JPS5922415A - Automatic gain control circuit - Google Patents

Automatic gain control circuit

Info

Publication number
JPS5922415A
JPS5922415A JP13159782A JP13159782A JPS5922415A JP S5922415 A JPS5922415 A JP S5922415A JP 13159782 A JP13159782 A JP 13159782A JP 13159782 A JP13159782 A JP 13159782A JP S5922415 A JPS5922415 A JP S5922415A
Authority
JP
Japan
Prior art keywords
gain control
automatic gain
agc
voltage
input level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13159782A
Other languages
Japanese (ja)
Inventor
Kazuo Takayama
一男 高山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Ten Ltd
Original Assignee
Denso Ten Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Ten Ltd filed Critical Denso Ten Ltd
Priority to JP13159782A priority Critical patent/JPS5922415A/en
Publication of JPS5922415A publication Critical patent/JPS5922415A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3052Automatic control in amplifiers having semiconductor devices in bandpass amplifiers (H.F. or I.F.) or in frequency-changers used in a (super)heterodyne receiver
    • H03G3/3068Circuits generating control signals for both R.F. and I.F. stages

Landscapes

  • Control Of Amplification And Gain Control (AREA)

Abstract

PURPOSE:To apply stably a strong automatic gain control having a good S/N, by starting sequentially the automatic gain control from an intermediate frequency amplifier section of the post-stage attended with the increase in an input level. CONSTITUTION:When an automatic gain control voltage is given, the intermediate frequency amplifier section 18 starts the automatic gain control at a region where the automatic gain control voltage is low at first. Then, the 2nd high frequency amplifier section 12 starts the control and a high frequency amplifier section 10 starts the control finally. Since the amplifier stages 12, 18 suppress the gain to an intermediate value with the automatic gain control at the intermediate input level region and the amplifier stage 18 only suppresses the gain to a small value with the automatic gain control at the further lower input level, the output voltage of the automatic gain control amplifier becomes stepwise.

Description

【発明の詳細な説明】 本発明は、ラジオ受信機の自動利得制御(AGC)回路
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to automatic gain control (AGC) circuits for radio receivers.

AMラジオ受信機では出力レベル変動を小さくするため
AGCをかけるのが普通である。AGCをかけると第5
図の曲線C1に示すように人、出レベルの関係は飽和曲
線を示し、あるレベル以上では入力レベルが変っても出
力レベルは余り変らない。この出力レベル変動を折れ線
C2のように極めて小さくする具体的には8’Od B
の入力変動に対し出力変動を0.5 d B程度に抑え
る方式もあり、これはハードAGCと呼ばれる。AMス
テレオではL(左チ十ネル)+R(右チャネル)信号を
AM、L−R信号をFMまたばPMして送るが、既知の
ようにFM等は振幅の影響を受けないので、AMされる
L+R信号はFMされるL−R信号程度に振幅変化の影
響を受けないように強<AGCする必要があり、か−る
用途にハードAGCが好適である。
AM radio receivers usually apply AGC to reduce output level fluctuations. 5th when applying AGC
As shown by the curve C1 in the figure, the relationship between the person and the output level shows a saturation curve, and above a certain level, the output level does not change much even if the input level changes. To make this output level fluctuation extremely small as shown by the line C2, specifically, 8'Od B
There is also a method for suppressing output fluctuations to about 0.5 dB with respect to input fluctuations, and this is called hard AGC. In AM stereo, the L (left channel) + R (right channel) signal is sent as AM, and the L-R signal is sent as FM or PM, but as is known, FM etc. are not affected by amplitude, so The L+R signal needs to be subjected to strong AGC so as not to be affected by amplitude changes to the extent that the FM L-R signal is, and hard AGC is suitable for such applications.

ハードAGCは負帰還系の利得を大にすれば得られるが
、利得が大になると動作が不安定になる難がある。本発
明は安定にハードAGCをかけられるようにすると共に
、信号レベル(Sレベル)を示す信号を出力できてSレ
ベル表示、ステレオ−モノラル切換えに便ならしめよう
とするものである。
Hard AGC can be obtained by increasing the gain of the negative feedback system, but as the gain increases, the operation becomes unstable. The present invention is intended to make it possible to stably apply hard AGC, and to output a signal indicating the signal level (S level) to facilitate S level display and stereo/monaural switching.

本発明は高周波増幅部、中間周波増幅部、およびAGC
増幅器を備えるラジオ受信機のチューナの自動利得制御
回路において、高利得A’GC増幅器の出力に段差をつ
けるAGC電圧シフト回路を設け、該シーフト回路より
レベルΩ異なるAGC電圧を高周波増幅部および中間周
波増幅部へ出力して、人力レベルの増大に伴なっ゛て後
段の中間周波増幅部側から順次自動利得制御が開始され
るようにしてなることを特徴とするが、次に図面を参照
しながらこれを詳細に説明する。
The present invention relates to a high frequency amplification section, an intermediate frequency amplification section, and an AGC
In the automatic gain control circuit of the tuner of a radio receiver equipped with an amplifier, an AGC voltage shift circuit is provided that provides a step difference in the output of the high gain A'GC amplifier, and the AGC voltage that differs in level Ω from the shift circuit is transferred to the high frequency amplifier section and the intermediate frequency. The invention is characterized in that the automatic gain control is started sequentially from the intermediate frequency amplification section in the subsequent stage as the human power level increases. This will be explained in detail.

第1図はAMラジオ受信機チューナ部のブロック図で、
10.12は第1段、第2段各高周波増幅部、14は混
合部、16は局部発振器、18は中間周波段、20は検
波部、22はAGC増幅器で、検波部から受信信号レベ
ルを示す信号Vdを得て利得制御信号Vaを出力し、こ
れを高周波増幅部10,12および中間周波増幅部18
へ送る。
Figure 1 is a block diagram of the AM radio receiver tuner section.
10.12 is the first and second stage high frequency amplification sections, 14 is a mixing section, 16 is a local oscillator, 18 is an intermediate frequency stage, 20 is a detection section, and 22 is an AGC amplifier, which detects the received signal level from the detection section. It outputs a gain control signal Va by obtaining a signal Vd shown in FIG.
send to

T1はアンテナ出力を受けるチューナ入力端子、T2は
出力端子である。従来方式ではこの信号■aを受けて各
段は、利得制御の度合は異なるが、−斉にAGCを行な
う。これに対し本発明では、各段がAGCを開始する点
を異ならせる。第2図にその概要を示す。
T1 is a tuner input terminal that receives an antenna output, and T2 is an output terminal. In the conventional system, each stage receives this signal ``a'' and performs AGC simultaneously, although the degree of gain control differs. In contrast, in the present invention, each stage starts AGC differently. Figure 2 shows the outline.

第2図で第1図と同じ部分には同じ符号が付してあり、
両図を比較すれば明らかなように本発明ではAGC電圧
電圧2圓1 周波増幅部10へはAGC増幅器22の出力V’aをそ
のま\、第2段高周波増幅部12へはVaにΔVをプラ
スして、そして中間周波増幅部18へはVaにΔVおよ
びΔV′をプラスして出力する。
The same parts in Figure 2 as in Figure 1 are given the same symbols.
As is clear from comparing both figures, in the present invention, the output V'a of the AGC amplifier 22 is directly sent to the AGC voltage voltage 2 1 frequency amplifier 10, and ΔV is added to Va to the second stage high frequency amplifier 12. Then, ΔV and ΔV' are added to Va and outputted to the intermediate frequency amplification section 18.

第3図にその具体回路を示す。Figure 3 shows the specific circuit.

第3図でQ1〜Q,4はトランジスタ、R1〜R1oは
抵抗、01〜C3はコンデンサ、26.30は定電流源
、28,32.34はダイオード、36は中間周波トラ
ンス、3日は高周波トランス(同調回路)、40はその
可変容量ダイオードでバイアス電圧TBにより容量を変
える。鎖線は集積回路の境界を示す。図示のように第1
,第2の高周波増幅段10.12および中間周波増幅部
18はエミッタを共通のトランジスタQ+2 1,Q 
9 1  Q6に接続した一対のトランジスタQ,3と
Q,4,  QloとQ,、IQ7とQ8からなる差動
増幅器構成で、ダイオード群28の2個直列部分および
5個直列部分からこれらのトランジスタQ,2とQ9と
Q s 。
In Figure 3, Q1 to Q, 4 are transistors, R1 to R1o are resistors, 01 to C3 are capacitors, 26.30 is a constant current source, 28, 32.34 are diodes, 36 is an intermediate frequency transformer, and 3rd is a high frequency A transformer (tuned circuit) 40 is a variable capacitance diode whose capacitance is changed by a bias voltage TB. The dashed lines indicate the boundaries of the integrated circuit. 1st as shown
, the second high frequency amplification stage 10.12 and the intermediate frequency amplification section 18 have a common emitter of a transistor Q+2 1,Q
9 1 In a differential amplifier configuration consisting of a pair of transistors Q, 3 and Q, 4, Qlo and Q, and IQ7 and Q8 connected to Q6, these transistors are Q, 2 and Q9 and Q s.

Q,とQl,とQeへバイアス電圧が供給される。A bias voltage is supplied to Q, Ql, and Qe.

入力電圧はトランジスタQ+21 Q 9 1 Q 6
が受け、トランジスタQ13 + Q10 + Q 7
はAGC電圧Va。
Input voltage is transistor Q+21 Q 9 1 Q 6
is received by the transistor Q13 + Q10 + Q7
is the AGC voltage Va.

Va+ΔV,Va+ΔV+Δ■′をAGC電圧電圧2圓
1 力トランジスタQ + 、カレントミラー回路を構成す
るトランジスタQ2,Q3、負荷抵抗R3からなり、検
波部20からの信号Vdを時定数回路R1、R2と01
を介して入力トランジスタQ1に受け、電圧Vaを生じ
る。AGC電圧電圧2圓1ード32.3.2、ダーリン
トン接続されたトランジスタQ4,Q5からなり、該ト
ランジスタQ5のエミッタから電圧Va  (詳しくは
Qa,Qiのベース・エミッタ間電圧をVaより差引い
たもの)を、ダイオード34のアノードから電圧Va+
八Vを、ダイオード32のアノードから電圧■a+ΔV
+ΔV′を出力する。こ−で、トランジスタのベース・
エミッタ間電圧もまたダイオードの順方向電圧降下も共
にVFで表わすと、増幅段18、12.10へ与えられ
るAGC電圧はVa。
Va + ΔV, Va + ΔV + Δ■' are AGC voltage voltage 2 yen 1 power transistor Q + , transistors Q2 and Q3 forming a current mirror circuit, and load resistor R3, and the signal Vd from the detection section 20 is applied to the time constant circuit R1, R2 and 01
is received by the input transistor Q1 via the input transistor Q1 to generate a voltage Va. AGC voltage voltage 2 circles 1 node 32.3.2, consists of Darlington connected transistors Q4 and Q5, voltage Va from the emitter of transistor Q5 (more specifically, the voltage between the base and emitter of Qa and Qi is subtracted from Va. voltage Va+ from the anode of the diode 34
8V from the anode of diode 32 ■a+ΔV
+ΔV' is output. With this, the base of the transistor
If both the emitter voltage and the diode forward voltage drop are expressed in VF, then the AGC voltage applied to the amplifier stages 18, 12.10 is Va.

Va  v,、  Va  2Vpとなる。Va v,, Va 2Vp.

このようにAGC電圧を与えると最初(AGC電圧が低
い領域)1にAGCを開始するのは中間周波増幅部18
であり、次に第2高周波増幅部12、最゛後に高周波増
幅部10である。概略的には本例では各増幅段の基準側
トランジスタQ14+  Ql 、 rQeに与えられ
るバイアス電圧は5vFであるから抵抗R3の電圧Va
がν2以上になるとダイオード32のアノード電位は5
 VF以上となり、増幅段18でAGCが開始し、増幅
段12.10ではVaが2VF,3VF以上になってA
GCを開始する。アンテナ入力レベルで考えると第4図
に示ずように該入力レベルが高いA3領域では増幅段1
0,12゜18共AGCを行なって利得を強(抑制し、
検波出力を図示Vdの如く下げる。中間の入力レベル領
域A2では増幅段12.18がAGCを行なって利得を
中位に抑制し、更に低い入力レベル領域A1では増幅段
18のみがAGCを行なって利得を軽度に抑制し、結局
検波出力は図示Vdの如く殆ど一定となる。AGC増幅
器の出力電圧■何は図示の如く段階状になる(これば増
幅段10,12.18がAGC動作する、しないにより
生じるもので、Vdも詳しくはVaと共に変動するがそ
の変動はAGC増幅器22の利得骨の1であり、この利
得は高くとっである)ので、これは受信レベル信号とし
、弱電界、中電界、強電界などの表示に供することがで
きる。またAGCを後段からかけ始めるので、上段から
かけ始める場合よりS/Nを良好に保てる。
When the AGC voltage is applied in this way, it is the intermediate frequency amplification section 18 that starts AGC at the beginning (in the region where the AGC voltage is low).
Next, the second high frequency amplification section 12, and lastly the high frequency amplification section 10. Roughly speaking, in this example, since the bias voltage applied to the reference side transistors Q14+Ql and rQe of each amplification stage is 5 vF, the voltage Va of the resistor R3 is
When becomes more than ν2, the anode potential of the diode 32 becomes 5
Va becomes more than 2VF, 3VF and AGC starts in the amplification stage 18, and Va becomes more than 2VF, 3VF in the amplification stage 12.10
Start GC. Considering the antenna input level, as shown in Figure 4, in the A3 region where the input level is high, the amplifier stage 1
0,12゜18 AGC is performed to strengthen (suppress) the gain,
Lower the detection output as shown in the figure Vd. In the intermediate input level region A2, the amplifier stage 12.18 performs AGC to suppress the gain to a medium level, and in the even lower input level region A1, only the amplifier stage 18 performs AGC to suppress the gain slightly, and eventually the detection The output becomes almost constant as shown in the figure Vd. The output voltage of the AGC amplifier is stepwise as shown in the figure (this is caused by whether the amplification stages 10, 12, and 18 perform AGC operation or not, and Vd also fluctuates with Va in detail, but the fluctuation is caused by the AGC amplifier. (1 out of 22), and this gain is high), so this can be used as a reception level signal and used to display weak electric fields, medium electric fields, strong electric fields, etc. Furthermore, since AGC starts to be applied from the latter stage, the S/N ratio can be maintained better than when it starts from the upper stage.

なお実施例ではAGC電圧をVa、Va+ΔV。In the embodiment, the AGC voltage is Va, Va+ΔV.

Va+Δ■+ΔV′と差を付けたが、これは他方のトラ
ンジスタQ、4. QB 、  Q eのバイアス電圧
に差を付けても同様効果が得られる。
A difference was made between Va+Δ■+ΔV', which is the difference between the other transistor Q, 4. A similar effect can be obtained even if the bias voltages of QB and Qe are different.

以上説明したように本発明によれば安定にかつS/Nが
良好に強いAGCをかけることができ、またAGC電圧
が電界強度に応じてステップ状に変る電圧になるので入
力レベル信号とすることができる利点が得られる。
As explained above, according to the present invention, strong AGC can be applied stably and with a good S/N ratio, and since the AGC voltage is a voltage that changes stepwise according to the electric field strength, it can be used as an input level signal. This gives you the advantage of being able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はラジオチューナの構成を示すブロック図、第2
図は本発明の実施例を示すブロック図、第3図は第2図
の詳細を示す回路図、第4図および第5図は動作説明用
のグラフである。 図面で10.12は高周波増幅部、18は中間周波増幅
部、22はAGC増幅器、24はAGC電圧シフト回路
である。 出 願 人  富士通テン株式会社 代理人弁理士  青 柳    稔
Figure 1 is a block diagram showing the configuration of the radio tuner, Figure 2 is a block diagram showing the configuration of the radio tuner.
3 is a block diagram showing an embodiment of the present invention, FIG. 3 is a circuit diagram showing details of FIG. 2, and FIGS. 4 and 5 are graphs for explaining the operation. In the drawing, 10.12 is a high frequency amplification section, 18 is an intermediate frequency amplification section, 22 is an AGC amplifier, and 24 is an AGC voltage shift circuit. Applicant: Minoru Aoyagi, Patent Attorney, Fujitsu Ten Limited

Claims (2)

【特許請求の範囲】[Claims] (1)高周波増幅部、中間周波増幅部、およびAGC増
幅器を備えるラジオ受信機のチューナの自動利得制御回
路において、高利得AGC増幅器の出力に段差をつける
AGC電圧シフト回路を設け、該シフト回路よりレベル
の異なるAGC電圧を高周波増幅部および中間周波増幅
部へ出力して、入力レベルの増大に伴なって後段の中間
周波増幅部側から順次自動利得制御が開始されるように
してなることを特徴とするラジオ受信機チューナの自動
利得制御回路。
(1) In an automatic gain control circuit for a tuner of a radio receiver that includes a high-frequency amplification section, an intermediate-frequency amplification section, and an AGC amplifier, an AGC voltage shift circuit is provided to provide a step difference in the output of the high-gain AGC amplifier; AGC voltages with different levels are output to the high frequency amplification section and the intermediate frequency amplification section, and as the input level increases, automatic gain control is sequentially started from the intermediate frequency amplification section in the subsequent stage. Automatic gain control circuit for radio receiver tuner.
(2)入力レベルに応じて階段状に変るAC’C電圧が
、該入力レベルの表示信号として使用されるようにして
なることを特徴とする特許請求の範囲第1項記載の自動
利得制御回路。
(2) The automatic gain control circuit according to claim 1, characterized in that an AC'C voltage that changes stepwise according to the input level is used as a display signal of the input level. .
JP13159782A 1982-07-28 1982-07-28 Automatic gain control circuit Pending JPS5922415A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13159782A JPS5922415A (en) 1982-07-28 1982-07-28 Automatic gain control circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13159782A JPS5922415A (en) 1982-07-28 1982-07-28 Automatic gain control circuit

Publications (1)

Publication Number Publication Date
JPS5922415A true JPS5922415A (en) 1984-02-04

Family

ID=15061776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13159782A Pending JPS5922415A (en) 1982-07-28 1982-07-28 Automatic gain control circuit

Country Status (1)

Country Link
JP (1) JPS5922415A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0342671A2 (en) * 1988-05-20 1989-11-23 AT&E CORPORATION AGC delay on an integrated circuit
EP0797299A2 (en) * 1996-03-21 1997-09-24 Nec Corporation Variable gain control

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5057526A (en) * 1973-09-20 1975-05-20

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5057526A (en) * 1973-09-20 1975-05-20

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0342671A2 (en) * 1988-05-20 1989-11-23 AT&E CORPORATION AGC delay on an integrated circuit
EP0342671A3 (en) * 1988-05-20 1991-03-06 AT&E CORPORATION Agc delay on an integrated circuit
EP0797299A2 (en) * 1996-03-21 1997-09-24 Nec Corporation Variable gain control
EP0797299A3 (en) * 1996-03-21 1999-02-17 Nec Corporation Variable gain control
US6075978A (en) * 1996-03-21 2000-06-13 Nec Corporation Automatic gain control system and method of automatic gain control

Similar Documents

Publication Publication Date Title
EP1147601B1 (en) Level shift circuit
JPH0718180Y2 (en) Transistorized amplification and mixed input stage for radio frequency receiver
JPH0414525B2 (en)
JPS5922415A (en) Automatic gain control circuit
US4121161A (en) AM receiver
US4404429A (en) Matching volume control characteristics for two channels
US3688129A (en) Signal control circuit
JPH09331220A (en) Gain variable amplifier
US3454882A (en) Radio receiver using plural variable gain stages
JPS6247017B2 (en)
JP2689653B2 (en) Output impedance switching circuit and electric circuit device using the same
JPS6318362B2 (en)
JPS624038B2 (en)
JP2004023532A (en) Automatic gain control circuit in receiver
JPS6156916B2 (en)
US4710958A (en) Circuit for controlling separation and high-cut operation of a stereo demodulator in an FM radio receiver
DK157966B (en) AMPLIFIER WITH ADJUSTABLE AMP
JPH0286221A (en) Receive and tone control circuit
WO1980001344A1 (en) Am-fm detector circuit
US20070085607A1 (en) Electronic circuit for amplification of a bipolar signal
JPH0427229Y2 (en)
JP2001156549A (en) High frequency mixer circuit
JPH06177654A (en) Balanced modulation circuit
JPS58115940A (en) Indicating circuit for signal intensity
JP3185813B2 (en) AGC signal forming circuit