JPS5922402A - Antenna for searching underground object - Google Patents

Antenna for searching underground object

Info

Publication number
JPS5922402A
JPS5922402A JP57130292A JP13029282A JPS5922402A JP S5922402 A JPS5922402 A JP S5922402A JP 57130292 A JP57130292 A JP 57130292A JP 13029282 A JP13029282 A JP 13029282A JP S5922402 A JPS5922402 A JP S5922402A
Authority
JP
Japan
Prior art keywords
antenna
dielectric constant
dielectric
bag
underground object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57130292A
Other languages
Japanese (ja)
Other versions
JPH0214801B2 (en
Inventor
Hideo Miyamoto
宮本 秀雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP57130292A priority Critical patent/JPS5922402A/en
Publication of JPS5922402A publication Critical patent/JPS5922402A/en
Publication of JPH0214801B2 publication Critical patent/JPH0214801B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/06Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
    • H01Q19/09Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens wherein the primary active element is coated with or embedded in a dielectric or magnetic material

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

PURPOSE:To reduce the reflection of an electromagnetic wave pulse based on the difference of a dielectric constant, in moving closely an antenna on the ground surface, by covering the antenna with a dielectric member having the same dielectric constant as that of a medium around an underground object to be sought. CONSTITUTION:The antenna 1 processed for insulation on the surface is covered with a bag 2 made of a soft material. The dielectric member 3 is filled in the bag and a bowl-shaped shield body 4 covering the back part and the surrounding of the antenna 1 is provided. In figure, 5 is a feeder for the antenna 1, and 6 is ground surface. The dielectric material having the same dielectric constant as that of the medium around the underground object to be sought is used as the dielectric material 3, and a material having a large dielectric constant such as polyvinyl chloride containing cloth, polyvinylidene chloride or nylon and further having good water resistance is selected for the bag 2.

Description

【発明の詳細な説明】 単一の電磁波パルスによる地下埋設物探知機にては、そ
のパルス送受波のためのアンテナは地表面に接近して移
動させるので、通常のレーダーと違い電磁波の放射方向
に、大気と大地の境界面が存在し、ここで電磁波パルス
の反射が起き、大地中に送り込まれる電磁波パルスのエ
ネルギは減少する。このような地表面での反射は、60
%に違するとのデータである。
[Detailed Description of the Invention] In underground buried object detectors that use a single electromagnetic wave pulse, the antenna for transmitting and receiving pulse waves is moved close to the ground surface, so unlike normal radar, the radiation direction of the electromagnetic wave is There is an interface between the atmosphere and the earth, where electromagnetic pulses are reflected, reducing the energy of the electromagnetic pulses sent into the earth. Such reflection on the ground surface is 60
The data shows that the difference is %.

本発明はこのような欠点を解決するためのもので、以下
図面によって説明する。
The present invention is intended to solve these drawbacks, and will be explained below with reference to the drawings.

第1図は本発明の一実施例の断面図で、1はその表面が
絶縁処理されたアンテナ、2は上部アンテナを包む柔軟
質の材料よりなる袋、3はこの中に充填された誘電体材
、4はアンテナ1の後方および周囲を覆う碗状の遮嵌体
であり必要により、これと、2の間に電波吸収体の層を
設けることもある。5はアンテナ1の給電線、6は地表
面である。
FIG. 1 is a cross-sectional view of one embodiment of the present invention, in which 1 is an antenna whose surface is insulated, 2 is a bag made of a flexible material that encloses the upper antenna, and 3 is a dielectric material filled in this bag. A material 4 is a bowl-shaped shielding body that covers the rear and surrounding area of the antenna 1, and a layer of a radio wave absorber may be provided between this and the shielding body 2, if necessary. 5 is a feed line of the antenna 1, and 6 is the ground surface.

以上の如き構成において、3としては地中の波探知物の
周囲媒体と同等の誘電率を有するもので、土、砂、粘土
等またはステアタイト、アルミナ、長石質、マイカレッ
クス等の誘電体材の紛または粒体等を適当に配合したて
の、またはこれらにグリセリン、トランス油等の粘性体
を混合したものまたは、探知場所の土壌そのものを用い
る。
In the above configuration, 3 is a dielectric material having the same dielectric constant as the surrounding medium of the underground wave detection object, such as soil, sand, clay, or steatite, alumina, feldspar, micarex, etc. Use freshly mixed powder or granules, or mix these with a viscous substance such as glycerin or transformer oil, or use the soil itself at the detection location.

なお土壌の誘電率は一般にその成分や粒度分布、空隙率
、含水量等によって相違する。したがって被探知物の媒
体と同等で、かつ地表面とのなじみ性も考慮して選定す
る。
Note that the dielectric constant of soil generally differs depending on its components, particle size distribution, porosity, water content, etc. Therefore, select a medium that is equivalent to the medium of the object to be detected and also takes into consideration its compatibility with the ground surface.

つぎに軟質プラスチックの袋2としては、布入りの塩化
ビニル、塩化ビニリデンシートまたはナイロン等の誘電
率が大きく、かつ耐摩耗性の良い材料を選定する。
Next, for the soft plastic bag 2, a material with a high dielectric constant and good wear resistance is selected, such as cloth-filled vinyl chloride, vinylidene chloride sheet, or nylon.

以上のように本発明は地中の被探知物の周囲媒体と同等
の誘電率を有する誘電体材で、アンテナを覆ったもので
、これを地表面に密着して移動させるときは、大気と大
地のように誘電率の相違いに基づく電磁波パルスの反射
を減少させることができる。
As described above, the present invention covers the antenna with a dielectric material having the same dielectric constant as the surrounding medium of the object to be detected underground. It is possible to reduce the reflection of electromagnetic pulses due to the difference in dielectric constant like the earth.

またアンテナが誘電体材の中に埋込まれたためアンテナ
のQが低下し、余振が抑圧された単一パルス波の維持が
可能となり、エコー受信の際の多重像をなくして測定精
度が向上するとともに、アンテナ自体も小型となり狭い
露地等にアンテナを持ち込み測定することも可能となる
等その効果は極めて大きい。
In addition, since the antenna is embedded in a dielectric material, the Q of the antenna is lowered, making it possible to maintain a single pulse wave with suppressed aftershocks, and improving measurement accuracy by eliminating multiple images when receiving echoes. At the same time, the antenna itself becomes smaller, making it possible to carry the antenna into narrow open areas for measurements, which has extremely large effects.

次に第2図は本発明の他の実施例の断面図で、アンテナ
1は円板状の硬質絶縁板7の上に配置され、これと腕状
遮嵌体4によって形成された空間に、第1図の実施例と
同様の誘電体材3を充填したもので、地表面6とアンテ
ナ1の間隔は極めて小となり、反射による電磁波エネル
ギの損失はより減少する。
Next, FIG. 2 is a sectional view of another embodiment of the present invention, in which the antenna 1 is placed on a disk-shaped hard insulating plate 7, and in the space formed by this and the arm-shaped shielding body 4. Since the antenna is filled with a dielectric material 3 similar to the embodiment shown in FIG. 1, the distance between the ground surface 6 and the antenna 1 is extremely small, and the loss of electromagnetic wave energy due to reflection is further reduced.

なお5、6は第1図と同様アンテナの給電線地表面であ
る。
Note that 5 and 6 are the ground surface of the antenna feeder line as in FIG.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明の実施例の断面図である。 1・・・アンテナ、2・・・軟質プラスチック袋、3・
・・誘電体材、4・・・腕状遮嵌体5・・・給電線、6
・・・地表面、7・・・硬質絶縁板 特許出願人 宮本秀■
1 and 2 are cross-sectional views of embodiments of the invention. 1... Antenna, 2... Soft plastic bag, 3.
...Dielectric material, 4... Arm-shaped shielding body 5... Power supply line, 6
...Ground surface, 7...Hard insulating plate patent applicant Hide Miyamoto■

Claims (1)

【特許請求の範囲】[Claims] アンテナを地中の被探知物の周囲媒体と同等の誘電率を
有する粉体、紛体または粘体またはこれらの混合物より
なる誘電体材で覆った地下埋設物探知用アンテナ。
An antenna for detecting underground objects in which the antenna is covered with a dielectric material made of powder, powder, viscous material, or a mixture thereof that has a dielectric constant equivalent to the surrounding medium of the underground object to be detected.
JP57130292A 1982-07-28 1982-07-28 Antenna for searching underground object Granted JPS5922402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57130292A JPS5922402A (en) 1982-07-28 1982-07-28 Antenna for searching underground object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57130292A JPS5922402A (en) 1982-07-28 1982-07-28 Antenna for searching underground object

Publications (2)

Publication Number Publication Date
JPS5922402A true JPS5922402A (en) 1984-02-04
JPH0214801B2 JPH0214801B2 (en) 1990-04-10

Family

ID=15030821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57130292A Granted JPS5922402A (en) 1982-07-28 1982-07-28 Antenna for searching underground object

Country Status (1)

Country Link
JP (1) JPS5922402A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0178877A2 (en) * 1984-10-17 1986-04-23 British Gas Corporation Microwave reflection survey equipment
EP0179601A2 (en) * 1984-10-17 1986-04-30 British Gas Corporation Microwave reflection survey method
WO2014092644A1 (en) * 2012-12-14 2014-06-19 Decod Science & Technology Pte Ltd Antenna system for ultra-wideband radar applications

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2776808C (en) * 2009-10-06 2016-10-25 Louisiana Tech University Research Foundation Method and apparatus for detecting buried objects

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5835478A (en) * 1981-08-27 1983-03-02 Sofuaade:Kk Locating device for underground structure by radar system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5835478A (en) * 1981-08-27 1983-03-02 Sofuaade:Kk Locating device for underground structure by radar system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0178877A2 (en) * 1984-10-17 1986-04-23 British Gas Corporation Microwave reflection survey equipment
EP0179601A2 (en) * 1984-10-17 1986-04-30 British Gas Corporation Microwave reflection survey method
JPS61180171A (en) * 1984-10-17 1986-08-12 ブリテイツシユ ガス コ−ポレ−シヨン Microwave reflection survey method and device
JPS61180170A (en) * 1984-10-17 1986-08-12 ブリテイツシユ ガス コ−ポレ−シヨン Microwave reflection survey method and antenna
WO2014092644A1 (en) * 2012-12-14 2014-06-19 Decod Science & Technology Pte Ltd Antenna system for ultra-wideband radar applications

Also Published As

Publication number Publication date
JPH0214801B2 (en) 1990-04-10

Similar Documents

Publication Publication Date Title
Arcone High resolution of glacial ice stratigraphy: a ground-penetrating radar study of Pegasus Runway, McMurdo Station, Antarctica
CA2531423C (en) Data acquisition for a ground penetrating radar system
US6097190A (en) Method and device for locating and identifying search objects concealed in the ground, particularly plastic mines
Holser et al. Radar logging of a salt dome
JP2003515726A (en) Ground penetrating radar system and method for detecting objects above or below ground surface
JPS5922402A (en) Antenna for searching underground object
Dolphin Jr et al. An underground electromagnetic sounder experiment
McKee Geology of Kapingamarangi Atoll, Caroline Islands
Bano et al. Modelling and filtering of surface scattering in ground-penetrating radar waves
Radzevicius et al. Significance of crossed-dipole antennas for high noise environments
US4992786A (en) Electrical conductor detector
Evans Polar ionospheric spread echoes and radio frequency properties of ice shelves
Watts et al. Gravity surveys in glacier-covered regions
Van Genderen Multi-waveform SFCW radar
Ellis et al. An improved scale model measurement facility for studying geophysical cross-borehole sensing
CN212694077U (en) Ground penetrating radar for mine geological environment investigation
Almutairi1* et al. Develop a novel ground penetrating radar (GPR) for deep imaging to the sand dunes and weathering layers thickness
Moran et al. Simulation of GPR reflection data from a temperate glacier
Jantan et al. Note on the occurrence of limestone in the Semanggol Formation, Kedah, Peninsular Malaysia
Moran et al. Impact of interfacial dipole radiation on UXO target detection using 3-D Kirchhoff imaging
Arcone Radar profiling of ice thickness
KOONS Controlled wave-particle interaction and VLF wave propagation experiments in the outer magnetosphere[Interim Report, 1 Jan. 1978- 30 Sep. 1980]
Van Gestel et al. Combining multi-configuration Ground Penetrating Radar data using a weighted migration approach
al Hagrey GPR Mapping toluene infiltration in a sand model
Sandness et al. Radar Location Equipment Development Program: Phase I