JPS59224805A - Manufacture of optical transmitter array - Google Patents

Manufacture of optical transmitter array

Info

Publication number
JPS59224805A
JPS59224805A JP10037483A JP10037483A JPS59224805A JP S59224805 A JPS59224805 A JP S59224805A JP 10037483 A JP10037483 A JP 10037483A JP 10037483 A JP10037483 A JP 10037483A JP S59224805 A JPS59224805 A JP S59224805A
Authority
JP
Japan
Prior art keywords
plate
reference frame
frame plate
pressure plate
grooves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10037483A
Other languages
Japanese (ja)
Inventor
Manabu Takami
学 高見
Akira Akazawa
赤沢 旭
Shigeru Tokita
茂 戸木田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP10037483A priority Critical patent/JPS59224805A/en
Publication of JPS59224805A publication Critical patent/JPS59224805A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0056Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/04Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres
    • G02B6/06Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres the relative position of the fibres being the same at both ends, e.g. for transporting images

Abstract

PURPOSE:To array optical transmitters with extremely high precision and to facilitate the manufacture greatly by forming grooves for arraying the optical transmitters in a sectional shape in one plate type body. CONSTITUTION:The optical transmitters 22 are extended over a stepped surface 15 having numbers of V-sectioned grooves while straddling the stepped surface 15. Then, a wedgelike pressure plate 24 is set on both projection parts 18, and pins 26 are inserted into pin holes 25 formed in both lengthwise end parts of the pressure plate 24 and pin holes 21 in a reference frame plate 12 to specify the relative positions of the reference frame plate 12 and pressure plate 24 at right angles to the pins 26. Then, the pressure plate 24 and reference frame plate 12 are fixed temporarily at the projection part 18 with an adhesive. At this time, the surface 24a of the pressure plate 24 and the reverse surface 12a of the reference frame plate 12 are parallel to each other. Then, arrays 11 in said state are dipped in a resin tank 31 filled with black silicone resin 27 to charge gaps among the reference frame plate 12, pressure plate 24, and optical transmitters 22 and 23 with the resin 27 completely, thus adhering the reference frame plate 12, pressure plate 24, and optical transmitters 22 and 23 together fixedly.

Description

【発明の詳細な説明】 本発明は、光伝送体が複数列に配列されており、しかも
物体面に在る物体の画像を1以外の倍率で・(1) 像面上へ伝送する光伝送体アレイの製造方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides optical transmission in which optical transmission bodies are arranged in a plurality of rows, and an image of an object located on an object plane is transmitted at a magnification other than 1. The present invention relates to a method for manufacturing a body array.

第1図は、この様な光伝送体アレイの1つの従来例を示
している。この第1図に示す様に、光伝送体アレイ(1
)に於いては、円柱状を成す多数の光伝送体(2)が2
列に配列されている。光伝送体(2)は、同一列内に於
いて扇状を成すと共にこれらの扇状が互い番こ非平行に
対向し且つ夫々の端面(2aX2b)が千鳥足状を成す
様に、所定の保持部材(3)によって保持されている。
FIG. 1 shows one conventional example of such an optical transmission body array. As shown in Fig. 1, an optical transmitter array (1
), a large number of cylindrical optical transmission bodies (2)
arranged in columns. The optical transmission body (2) is formed by a predetermined holding member (2) so that it forms a fan shape in the same row, and these fan shapes face each other in a non-parallel manner, and each end surface (2aX2b) forms a staggered shape. 3).

プレイ(1)は、個々の光伝送体(2)が像面上で作る
拡大成いは縮小された実像の一部分ずつを近傍同士で重
ね合わせることによって、二次元的な広がりを有する画
像の全体を物体面から像面へ1以外の倍率で同時に伝送
することができるので、拡大式或いは縮小式の複写機等
に適用すれば有用である。
Play (1) creates an entire image with a two-dimensional spread by superimposing parts of the enlarged or reduced real images that are created on the image plane by each optical transmission body (2) in the vicinity of each other. can be simultaneously transmitted from the object plane to the image plane at a magnification other than 1, so it is useful if applied to an enlargement type or reduction type copying machine.

ところで、アレイ(1)に於いては、上述の如く、個々
の光伝送体(2)が作る拡大成いは縮小された実像の一
部分ずつが近傍同士で重ね合わされるので、/Ql 高い解像度を有するアレイ(1)を得る為には、個々の
実像同士を正確に重ね合わせる必要があり、この為には
光伝送体(2)同士を極めて高精度に配列する必要があ
る。
By the way, in the array (1), as mentioned above, the enlarged and reduced real images produced by the individual optical transmitters (2) are superimposed on each other in the vicinity, so /Ql high resolution can be achieved. In order to obtain an array (1) having the following characteristics, it is necessary to accurately superimpose the individual real images, and for this purpose, it is necessary to arrange the optical transmission bodies (2) with extremely high precision.

光伝送体同士が互いに平行なアレイであれば、光伝送体
を単に千鳥格子状に積み上げるだけで、光軸間の距離が
一様な高精度の配列を得ることができる。
If the optical transmission bodies are arrayed parallel to each other, a highly accurate arrangement with a uniform distance between optical axes can be obtained by simply stacking the optical transmission bodies in a houndstooth pattern.

しかし、アレイ(11では光伝送体(2)同士が互いに
非平行であ蚤るので、上述の様な方法では、第1図に示
す様な光伝送体(2)の配列を得ることはできない。こ
の為に、光伝送体(2)同士を極めて高精度に配列でき
、しかも製造が非常に容易なアレイ(1)の製造方法は
、現在のところ一般には知られていない。
However, in the array (11), the optical transmission bodies (2) are not parallel to each other, so the above method cannot obtain the arrangement of the optical transmission bodies (2) as shown in Figure 1. For this reason, a method of manufacturing the array (1) that allows the optical transmission bodies (2) to be arranged with extremely high precision and is extremely easy to manufacture is currently not generally known.

本発明は、この様な問題点に鑑み、光伝送体同士を極め
て高精度に配列することができるので高い解像度を得る
ことができ、しかも製造が非常に容易な光伝送体アレイ
の製造方法を提供することを目的としている。
In view of these problems, the present invention provides a method for manufacturing an optical transmitter array that can obtain high resolution by arranging optical transmitters with extremely high precision and is also extremely easy to manufacture. is intended to provide.

以下、本発明の一実施例を、第2図〜第10図を参照し
ながら説明する。
Hereinafter, one embodiment of the present invention will be described with reference to FIGS. 2 to 10.

第2図〜第5図は、製造過程にある光伝送体アレイを示
している。これらの第2図〜第5図に示す様に、光伝送
体アレイ(1υを製造する為には、まず、FRP(繊維
強化樹脂)等から成る基準フレーム板(12を、NC加
工や射出成形等によって、長方形の板状で且つ略楔状に
成形する。
FIGS. 2 to 5 show the optical transmitter array in the manufacturing process. As shown in Figures 2 to 5, in order to manufacture an optical transmitter array (1υ), first, a reference frame plate (12) made of FRP (fiber reinforced resin), etc. is processed by NC processing or injection molding. etc., to form a rectangular plate shape and approximately wedge shape.

基準フレーム板0渇の表面には、両側方から階段状に深
くなり基準フレーム板(12+の長手方向に延びる巾広
の条溝0皺が形成されている。
On the surface of the reference frame plate (12+), wide grooves and wrinkles are formed that extend in the longitudinal direction of the reference frame plate (12+) and become deeper in a stepwise manner from both sides.

条溝(13)の第1の階段面0夷は、基準フレーム板(
12の裏面(12a)に対して僅かな角度、例えば0.
1度位傾斜しており、第2の階段面(圃つまり底面は、
裏面(12a )に対して階段面αaとは反対の方向へ
やはり僅かな角度だけ傾斜している。
The first step surface 0 of the groove (13) is the reference frame plate (
12 at a slight angle, for example 0.
The slope is about 1 degree, and the second step surface (the bottom surface of the field is
The back surface (12a) is also inclined at a slight angle in the direction opposite to the step surface αa.

階段面(14)(151には、断面V形の多数の溝(1
,6) 0.7]が形成されている。第6図に明示する
如(、溝(16H1での内、基準フレーム板(1匂の長
手方向の略中央に位置する1本の溝(16)(171は
、条溝時を直角をこ横切る方向へ延びている。そして、
他の溝(1G) flではこの中央の溝(16)Qη屹
対して階段面(1(イ)(15)内で傾斜しており、こ
の傾斜は中央の溝(16)(17)から両方へ離れるに
連れて徐々に大きくなっている。つまり、これらの溝(
16)ar、は、全体として2つの扇形を形成している
。また、これらの溝(1,6)Q7)は、第4図に明示
する如く、互いに千鳥足状に形成されている。
The step surface (14) (151 has a large number of V-shaped grooves (1
, 6) 0.7] is formed. As clearly shown in Figure 6, one groove (16) (171) located approximately in the longitudinal center of the reference frame plate (16H1) crosses the groove at right angles. It extends in the direction.
In the other groove (1G) fl, it is inclined in the step surface (1 (A) (15)) with respect to this central groove (16) These grooves (
16) ar forms two sectors as a whole. Further, these grooves (1, 6) Q7) are formed in a staggered manner with respect to each other, as clearly shown in FIG.

基準フレーム板(+2)の長手方向の両端部には、階段
面(14)に直角な方向へ突出する突出部o印が形成さ
れている。また、これらの突出部(国の夫々の略中央部
には、裏面(12a )に直角な円柱状のビン孔(21
)が形成されている。
At both ends of the reference frame plate (+2) in the longitudinal direction, a protrusion o mark is formed that protrudes in a direction perpendicular to the step surface (14). In addition, in approximately the center of each of these protrusions, there is a cylindrical bottle hole (21) perpendicular to the back surface (12a).
) is formed.

次いで、以上の様な形状に成形した基準フレーム板(1
21の溝(17)及びae内へこの順序で、つまり裏面
(12a )に近い方の溝から順次に光伝送体(2階及
び(221を配置する。
Next, a reference frame plate (1
The optical transmission bodies (second floor and (221) are placed in the grooves (17) and ae of No. 21 in this order, that is, sequentially from the groove closer to the back surface (12a).

光伝送体127J (23+としては、ガラスや合成樹
脂等の透明な材料で円柱状に成形され、その屈折率が軸
心位置で最大であり且つ半径方向へ距離の2乗に略比例
して減少している為に、光の入出射端面が平面であって
もレンズ作用を有しており、光が軸心を中心として蛇行
しながら進む屈折率分布型レンズを使用する。
Optical transmitter 127J (23+ is made of transparent material such as glass or synthetic resin into a cylindrical shape, and its refractive index is maximum at the axial center position and decreases in approximately proportion to the square of the distance in the radial direction. Therefore, even if the light input/output end face is flat, it has a lens effect, and a gradient index lens is used in which the light travels while meandering around the axis.

溝0η内へ配置する光伝送体(2)としては、この溝任
ηの長さと略等しい長さを有するものを使用するが、溝
α0内へ配置する光伝送体(2りとしては、基準フレー
ム板αカの巾と略等しい長さを有するものを使用する。
The optical transmission body (2) placed in the groove 0η has a length approximately equal to the length of this groove η, but the optical transmission body (2) placed in the groove α0 is Use one with a length approximately equal to the width of the frame plate α.

従って、光伝送体0旧マ、階段面(1!9を跨ぐ様にし
てこの階段面(1つの上方に掛は渡される。
Therefore, the light transmission body 0 and the stair surface (1!9) are straddled over this stair surface (1).

次に、第2図に示す様に、楔状の押え板(2(イ)を両
方の突出部0印に掛は渡し、この押え板(財)の長手方
向の両端部に形成されているビン孔(2暖と基準フレー
ム板02のビン孔(2I)とにピン(2aを挿通して、
このピン(2eに直角な方向への基準フレーム板(1の
と押え板(財)との相対的な位置規制を行う。
Next, as shown in FIG. Insert the pin (2a) into the hole (2I) and the bottle hole (2I) of the reference frame plate 02,
The relative position of the reference frame plate (1) and the presser plate (material) in the direction perpendicular to this pin (2e) is controlled.

そして、この押え板(24と基準フレーム板(Iaとを
、突出部(18)に於いて接着剤で互いに仮固定する。
Then, the holding plate (24) and the reference frame plate (Ia) are temporarily fixed to each other at the protrusion (18) with adhesive.

このとき、押え板(24)の表面(24a)と基準フレ
ーム板(12+の裏面(12a)とは互いに平行である
At this time, the front surface (24a) of the presser plate (24) and the back surface (12a) of the reference frame plate (12+) are parallel to each other.

次いで、以上の様な状態のアレイ(11)を、第6図に
示す様に、黒色のシリコン樹脂(2ηが満たされていイ
)樹脂槽(31)中へ浸漬する。この樹脂槽(31)は
、低圧の容器(3つ内に配置されており、この低圧の為
に、樹脂(2で中の気泡は完全に除去される。
Next, the array (11) in the above state is immersed in a resin tank (31) of black silicone resin (filled with 2η), as shown in FIG. This resin tank (31) is placed in a low-pressure container (3), and due to this low pressure, air bubbles inside the resin (2) are completely removed.

従って、基準フレーム板(vlrs押え板(24)及び
光伝送体嗅(23)の間の間隙には樹脂(2でが完全に
充填されるので、アレイBを樹脂槽(9)から取り出し
て樹脂(2ηを硬化させると、基準フレーム板(12)
、押え板(24)及び光伝送体oz (23が互いに接
着固定されると共に、光伝送体1221 (’23同士
の間の迷光が防止される。
Therefore, the gap between the reference frame plate (vlrs holding plate (24) and the optical transmitter tube (23) is completely filled with resin (2), so the array B is taken out from the resin tank (9) and the resin is removed. (When 2η is cured, the reference frame plate (12)
, the holding plate (24) and the optical transmission body 1221 (23) are adhesively fixed to each other, and stray light between the optical transmission bodies 1221 (23) is prevented.

最後に、第6図及び第5図中の一点鎖線の曲線に沿って
プレイ(1υを切断或いは研削し、更にこのアレイ(1
1)の光の入出射端面を研磨する。
Finally, play (cut or grind 1υ) along the dashed-dotted curve in Figures 6 and 5, and further cut or grind this array (1υ).
1) Polish the light input/output end face.

第7図〜第10図は、以上の様な方法によって製造した
アレイ圓を示している。これらの褐7図〜第10図に示
す様に、光伝送体(22) C23)は、夫々の光軸が
アレイ圓の平面及び側面の何れに於いても扇状を成して
いる。また、光伝送体(2’4 (23)の一方の端面
は密な千鳥足状、他方の端面は粗な千鳥足状に夫々配列
されている。
FIGS. 7 to 10 show array circles manufactured by the method described above. As shown in FIGS. 7 to 10, each optical axis of the optical transmission body (22) C23) forms a fan shape both on the plane and on the side of the array circle. Further, one end surface of the optical transmission body (2'4 (23)) is arranged in a dense staggered pattern, and the other end surface is arranged in a rough staggered pattern.

なお、側面から見たアレイ0υの入出射面の曲率は実際
には非常に小さいので、これらを平面とし、アレイ01
)の側面の形状を第10図Aに示す形状の代りに第10
図Bに示す形状としてもよい。
Note that the curvature of the entrance and exit surfaces of array 0υ seen from the side is actually very small, so these are considered to be planes, and array 01
) in place of the shape shown in Figure 10A.
The shape shown in FIG. B may also be used.

以上、本発明を一実施例に基いて説明したが、本発明は
この実施例に限定されるものではなく、各種の変更が可
能である。
Although the present invention has been described above based on one embodiment, the present invention is not limited to this embodiment, and various modifications are possible.

例えば、上記の実施例に於いては、光伝送体(2榎(2
3)をアレイ旧)の平面及び側面の何れに於いても扇状
に配列したが、平面に於いてのみ扇状に配列し側面に於
いては互いに平行をこ配列してもよい。その場合には、
画像の拡大成いは縮小は、平面に於いてのみ行われ側面
に於いては行われない。しかしその場合でも、光伝送体
(2′IJ(ハ)を複数列に配列することによって、伝
送光量の増加等の効果を得ることができる。
For example, in the above embodiment, the optical transmission body (2
3) are arranged in a fan shape on both the plane and side surfaces of the array (former array), but they may be arranged in a fan shape only on the plane and parallel to each other on the side surfaces. In that case,
The image is enlarged or reduced only in the plane and not in the sides. However, even in that case, effects such as an increase in the amount of transmitted light can be obtained by arranging the optical transmission bodies (2'IJ (c)) in a plurality of rows.

また、」−記の実施例に於いては、光伝送体(22(2
階を2列に配列したが、6列以上の所望の数に配列する
ことも可能である。
In addition, in the embodiment shown in "-", the optical transmission body (22 (2
Although the floors are arranged in two rows, it is also possible to arrange them in a desired number of six or more rows.

以上の如く、不発明による光伝送体プレイの製造方法に
於いては、光伝送体を複数列の扇状に配列する為の溝を
、1枚の板状体に形成している。
As described above, in the method of manufacturing an optical transmission body play according to the invention, grooves for arranging optical transmission bodies in a plurality of rows in a fan shape are formed in one plate-shaped body.

従って、例えば複数の板状体に溝を形成しこれらの板状
体同士を位置決めする場合に比べて、溝同士の位置精度
を高(することができ、光伝送体同士を互いに高精度に
配列することができるので、高い解像度を有する光伝送
体アレイを製造することができる。
Therefore, compared to, for example, forming grooves on a plurality of plate-like bodies and positioning these plate-like bodies with each other, the positional accuracy of the grooves can be made higher (and the optical transmission bodies can be aligned with each other with high precision). Therefore, an optical transmitter array with high resolution can be manufactured.

また、本発明による光伝送体アレイの製造方法に於いて
は、光伝送体を複数列の扇状に配列する為の溝を、1枚
の板状体の一方の面側にのみ形成している。従って、溝
加工の途中での板状体の反転等が不要であり、このこと
によっても溝同士の位置精度を更に高くすることができ
、光伝送体同士を互いζこ更に高精度に配列することが
できるので、更に高い解像度を有する光伝送体アレイを
製造することができる。
Furthermore, in the method for manufacturing an optical transmitter array according to the present invention, the grooves for arranging the optical transmitters in a plurality of rows in a fan shape are formed only on one side of one plate-like member. . Therefore, there is no need to invert the plate-shaped body during groove machining, and this also makes it possible to further improve the positional accuracy of the grooves, allowing the optical transmission bodies to be aligned with each other with even higher precision. Therefore, it is possible to manufacture an optical transmission body array with even higher resolution.

また、本発明による光伝送体アレイの製造方法に於いて
は、上述の如く、光伝送体を複数列の扇状に配列する為
の溝を、1枚の板状体の一方の面側にのみ形成している
。従って、光伝送体の溝への配置に際して板状体の反転
等が不要であり、これらの光伝送体を単に溝内に載置す
るだけでよく、製造が非常に容易である。
Furthermore, in the method of manufacturing an optical transmitter array according to the present invention, as described above, the grooves for arranging the optical transmitters in a plurality of rows in a fan shape are formed only on one side of one plate-like member. is forming. Therefore, there is no need to invert the plate-shaped body when placing the light transmitting bodies in the grooves, and it is sufficient to simply place these light transmitting bodies in the grooves, making manufacturing very easy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によって製造される光伝送体アレイの1
つの従来例を示す概略的な斜視図である。 第2図〜第10図は本発明の一実施例を示しており、第
2図は本発明による製造過程の途中の状態を示す概略的
な斜視図、第6図は第2図に於ける■矢視図、第4図は
同■矢視図、第5図は同■−v線断面図、第6図は本発
明による製造過程の別の途中の状態を示す概略的な断面
図、第7図はこの実施例によって製造された光伝送体ア
レイの概略的な平面図、第8図は同正面図、第9図は同
背面図、第10図は同側面図である。 なお図面に用いられている符号に於いて、I −・・・
・・・・ 光伝送体アレイ02・−・・ 基準フレーム
板 (1〜 ・    条溝 (14)    ・・第1の階段面 (I5)      第2の階段面 06X17)溝 (2功(23)     光伝送体 (財)   ・・ 押え板 (27)・    シリコン樹脂 である。 代理人 上屋 勝 常包芳男 杉浦俊責 圓 第1図 第6図 (00’。 〜                −へN     
            ’%++      )N 
CN\  へ 〜    (
FIG. 1 shows one of the optical transmitter arrays manufactured according to the present invention.
FIG. 2 is a schematic perspective view showing two conventional examples. 2 to 10 show an embodiment of the present invention, FIG. 2 is a schematic perspective view showing a state in the middle of the manufacturing process according to the present invention, and FIG. 4 is a view in the same direction as the ■ arrow, FIG. 5 is a cross-sectional view along the line ■-v in the same figure, and FIG. 6 is a schematic cross-sectional view showing another state in the middle of the manufacturing process according to the present invention. FIG. 7 is a schematic plan view of the optical transmitter array manufactured according to this embodiment, FIG. 8 is a front view thereof, FIG. 9 is a rear view thereof, and FIG. 10 is a side view thereof. In addition, in the symbols used in the drawings, I-...
・・・・ Optical transmitter array 02・・・・ Reference frame plate (1~・ Groove (14) ・・First step surface (I5) Second step surface 06×17) Groove (2 gongs (23) Light Transmission body (goods): Holding plate (27), silicone resin. Agent: Yoshio Katsunekane, Toshio Sugiura, Figure 1, Figure 6 (00'. ~ to -N
'%++ )N
To CN\ (

Claims (1)

【特許請求の範囲】[Claims] 両側方から階段状に深くなっている条溝の各階段面に含
まれ且つこの条溝を横切る方向へ扇状屹延びる複数の溝
を第1の板状体の1つの面側に形成する工程と、前記条
溝を横切る様に前記複数の溝の夫々に光伝送体を配置す
る工程と、前記第1の板状体及び配置された前記光伝送
体の上へ第2の板状体を配置する工程と、前記第1及び
第2の板状体を互いに仮固定する工程と、前記第1、第
2の板状体及び前記光伝送体の間隙へ樹脂を充填してこ
れらを互いに固定する工程と、互いに固定された前記第
1、第2の板状体、前記光伝送体及び充填された前記樹
脂を所定の形状に成形する工程とを夫々具備する光伝送
体アレイの製造方法。
forming a plurality of grooves on one surface side of the first plate-shaped body, the grooves being included in each stepped surface of the groove that deepens in a stepwise manner from both sides and extending fan-shaped in a direction across the groove; , arranging a light transmitting body in each of the plurality of grooves so as to cross the grooves, and arranging a second plate-like body on top of the first plate-like body and the disposed light transmitting body. a step of temporarily fixing the first and second plate-like bodies to each other; and filling a gap between the first and second plate-like bodies and the optical transmission body with resin to fix them to each other. and a step of molding the first and second plate-like bodies fixed to each other, the light transmitting body, and the filled resin into a predetermined shape.
JP10037483A 1983-06-06 1983-06-06 Manufacture of optical transmitter array Pending JPS59224805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10037483A JPS59224805A (en) 1983-06-06 1983-06-06 Manufacture of optical transmitter array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10037483A JPS59224805A (en) 1983-06-06 1983-06-06 Manufacture of optical transmitter array

Publications (1)

Publication Number Publication Date
JPS59224805A true JPS59224805A (en) 1984-12-17

Family

ID=14272253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10037483A Pending JPS59224805A (en) 1983-06-06 1983-06-06 Manufacture of optical transmitter array

Country Status (1)

Country Link
JP (1) JPS59224805A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990004194A1 (en) * 1988-10-07 1990-04-19 Eastman Kodak Company Fiber optic array

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS498893A (en) * 1972-05-23 1974-01-25
JPS5495255A (en) * 1978-01-12 1979-07-27 Ricoh Co Ltd Production of optical transmission assembly
JPS57136607A (en) * 1981-01-12 1982-08-23 Xerox Corp Assembly of optical fiber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS498893A (en) * 1972-05-23 1974-01-25
JPS5495255A (en) * 1978-01-12 1979-07-27 Ricoh Co Ltd Production of optical transmission assembly
JPS57136607A (en) * 1981-01-12 1982-08-23 Xerox Corp Assembly of optical fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990004194A1 (en) * 1988-10-07 1990-04-19 Eastman Kodak Company Fiber optic array

Similar Documents

Publication Publication Date Title
US4973127A (en) Multifiber optical connector and method of making same
US4405207A (en) Method of assembling a gradient index lens array having reduction properties
US5300263A (en) Method of making a microlens array and mold
US4773730A (en) Fiber optic light transfer devices and assemblies
US9739949B2 (en) Ferrule with optical fiber and optical connector system
WO2012008995A1 (en) Single-lens, multi-fiber optical connection method and apparatus
US5325451A (en) Modular optical waveguide and method for making
JP4077101B2 (en) Lens array and lens array assembly including a plurality of lens arrays
CN106547053A (en) A kind of joints of optical fibre lock pin of MEMS technology and MPO optical fiber connector
US4961802A (en) Method of manufacturing a lens array for reading information
JP3305027B2 (en) Optical fiber array and method of manufacturing the same
JPS59224812A (en) Optical transmitter array
US20020118925A1 (en) Substrate for mounting optical parts, method of manufacturing same, and assembly using the substrate
CN102681103A (en) Optical fiber component, manufacturing method thereof, optical fiber and lens substrate assembly, and manufacturing method thereof
JPS59224805A (en) Manufacture of optical transmitter array
US4844589A (en) Lenses having plural contiguous refractive index distribution substrates and method of manufacture
US20050063643A1 (en) Optical fiber collimator
US7256941B2 (en) Lens array
JPS59224813A (en) Optical transmitter array
JPS61226701A (en) Lens array
JPS58134613A (en) Multifiber connector
JPH10170703A (en) Array type lens and its manufacture
JP2014228809A (en) Compound-eye optical system, image-capturing device, and method for manufacturing compound-eye optical system
US4730887A (en) Fiber optic coupling device and method of constructing such a device
JPS63304201A (en) Lens array and its production