JPS59224913A - Adaptive linear forecasting method - Google Patents

Adaptive linear forecasting method

Info

Publication number
JPS59224913A
JPS59224913A JP9797883A JP9797883A JPS59224913A JP S59224913 A JPS59224913 A JP S59224913A JP 9797883 A JP9797883 A JP 9797883A JP 9797883 A JP9797883 A JP 9797883A JP S59224913 A JPS59224913 A JP S59224913A
Authority
JP
Japan
Prior art keywords
coefficient
epsiloni
equation
algorithm
forecast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9797883A
Other languages
Japanese (ja)
Inventor
Toshihiro Furukawa
利博 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP9797883A priority Critical patent/JPS59224913A/en
Publication of JPS59224913A publication Critical patent/JPS59224913A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H21/00Adaptive networks

Abstract

PURPOSE:To accelerate the converging speed of forecast calculation by constituring so as to attain effective forecast by the algorithm based on a method correcting a coefficient at every reception of a data, so-called on-line identification method. CONSTITUTION:Let a filter be a P-order linear forecasting filter, then a forecast error epsiloni in using data of i-sample (1<=i<p) is expressed as Equation (1). The LMS algorithm 4 is used as an algorithm minimizing the square mean value epsiloni<2> formed from this epsiloni. As shown in Equation (2) clearly, the epsiloni<2> is the i- variable function of the weight coefficient Cj. The maximum gradient method is used to obtain a Cj minimizing the epsiloni<2>. That is, the coefficient Cj is rewritten by means of the correcting algorithm in Equation (3). The degree of effect of a coefficient Ci.j on the epsiloni<2>, i.e., the sensitivity to coefficient is defined as Equation (4), l-set of DELTA<k> is selected in the order of larger one (1<l<i) and coefficients with a low coefficient sensitivity are not corrected, then the converging speed is accelerated.

Description

【発明の詳細な説明】 技術分野 本発明は、適応型線形予測方法に係り、さらに詳しくは
、適応型フィルタを用いて、信号の効率的な予測を行な
うよう構成した、適応型線形予測方法に関するものであ
る。
TECHNICAL FIELD The present invention relates to an adaptive linear prediction method, and more particularly, to an adaptive linear prediction method configured to efficiently predict a signal using an adaptive filter. It is something.

従来技術 固 従来の予測方法においては、係数台定のフィルタを使用
していた結果、非定常な信号を予測するのが困難である
という欠点があった。
Prior Art Conventional prediction methods use filters with constant coefficients, which has the disadvantage that it is difficult to predict non-stationary signals.

また、従来においては、適応型予測アルゴリズムに様々
な手法があり、固定型フィルタに比べて予測効果は」二
がるが、予測計算の収束速度が遅いという欠点を持つも
のが多かった。
In addition, in the past, there have been various methods of adaptive prediction algorithms, and although they have better prediction effects than fixed filters, many of them have the disadvantage of slow convergence speed of prediction calculations.

目     的 本発明は、以上のような従来の欠点を除去するためにな
されたもので、データを受は取るごとに係数を修正する
、いわゆるオンライン同定法に基づくアルゴリズムによ
り、効果的な予測ができるよう構成した、適応型線形予
測方法を提供することを目的としている。
Purpose The present invention was made in order to eliminate the above-mentioned drawbacks of the conventional technology, and it is possible to make effective predictions using an algorithm based on the so-called online identification method, which modifies coefficients each time data is received. The purpose of this paper is to provide an adaptive linear prediction method configured as follows.

実施例 以下、図面に基いて、本発明の詳細な説明する。Example Hereinafter, the present invention will be described in detail based on the drawings.

第1図は、本発明の一実施例を示すフィルタのブロック
図である。
FIG. 1 is a block diagram of a filter showing one embodiment of the present invention.

第1図において、符号1で示すものは、1サンプル遅延
器、符号2で示すものは、可変係数乗算器、符号3で示
すものは、加算器である。
In FIG. 1, the reference numeral 1 is a one-sample delay device, the reference numeral 2 is a variable coefficient multiplier, and the reference numeral 3 is an adder.

今、X(k)なる離散信号系列が入力されている場合を
考える。
Now, consider the case where a discrete signal sequence X(k) is input.

第1図におけるフィルタが、2次線形予測フィルタであ
るとすると、iサンプルのデータ(1りi≦p)を使用
した時の予測誤差εiは、t r =x(1<)−士c
 j x (k  j )  −・−−・・(1))=
=1 と表わされる。
Assuming that the filter in FIG. 1 is a second-order linear prediction filter, the prediction error εi when using i samples of data (1≦p) is t r =x(1<)−c
j x (k j ) −・−−・・(1))=
=1.

上記εiからつくった2乗平均ε子を最小にするアルゴ
リズムとして、符号4で示すLMSアルゴリズムを用い
る。
The LMS algorithm indicated by reference numeral 4 is used as an algorithm for minimizing the root mean square ε generated from the above εi.

但し“−″はアンサンプル平均を意味する。However, "-" means an unsample average.

(2)式から明らかなように、ε、は、重み係数Cjの
、1変数関数になる。
As is clear from equation (2), ε is a one-variable function of the weighting coefficient Cj.

岩が最小になるcjを求めるために、最大傾斜法を用い
る。すなわち、次式 による修正アルゴリズムによって、係数cjO書きかえ
を行なう。 但し、(3)式のkは、収束速度と安定性
に関するパラメーターである。
The maximum slope method is used to find cj at which the rock is at its minimum. That is, the coefficient cjO is rewritten using a correction algorithm according to the following equation. However, k in equation (3) is a parameter related to convergence speed and stability.

しかし、(3)式による最大傾斜法を用いた場合、最適
係数値に近づくにつれて、つまり、修正回数が増すに従
って、評価関数閏の傾斜がゆるやかになり、係数cj、
iの、最適値cjiへの収束が、この附近で遅くなるこ
とがある。このため、試行回数ないしは、試行時間が、
大きくなってし捷う。
However, when the maximum slope method according to equation (3) is used, as the optimum coefficient value approaches, that is, as the number of corrections increases, the slope of the evaluation function leap becomes gentler, and the coefficient cj,
The convergence of i to the optimal value cji may become slow in this vicinity. Therefore, the number of trials or trial time is
Grow and move.

そこで、係数cj、tの、ε、に対する影響の度合い、
すなわち、係数感度を、 kl と定義し、Δ′の大きいものからt個(1<#<i)選
択して、係数感度の低い係数は修正しないものとすれば
、収束速度を速くすることができる。
Therefore, the degree of influence of the coefficient cj,t on ε,
In other words, if the coefficient sensitivity is defined as kl, t coefficients (1<#<i) with large Δ' are selected, and coefficients with low coefficient sensitivity are not modified, the convergence speed can be increased. can.

第2図は、上記の方法において、修正系数を選択するア
ルゴリズムを表わす、フローチャートである。
FIG. 2 is a flowchart representing an algorithm for selecting a modified coefficient in the above method.

このフローチャートは、第1図の、L、M、Sアルゴリ
ズムに含まれている。
This flowchart is included in the L, M, S algorithm of FIG.

そしてステップA3において1(にプラス1する。Then, in step A3, 1( is incremented by 1).

Ak)がmlより大きい場合にはステップA3に戻る。If Ak) is larger than ml, the process returns to step A3.

以下、同様の操作を繰り返し、係数感度の低い係数(+
++A)tでt個大きいものから選択し、meより低い
係数は修正しないものとして制御を停止する。
From now on, repeat the same operation to obtain a coefficient with low coefficient sensitivity (+
++A) Select from t larger coefficients at t, and stop control as coefficients lower than me are not modified.

1x1は Xの絶対値を示す。1x1 indicates the absolute value of X.

また、今まで記した予測法においては、p次子測が基本
となっていたが、入力信号の統計的性質が変イヒしない
場合には、m次子測(m<p)で充分な場合もありうる
In addition, in the prediction methods described so far, p-order measurements have been the basis, but if the statistical properties of the input signal do not change, m-order measurements (m<p) may be sufficient. It's also possible.

] そこで、6m(m=1、・・・・・・ p) を計算し
ておき、 、7iI>霜り中篇;キ・・・・・・・・中
ら・・・・・・・・(5)を満量する時には、予測をm
次までで打ち切る。
] Therefore, calculate 6m (m=1,...p), and then calculate , 7iI > Shimori middle story; Ki......Nakara... When filling (5), the prediction is m
I'll stop until the next one.

この、予測次数打ち切り法を用いれば、更に、高速で、
収束させることができる。
If this prediction order truncation method is used, it is even faster,
It can be converged.

第3図は、上記の予測次数打ち切り法のアルゴリズムを
表わす、フローチャートである。ステップS1で、4(
m=1、・・・・ p)を計算する。ステップS2でm
に0を代入する。ステップS3で、mの値を1だけ増す
。ステップS4で、ステップS3で求めたmにおける硯
ト弓 とを比較し、もし、弔:>  aF、ならば、ス
テップS3へ戻る。
FIG. 3 is a flowchart representing the algorithm of the above prediction order truncation method. In step S1, 4(
m=1,... p). m in step S2
Assign 0 to . In step S3, the value of m is increased by 1. In step S4, the inkstone bow at m obtained in step S3 is compared, and if 弔:>aF, the process returns to step S3.

逆に、ε晶くε6となっていれば、(5)式が成立して
いるわけであるから、処理を終える。
On the other hand, if ε crystal is ε6, then formula (5) is established, and the process ends.

効  果 以上の説明から明らかなように、線形予測に適応型フィ
ルタを使用し、かつ、修正係数打ち切り法、予測次数打
ち切り法を併用することにより、高速かつ効果的な信号
予測を行なえる、という効果が得られる。
EffectsAs is clear from the above explanation, it is possible to perform fast and effective signal prediction by using an adaptive filter for linear prediction and also using the correction coefficient truncation method and the prediction order truncation method. Effects can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例を示すブロック図、第2図
は、修正係数打ち切り法において、修正係数を選択する
アルゴリズムを表わすフローチャート図、第3図は、予
測次数打ち切り法のアルゴリズムを表わすフローチャー
ト図である。 、リ ド・・サンプル遅延器 2・・・可変係数乗算器3・・
・加算器。 特許出願人  キ ヤ ノ ン 株式会社第2図 第3図
Fig. 1 is a block diagram showing an embodiment of the present invention, Fig. 2 is a flowchart showing an algorithm for selecting correction coefficients in the correction coefficient truncation method, and Fig. 3 is an algorithm for the prediction order truncation method. FIG. , Lido...Sample delay device 2...Variable coefficient multiplier 3...
・Adder. Patent applicant: Canon Co., Ltd. Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 適応型フィルタを用い修正ケースを感度の低い部分で打
切り予測計算の収束速度を速めることを特徴とする適応
型線形予測方法。
An adaptive linear prediction method that uses an adaptive filter to abort modified cases at low sensitivity areas to speed up the convergence of prediction calculations.
JP9797883A 1983-06-03 1983-06-03 Adaptive linear forecasting method Pending JPS59224913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9797883A JPS59224913A (en) 1983-06-03 1983-06-03 Adaptive linear forecasting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9797883A JPS59224913A (en) 1983-06-03 1983-06-03 Adaptive linear forecasting method

Publications (1)

Publication Number Publication Date
JPS59224913A true JPS59224913A (en) 1984-12-17

Family

ID=14206745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9797883A Pending JPS59224913A (en) 1983-06-03 1983-06-03 Adaptive linear forecasting method

Country Status (1)

Country Link
JP (1) JPS59224913A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8594173B2 (en) 2008-08-25 2013-11-26 Dolby Laboratories Licensing Corporation Method for determining updated filter coefficients of an adaptive filter adapted by an LMS algorithm with pre-whitening

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8594173B2 (en) 2008-08-25 2013-11-26 Dolby Laboratories Licensing Corporation Method for determining updated filter coefficients of an adaptive filter adapted by an LMS algorithm with pre-whitening

Similar Documents

Publication Publication Date Title
US20140310326A1 (en) Adaptive filter for system identification
Snyder et al. Active control of vibration using a neural network
JP2011118947A (en) Adaptive inference model in process control system
JPH08509068A (en) Method and apparatus for online system identification
US20040181300A1 (en) Methods, apparatus and computer program products for adaptively controlling a system by combining recursive system identification with generalized predictive control
CN111082729A (en) Machine learning device, control device, and machine learning method
US20080260141A1 (en) Method and apparatus for enhanced convergence of the normalized LMS algorithm
JPH096405A (en) Adjusting method of compensator
JPS59224913A (en) Adaptive linear forecasting method
JP7009984B2 (en) Noise removal filter device and noise removal method
Wangler et al. Genetic algorithm adaptation of non-linear filter structures for active sound and vibration control
EP0422809B1 (en) Adaptive apparatus
CN106849910A (en) It is applied to the secondary channel Fast Identification Method of Studies on Active Duct Noise control
Eure Adaptive predictive feedback techniques for vibration control
CN104754485B (en) A kind of digital deaf-aid echo canceling method based on NLMS algorithm improvements
JPH0359757A (en) Neural circuit net processing system
Kovacic et al. Adaptive fuzzy logic control based on integral criterion
Vogel Adaptive control of chemical processes with variable dead time
Kehtarnavaz et al. Adaptive Filtering
US6831983B1 (en) Method for controlling an active control system and system using such method
Douglas Reducing the computational and memory requirements of the multichannel filtered-x LMS adaptive controller
Kohno et al. Direct adaptive active noise control algorithms in case of uncertain secondary path dynamics
WO2006088569A2 (en) Method for optimization of q-filter kernel parameters
JPH0697771A (en) Device and method for processing high speed signal
JPH08250981A (en) Estimation device for filter coefficient