧状態を保ったまま成形体6を加熱手段(図示せ
ず)にょシ加熱して、該成形体を硬化させる。以後、2
次成形型7及び8並びに底型10を離型することによっ
て硬化した成形体6を取シ出す。   − カくシてバルブの予備成形体が得られる。
When the replenishment of the short fibers 3h to the stripped portion is completed, the secondary molds 7 and 8 are overlapped, and the pressurizing piston 9 is inserted into the large diameter portions 7c and 8c as shown in FIG. 4(c). let Further, the ends of the storage portions 7α and 8α are closed by the bottom and the mold IO. The loosened portion of the molded body 6 is completely filled with the short fibers 3h that are later replenished by the pressure applied by the pressure piston 9 @The molded body 6 remains pressurized by the pressure piston 9 is heated by a heating means (not shown) to harden the molded body. From now on, 2
Next, by releasing the molds 7 and 8 and the bottom mold 10, the cured molded body 6 is taken out. - A preformed valve body is obtained by sintering.

以上詳述した如く、本発明による繊維強化複合材料の製
造方法においては長繊維と短繊維とを混在せしめて、こ
れを加圧することによって成形体の成形がなされる。従
って、短繊維との絡み合い効果によって複雑な形状に合
わせた長繊維の配向が容易となシ、複雑な形状の繊維強
化複合材料の製造が可能となっているのである。また、
長繊維の配向を設定するための冶具の役目を短繊維が果
すために、長繊維配向設定用の特別な冶具を製作する必
要がなく、また、このようにして出来た成形体に母相材
を含浸せしめれば完成品に該冶具が取シ残されるという
こともないのである。
As described in detail above, in the method for producing a fiber-reinforced composite material according to the present invention, long fibers and short fibers are mixed, and a molded article is formed by pressurizing the mixture. Therefore, due to the entanglement effect with the short fibers, the long fibers can be easily oriented in accordance with a complicated shape, making it possible to manufacture a fiber-reinforced composite material with a complicated shape. Also,
Since the short fibers play the role of a jig for setting the orientation of the long fibers, there is no need to manufacture a special jig for setting the orientation of the long fibers. If the jig is impregnated with the jig, the jig will not be left behind in the finished product.

また、本発明による繊維強化複合材料の製造方法におい
ては、長繊維の繊維密度が小さな部位に短繊維が補充さ
れるために全体として繊維密度が均一となり、繊維強化
複合材料の強度が安定するのである。
In addition, in the method for producing a fiber-reinforced composite material according to the present invention, short fibers are replenished in areas where the fiber density of the long fibers is small, so that the fiber density becomes uniform as a whole, and the strength of the fiber-reinforced composite material is stabilized. be.

さらに−1本発明による繊維強化複合材料の製造方法に
おいては長繊維と短繊維が互いに絡んだ状態で配向され
るので、特に複雑な形状をし且つ複雑な荷重を受ける製
品を製造する場合でも強度及び剛性が充分に得られるの
である。
Furthermore, in the method for producing fiber-reinforced composite materials according to the present invention, long fibers and short fibers are oriented in a state of being entwined with each other, so even when producing products that have complex shapes and are subjected to complex loads, the and sufficient rigidity can be obtained.

また、本発明による繊維強化複合材料の製造方法におい
ては成形体中の長繊維間に短繊維によって適当な空隙が
形成されるので、成形体への母相剤の含浸が容易となっ
ているのである。
In addition, in the method for producing a fiber reinforced composite material according to the present invention, appropriate voids are formed by the short fibers between the long fibers in the molded body, making it easy to impregnate the matrix agent into the molded body. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図、第4図(a) 、 (b)及
び(C)は本発明に係る繊維強化複合材料の製造方法を
用いて自動車用4サイクルエンジンのバルブノ予備成形
体を製作する工程を説明する為の図である。 主要部分の符号の説明 1.2・・・1次成形型     3a・・・長繊維3
h・・・短繊維         4,5・・・加圧板
6・・・成形体 7.8・・・2次成形型 9・・・加圧ピストン      10・・・底型代理
人 弁理士藤村元彦
Figures 1, 2, 3, 4 (a), (b), and (C) show the preforming of valves of a four-cycle automobile engine using the method for manufacturing fiber-reinforced composite materials according to the present invention. It is a figure for explaining the process of manufacturing a body. Explanation of symbols of main parts 1.2...Primary mold 3a...Long fiber 3
h...Short fiber 4,5...Pressure plate 6...Molded body 7.8...Secondary mold 9...Pressure piston 10...Bottom mold agent Patent attorney Motohiko Fujimura

Claims (1)

【特許請求の範囲】[Claims] 長繊維と短繊維とを混在せしめこれを加圧することによ
って予め部材形状に成形し、得られる成形体に溶融した
母相材を含浸せしめる繊維強化複合材料の製造方法。
A method for producing a fiber-reinforced composite material, in which long fibers and short fibers are mixed and pressurized to form a member shape in advance, and the resulting molded product is impregnated with a molten matrix material.
JP58101890A 1983-06-08 1983-06-08 Production of fiber-reinforced composite material Granted JPS59226140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58101890A JPS59226140A (en) 1983-06-08 1983-06-08 Production of fiber-reinforced composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58101890A JPS59226140A (en) 1983-06-08 1983-06-08 Production of fiber-reinforced composite material

Publications (2)

Publication Number Publication Date
JPS59226140A true JPS59226140A (en) 1984-12-19
JPH0470372B2 JPH0470372B2 (en) 1992-11-10

Family

ID=14312520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58101890A Granted JPS59226140A (en) 1983-06-08 1983-06-08 Production of fiber-reinforced composite material

Country Status (1)

Country Link
JP (1) JPS59226140A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6360244A (en) * 1986-08-29 1988-03-16 Mitsubishi Motors Corp Manufacture of composite material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5617421A (en) * 1979-07-23 1981-02-19 Casio Comput Co Ltd Display system for progress of initial program load operation
JPS5953642A (en) * 1982-09-22 1984-03-28 Toyota Motor Corp Production of composite material having high volume rate of fibrous body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5617421A (en) * 1979-07-23 1981-02-19 Casio Comput Co Ltd Display system for progress of initial program load operation
JPS5953642A (en) * 1982-09-22 1984-03-28 Toyota Motor Corp Production of composite material having high volume rate of fibrous body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6360244A (en) * 1986-08-29 1988-03-16 Mitsubishi Motors Corp Manufacture of composite material

Also Published As

Publication number Publication date
JPH0470372B2 (en) 1992-11-10

Similar Documents

Publication Publication Date Title
EP0295820B1 (en) Resin transfer molding core,preform and process
US5198167A (en) Process for producing fiber molding for fiber-reinforced composite materials
JPS5996236A (en) Production of composite material
CN113500799A (en) Preform for composite hub molding and hub molding method
NO834860L (en) BENEFIT, AND PROCEDURE FOR THE MANUFACTURE AND USE OF THIS.
CN107921539B (en) Method for producing a component made of composite material
JPS59226140A (en) Production of fiber-reinforced composite material
US5240661A (en) Fabrication process for composite swashplate
CA2460826A1 (en) Reinforcement element and method of producing a reinforcement element
US5649585A (en) Process for producing fiber composite investment castings
JPS59226139A (en) Manufacture of preform of fiber reinforced metallic composite material
US5776383A (en) Method for producing shaped parts made of a graphitized carbon/carbon composite material
JPS60240338A (en) Mold consisting of composite material
JPS5854985Y2 (en) Mold for vacuum molding of fiber-reinforced plastic products
JPS5829564A (en) Production of fiber reinforced composite body
JPH01249326A (en) Manufacture of fiber-reinforced resin spring
WO1989005718A1 (en) Process and compression mould for manufacture of composite parts
JPH01239061A (en) Production of molded article of carbon fiber reinforced carbon
JP3014402B2 (en) Fiber reinforced plastic pipe and method for producing the same
WO2005061208A1 (en) Methods and systems for manufacturing a structure having organized areas
JPH03275268A (en) Manufacture of fiber reinforced metal strip
JPS57118854A (en) Production of fiber reinforced composite body
RU2030240C1 (en) Composition material hollow cylindrical pieces production method
JPS6160257A (en) Production of composite metallic material
JPH03114649A (en) Production of metal-base reinforced material