JPS5922464B2 - Gap winding rotating electric machine - Google Patents

Gap winding rotating electric machine

Info

Publication number
JPS5922464B2
JPS5922464B2 JP49048498A JP4849874A JPS5922464B2 JP S5922464 B2 JPS5922464 B2 JP S5922464B2 JP 49048498 A JP49048498 A JP 49048498A JP 4849874 A JP4849874 A JP 4849874A JP S5922464 B2 JPS5922464 B2 JP S5922464B2
Authority
JP
Japan
Prior art keywords
stator core
gap
magnetic
electric machine
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP49048498A
Other languages
Japanese (ja)
Other versions
JPS50139911A (en
Inventor
身佳 高橋
典義 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP49048498A priority Critical patent/JPS5922464B2/en
Publication of JPS50139911A publication Critical patent/JPS50139911A/ja
Publication of JPS5922464B2 publication Critical patent/JPS5922464B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Insulation, Fastening Of Motor, Generator Windings (AREA)
  • Motor Or Generator Frames (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Description

【発明の詳細な説明】 本発明はギャップワインディング回転電機に係り、特に
積層された固定子鉄心の構造に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gap winding rotating electric machine, and particularly to a structure of a laminated stator core.

一般にギャップワインディング回転電機においては、コ
イルは固定子鉄心の内周面に固定保持されるが、この固
定に当り、できるだけ大きな面でコイルに働く回転力を
受けて応力の集中を緩和するために、固定子鉄心内周面
を多角形にしている。
Generally, in a gap winding rotating electric machine, the coil is fixedly held on the inner circumferential surface of the stator core, but in order to receive the rotational force acting on the coil on as large a surface as possible during this fixing, to relieve stress concentration. The inner peripheral surface of the stator core is polygonal.

すなわち、第1図に示すように整形プれたコイル1の外
周面を、固定子鉄心2の多角形の内周面で形成きれてい
る凹部2′と噛み合うように弾力性のある絶縁物1′で
凸状に形成し、その噛み合いによりコイル1に働く回転
力が鉄心2の内周面に伝達される構造になっているOま
た、内径方向に作用する力に対しては絶縁リング3でコ
イル1を固定している。
That is, as shown in FIG. 1, the elastic insulator 1 is inserted so that the outer peripheral surface of the shaped and pulled coil 1 is engaged with the recess 2' formed by the polygonal inner peripheral surface of the stator core 2. ' is formed in a convex shape, and the structure is such that the rotational force acting on the coil 1 is transmitted to the inner peripheral surface of the iron core 2 due to their engagement.In addition, the insulating ring 3 protects against the force acting in the inner radial direction. Coil 1 is fixed.

なお、図中4はコイル1に作用する電磁力に対してダン
パーの役目を兼ねたスペーサである。
Note that 4 in the figure is a spacer that also serves as a damper against the electromagnetic force acting on the coil 1.

ところで、このような構造のものでは、固定子鉄心2の
内周面が多角形であるため、固定子鉄心の内周面が円形
である一般の回転電機と違って、回転子磁極の外周面と
固定子鉄心の内周面間の距離、すなわちエアギャップ長
が鉄心内周面の角数nと回転子磁極の回転数に対応する
電機子周波数fとの積nfの周波数で脈動する。
By the way, in such a structure, since the inner circumferential surface of the stator core 2 is polygonal, unlike a general rotating electric machine where the inner circumferential surface of the stator core is circular, the outer circumferential surface of the rotor magnetic poles The distance between the stator core and the inner peripheral surface of the stator core, that is, the air gap length, pulsates at a frequency of the product nf of the angular number n of the core inner peripheral surface and the armature frequency f corresponding to the rotation speed of the rotor magnetic poles.

たとえば、第2図に示すように2極機で鉄心内周面が正
五角形である場合、励磁された磁極5が第2図aに示す
位置にあるとき、各種の磁束の大部分は磁極を形成して
いる固定子鉄心、エアギャップ、固定子コイル、固定子
鉄心、固定子コイル、エアギャップ、そして固定子鉄心
へ戻る各々の磁気回路に沿って矢印方向にφ1.φ2と
なる。
For example, in the case of a two-pole machine with a regular pentagonal core inner peripheral surface as shown in Fig. 2, when the excited magnetic pole 5 is in the position shown in Fig. 2 a, most of the various magnetic fluxes will pass through the magnetic pole. In the direction of the arrow, φ1. It becomes φ2.

ここで、固定子鉄心の半径方向幅を十分磁束が通るよう
にとると、右回りの磁束φ2の通る磁気回路は、左回り
の磁束φ1の通る磁気回路に比べて磁気抵抗の高いエア
ギャップ長が犬であるため、回転子軸6を取り巻く一周
を考えた場合、矢印11aで示すような左回りの磁束が
残ることになる。
Here, if the radial width of the stator core is set to allow sufficient magnetic flux to pass through, the magnetic circuit through which the clockwise magnetic flux φ2 passes will have an air gap length with higher magnetic resistance than the magnetic circuit through which the counterclockwise magnetic flux φ1 passes. Since it is a dog, when one circuit around the rotor shaft 6 is considered, a counterclockwise magnetic flux as shown by the arrow 11a remains.

つぎに、固定子鉄心内周面の角一つ分だけ回転子が回転
して第2図す位置にくると、右回りの磁束φ1が左回り
の磁束φ、より大となり、回転子軸6を取り巻く残磁束
は矢印11bで示すように、右回りとなる○すなわち、
回転子軸6を取り巻く残磁束が回転子の回転に伴って、
電機子周波数fと固定子鉄心における内周面の角数nの
積nfなる周波数で交番することになる。
Next, when the rotor rotates by one corner of the inner peripheral surface of the stator core and reaches the position shown in Figure 2, the clockwise magnetic flux φ1 becomes larger than the counterclockwise magnetic flux φ, and the rotor shaft 6 The residual magnetic flux surrounding the circle rotates clockwise as shown by the arrow 11b, i.e.,
As the residual magnetic flux surrounding the rotor shaft 6 rotates,
It alternates at a frequency nf, which is the product of the armature frequency f and the number of angles n of the inner circumferential surface of the stator core.

しだがってこの残磁束が回転子軸6の両端に電圧を発生
させ、その電圧が回転子を両端で支持している軸受部に
かかることになる。
Therefore, this residual magnetic flux generates a voltage at both ends of the rotor shaft 6, and this voltage is applied to the bearings supporting the rotor at both ends.

もし、その電圧で軸受の油膜が破られれば、第3図に示
すような、回転子軸6、一方の軸受7、ベース8、他方
の軸受7、そして回転子軸6へ戻る経路9で軸電流が流
れることになる。
If the oil film of the bearing is broken by that voltage, the rotor shaft 6, one bearing 7, the base 8, the other bearing 7, and the path 9 returning to the rotor shaft 6, as shown in FIG. Current will flow.

図中、10は回転子軸6を取り巻く磁束の方向を示す。In the figure, 10 indicates the direction of the magnetic flux surrounding the rotor shaft 6.

この様な現象は2極機に限らず、第4図に示す様な4極
機等においても同様に起こる。
This phenomenon occurs not only in two-pole machines but also in four-pole machines as shown in FIG. 4.

また、鉄心セグメントによっても同様に残磁束を発生す
ることがある。
In addition, residual magnetic flux may be generated by iron core segments as well.

なお、以下の説明では本発明を説明する上で特に関係の
ない固定子コイルの図示は省略しである。
In the following description, stator coils, which are not particularly relevant to the description of the present invention, are not illustrated.

すなわち第4図に破線で示す様に、固定子鉄心2を構成
する薄鉄板を複数個のセグメント2′として打抜く場合
には、各セグメント2′の合せ目の所に僅かながらギャ
ップgが生へここにおける磁気抵抗が高くなるため、各
磁気回路の磁気抵抗がアンバランスとなって、回転子軸
6を取り巻く磁束が発生し、このギャップgも前述と同
様の現象を起こす原因となる○ 上記の現象を起こす限界は、軸電圧が実効値で1、Ov
以上の場合、1週間から1年程度で軸受が損傷するとい
われ、また、軸電流が実効値で2A/一流れた場合、運
転5時間後には損傷が現われるときれている。
In other words, as shown by the broken line in FIG. 4, when the thin iron plate constituting the stator core 2 is punched into a plurality of segments 2', a slight gap g is created at the seam of each segment 2'. Since the magnetic resistance at this point increases, the magnetic resistance of each magnetic circuit becomes unbalanced, and a magnetic flux surrounding the rotor shaft 6 is generated, and this gap g also causes the same phenomenon as described above. The limit that causes this phenomenon is that the effective value of the shaft voltage is 1, Ov.
In the above case, it is said that the bearing will be damaged in about one week to one year, and if the shaft current flows at an effective value of 2 A/current, damage will appear after 5 hours of operation.

すなわち、軸電流が流れた場合、そのエネルギーの大部
分は軸受面の油膜を破壊するために費やきれるので、軸
受メタルの局部溶解が起こって軸受の過熱溶損は免れず
、運転不能に落ち入ることになる。
In other words, when a shaft current flows, most of the energy is used to destroy the oil film on the bearing surface, so local melting of the bearing metal occurs and the bearing cannot be avoided from overheating and melting, rendering it inoperable. I will be entering.

このように、内周多角形でセグメントの固定子鉄心では
磁気回路の磁気抵抗を支配するエアギャップ長の変動要
因、すなわち内周部の角数と分割セグメント数の関係で
軸電圧を発生し易い欠点があり、各々固定子鉄心周方向
に磁気抵抗が均一であれば軸電圧は発生しないものの、
具体的にどの様な手段で均一にするかは仲々むずかしく
、この種回転電機の大きな問題点であった。
In this way, in a stator core with segments with a polygonal inner circumference, axial voltage is likely to occur due to the variation factor of the air gap length that controls the magnetic resistance of the magnetic circuit, that is, the relationship between the number of corners on the inner circumference and the number of divided segments. Although there is a drawback, if the magnetic resistance is uniform in the circumferential direction of each stator core, no axial voltage will occur.
It is difficult to determine the specific means to achieve uniformity, which is a major problem with this type of rotating electric machine.

本発明は、これに鑑みなされたものでその目的とすると
ころは、たとえ固定子鉄心がセグメント状のもので、か
つその内周面の断面形状が多角形のものであっても、そ
の回転子軸を取り巻く磁束が偏ることがなくこれに起因
する軸電圧の発生を防止し得るこの種の回転電機を提供
するにある。
The present invention has been made in view of this problem, and its purpose is to prevent the rotor from collapsing even if the stator core is segment-shaped and the cross-sectional shape of the inner peripheral surface is polygonal. It is an object of the present invention to provide a rotating electrical machine of this type in which the magnetic flux surrounding the shaft is not biased and generation of shaft voltage due to this can be prevented.

この目的を達成するため、本発明は固定子鉄心内周面の
多角形の角数と、前記隣接セグメント状鉄板間に形成さ
れるギャップの数を、それぞれ回転子磁極の極数の整数
倍にするとともに、前記ギャップの周方向位置を等間隔
にかつギャップの大きさを全周等しく形成したことを特
徴とする。
In order to achieve this object, the present invention sets the number of angles of the polygon on the inner circumferential surface of the stator core and the number of gaps formed between the adjacent segmented iron plates to be an integral multiple of the number of rotor magnetic poles. At the same time, it is characterized in that the circumferential positions of the gaps are equally spaced and the gaps are formed to have the same size all around the circumference.

以下、本発明の一実施例を第5図について説明する。An embodiment of the present invention will be described below with reference to FIG.

この実施例では、固定子鉄心2の内周面は、回転子磁極
5の極数の整数倍である角数、この場合は4極機である
のでその整数倍の一つである正八角形に形成されている
In this embodiment, the inner circumferential surface of the stator core 2 has a square shape that is an integral multiple of the number of poles of the rotor magnetic poles 5; in this case, since it is a four-pole machine, the inner circumferential surface of the stator core 2 has a regular octagonal shape that is one integral multiple of the number of poles. It is formed.

換言すれば、回転子磁軸dに対して常に点対称となって
いるということである。
In other words, it is always point symmetrical with respect to the rotor magnetic axis d.

すなわち、回転子が如何なる位置にあっても、回転子磁
軸dで分割される固定子鉄心2における内周面の各部分
は、回転子軸6を中心として点対称になるように形成さ
れている。
That is, no matter where the rotor is located, each portion of the inner circumferential surface of the stator core 2 divided by the rotor magnetic axis d is formed to be point symmetrical about the rotor axis 6. There is.

また、固定子鉄心2を構成する薄鉄板は、周方向に等し
い間隔で分割されたセグメント2′として打抜かれてい
るが、このセグメント2′の数、すなわちギャップgの
数は、回転子磁極5の極数4の整数倍、例えば4となっ
ており、またこのギャップgの周方向位置は全周等しく
配置され、さらにまたギャップの太ききも全周すべて等
しく形成されている。
Further, the thin iron plate constituting the stator core 2 is punched into segments 2' divided at equal intervals in the circumferential direction, and the number of segments 2', that is, the number of gaps g, is The number of poles is an integral multiple of 4, for example, 4, and the circumferential position of the gap g is the same on the entire circumference, and the width of the gap is also formed equally on the entire circumference.

すなわち、回転子が如何なる位置にあっても、4個の各
磁気回路内において、等しいギャップ数、位置、大きさ
をもつように構成されている。
That is, no matter where the rotor is located, each of the four magnetic circuits is configured to have the same number, position, and size of gaps.

しだがって、いま、回転子磁極5が第5図aに示す位置
にあるとき、左回りの磁束φ、の通る磁気回路のエアギ
ャップ長を(δ2+δ1)とすれば、回転子軸に対する
点対称性から、右回りの磁束φ2の通る磁気回路のエア
ギャップ長が(δ1+δ2)となるばかりでなく、これ
らの固定子鉄心磁気回路も当然等しくなり、さらに各磁
気回路内にはそれぞれ等しい数(ここでは1個)のギャ
ップgを含むことになって、両磁束φ1.φ2に対する
各磁気回路の磁気抵抗はバランスし、磁束の偏りがなく
なるので、軸電圧の発生原因となる回転子軸6を取り巻
く磁束は生じない。
Therefore, when the rotor magnetic pole 5 is in the position shown in Fig. 5a, if the air gap length of the magnetic circuit through which the counterclockwise magnetic flux φ passes is (δ2 + δ1), then Due to symmetry, not only the air gap length of the magnetic circuit through which the clockwise magnetic flux φ2 passes is (δ1 + δ2), but also these stator core magnetic circuits are naturally equal, and each magnetic circuit has an equal number ( In this case, a gap g of 1) is included, and both magnetic fluxes φ1. The magnetic resistance of each magnetic circuit with respect to φ2 is balanced and the magnetic flux is unbalanced, so that no magnetic flux surrounding the rotor shaft 6, which causes shaft voltage, is generated.

また、回転子磁極5が第5図すに示す位置に来た場合で
も、両磁束φ1.φ2の通る各磁気回路のエアギャップ
長はそれぞれ(δ4+δ3)、(δ3+δ4)と等しく
なり、かつ各磁気回路内にはそれぞれ等しい数で太きこ
の等しいギャップgが含まれているので、同様に回転子
軸6を取り巻く磁束は生じない。
Furthermore, even when the rotor magnetic poles 5 come to the position shown in FIG. 5, both magnetic fluxes φ1. The air gap lengths of each magnetic circuit through which φ2 passes are equal to (δ4 + δ3) and (δ3 + δ4), respectively, and each magnetic circuit includes the same number and thick gaps g, so the rotation is similarly performed. No magnetic flux is generated surrounding the child shaft 6.

以上説明したように、本発明によれば固定子鉄心内周面
の多角形の角数と、前記隣接セグメント状鉄板間に形成
されるギャップの数を、それぞれ回転子磁極の極数の整
数倍にするとともに、前記ギャップの周方向位置を等間
隔にかつギャップの大きさを等しく形成したので、固定
子鉄心の内周面が多角形でかつ固定子鉄心が周方向に分
割された複数のセグメントからなるギャップワインディ
ング回転電機であっても、各磁気回路内の磁気抵抗は回
転子の磁極位置に関係なく常に等しくなり、特別な装置
や器具を用いることなく、従来と同様の作業、工程で回
転子軸を取り巻く磁束の偏りに起因する軸電圧の発生を
充分防止することができる0
As explained above, according to the present invention, the number of angles of the polygon on the inner circumferential surface of the stator core and the number of gaps formed between the adjacent segmented iron plates are each an integral multiple of the number of rotor magnetic poles. In addition, since the circumferential positions of the gaps are equally spaced and the gaps are of equal size, the inner circumferential surface of the stator core is polygonal and the stator core is divided into multiple segments in the circumferential direction. Even in a gap-winding rotating electrical machine, the magnetic resistance in each magnetic circuit is always equal regardless of the rotor's magnetic pole position, and rotation can be performed using the same operations and processes as before, without using any special equipment or equipment. 0, which can sufficiently prevent the generation of shaft voltage due to bias in the magnetic flux surrounding the child shaft.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はギャップワインディング回転電機の固定子の一
部分を示す拡大断面図、第2図a、bばそれぞれ回転子
磁極位置を異にする従来における2極のギャップワイン
ディング回転電機の概略正面図、第3図は軸電流の流れ
る経路を説明するだめのギャップワインディング回転電
機の概略側面図、第4図は従来における4極のギャップ
ワインディング回転電機の概略正面図、第5図a、bば
それぞれ回転子磁極位置を異にする本発明の一実施例に
係るギャップワインディング回転電機の概略正面図であ
る。 1・・・・・・固定子コイン、2・・・・・・固定子鉄
心、2′・・・・・・セグメント、5・・・・・・回転
子磁極、g・・・・・・セグメント間のギャップ。
Fig. 1 is an enlarged sectional view showing a part of the stator of a gap-winding rotating electric machine; Figs. 2a and b are schematic front views of a conventional two-pole gap-winding rotating electric machine with different rotor magnetic pole positions; Figure 3 is a schematic side view of a gap-winding rotating electrical machine to explain the path through which the shaft current flows, Figure 4 is a schematic front view of a conventional four-pole gap-winding rotating electrical machine, and Figures 5a and b each show the rotor. 1 is a schematic front view of a gap winding rotating electric machine according to an embodiment of the present invention in which magnetic pole positions are different. FIG. 1...Stator coin, 2...Stator core, 2'...Segment, 5...Rotor magnetic pole, g... Gaps between segments.

Claims (1)

【特許請求の範囲】[Claims] 1 周方向に分割された複数のセグメント状の鉄板がず
らし積され、かつその内周面の断面形状が多角形をなし
た固定子鉄心と、この固定子鉄心の内周面に保持固定さ
れた固定子コイルと、この固定子コイルの内側で回転す
る回転子磁極とを備えたギャップワインディング回転電
機において、前記固定子鉄心内周面の多角形の角数と前
記隣接セグメント状鉄板間に形成されるギャップの数を
、それぞれ前記回転子磁極の極数の整数倍にするととも
に、前記ギャップの周方向位置を等間隔にかつギャップ
の大きさを全周等しく形成したことを特徴とするギャッ
プワインディング回転電機。
1. A stator core in which a plurality of segment-shaped steel plates divided in the circumferential direction are stacked in a staggered manner, and the cross-sectional shape of the inner circumferential surface thereof is polygonal, and the stator core is held and fixed to the inner circumferential surface of this stator core. In a gap-winding rotating electric machine including a stator coil and rotor magnetic poles rotating inside the stator coil, a gap winding is formed between the polygonal corners of the inner peripheral surface of the stator core and the adjacent segment-shaped iron plates. A gap winding rotation characterized in that the number of gaps is an integral multiple of the number of poles of the rotor magnetic poles, the circumferential position of the gaps is equally spaced, and the gap size is the same all around the circumference. Electric machine.
JP49048498A 1974-04-30 1974-04-30 Gap winding rotating electric machine Expired JPS5922464B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP49048498A JPS5922464B2 (en) 1974-04-30 1974-04-30 Gap winding rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP49048498A JPS5922464B2 (en) 1974-04-30 1974-04-30 Gap winding rotating electric machine

Publications (2)

Publication Number Publication Date
JPS50139911A JPS50139911A (en) 1975-11-10
JPS5922464B2 true JPS5922464B2 (en) 1984-05-26

Family

ID=12805032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP49048498A Expired JPS5922464B2 (en) 1974-04-30 1974-04-30 Gap winding rotating electric machine

Country Status (1)

Country Link
JP (1) JPS5922464B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3381154A (en) * 1964-04-08 1968-04-30 Asea Ab High power synchronous machine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3381154A (en) * 1964-04-08 1968-04-30 Asea Ab High power synchronous machine

Also Published As

Publication number Publication date
JPS50139911A (en) 1975-11-10

Similar Documents

Publication Publication Date Title
US9762109B2 (en) Permanent magnet brushless motor
TWI414130B (en) Single-phase brushless motor
JP6700596B2 (en) Rotor for axial gap motor and axial gap motor
US3806744A (en) High frequency stepper motor
JP7286805B2 (en) Stator and rotating electrical machine
US2975310A (en) Rotor structure for synchronous induction motors
JP2007274869A (en) Slot-less permanent magnet type rotary electric machine
JP2014033550A (en) Dynamo-electric machine
US4782259A (en) Frequency generator and motor with the same
JP2005012920A (en) Three-phase synchronous reluctance motor
US3733504A (en) Self supporting rotary electrical device
US20060250042A1 (en) Dynamoelectric machine with ring type rotor and stator windings
JP2018082600A (en) Double-rotor dynamoelectric machine
US3719842A (en) Synchronous motor
JPS5922464B2 (en) Gap winding rotating electric machine
JPH03243155A (en) Revolving armature
US2323035A (en) Synchronous motor
US20120112598A1 (en) Electrical machine stator assembly
US3848146A (en) Ac motor
JP4363600B2 (en) Smooth armature type 3-phase brushless motor
JP2017060274A (en) Permanent magnet rotary electric machine
CN113036961A (en) Rotating electrical machine
JP6654478B2 (en) Rotating electric machine rotor
WO2018135409A1 (en) Rotor and motor using same
WO2018135405A1 (en) Rotor and motor using same