JPS59222788A - Pressure tube type reactor - Google Patents
Pressure tube type reactorInfo
- Publication number
- JPS59222788A JPS59222788A JP58095621A JP9562183A JPS59222788A JP S59222788 A JPS59222788 A JP S59222788A JP 58095621 A JP58095621 A JP 58095621A JP 9562183 A JP9562183 A JP 9562183A JP S59222788 A JPS59222788 A JP S59222788A
- Authority
- JP
- Japan
- Prior art keywords
- fuel
- special
- enrichment
- standard
- pressure tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
- Rigid Pipes And Flexible Pipes (AREA)
- Tires In General (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は圧力管材料監視用部材装荷燃料チャンネルが装
荷される炉心に係シ、圧力管材料監視部材の照射加速係
数(監視部材の高速中性子束積算量と圧力管最大高速中
性子束積算量との比)を低下する事なく、燃料の熱的条
件を満足し得る圧力管型原子炉に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a reactor core loaded with a pressure pipe material monitoring member loading fuel channel. The present invention relates to a pressure tube nuclear reactor that can satisfy thermal conditions for fuel without reducing the ratio of integrated amount to pressure tube maximum fast neutron flux integrated amount.
従来例を第1図に示す。この例では、圧力管材料監視用
特殊燃料は全炉心中、互いに離れた位置に2チヤンネル
装荷されている。A conventional example is shown in FIG. In this example, two channels of special fuel for pressure pipe material monitoring are loaded at positions separated from each other in the entire reactor core.
特殊燃料以外の標準燃料は出力分布平坦化のた−め、2
種類のプルトニウム富化度のもの−を用いているが、特
殊燃料はこのうち、外側標準燃料領域に位置している。For standard fuels other than special fuels, 2.
Among these, special fuels are located in the outer standard fuel region.
特殊燃料中の圧力管監視用部材の照射加速係数を1.0
以上とするためには、特殊燃料の濃縮度は標準燃料の濃
縮度(プルトニウム富化度)よシ高くする必要があるが
、この結果、高濃縮度の特殊燃料の影響が特殊燃料周辺
の標準燃料におよび、とシわけ、最近接の標準燃料のチ
ャンネル出力を第5図に示すように増大さする。このだ
め、最近接標準燃料の最大線出力密度が増大し、熱的裕
度がほとんどなくなる。また、このような状況化におい
ても照射加速係数は制限値1.0をほんのわずか上回る
程度であるほか、原子炉寿命末期における最終取出時の
圧力管監視用部材の照射加速係数の制限値1.1を達成
する事は非常に厳しい。The irradiation acceleration coefficient of the pressure pipe monitoring member in special fuel is set to 1.0.
In order to achieve this, the enrichment of the special fuel needs to be higher than the enrichment of the standard fuel (plutonium enrichment), but as a result, the effect of the highly enriched special fuel is less than the standard fuel surrounding the special fuel. For each fuel, the channel output of the nearest standard fuel is increased as shown in FIG. As a result, the maximum linear power density of the nearest standard fuel increases, and the thermal margin becomes almost non-existent. In addition, even in such a situation, the irradiation acceleration coefficient is only slightly above the limit value of 1.0, and the irradiation acceleration coefficient of the pressure pipe monitoring member at the time of final removal at the end of the reactor life is within the limit value of 1.0. Achieving 1 is extremely difficult.
ここで以下の場合を考えてみる。Now consider the following case.
(1)チャンネル出力の低い位置に特殊燃料装荷、(2
)制御棒による出力ビーキング抑制、(3)従来例では
特殊燃料の燃料交換間隔を標準燃料の燃料交換間隔よシ
短かくしているが、逆に、特殊燃料の燃料取替間隔を標
準燃料の燃料取替間隔と同じか長くシ、これによる照射
加速係数の低下を特殊燃料濃縮度を高くする事で補う方
法、
(4)特殊燃料濃縮度を1種類とせず゛、数種類の濃縮
度の特殊燃料集合体を熱的健全性及び照射加速係数を考
慮して交換してゆく方法、
(1) 、 (2)は熱的には改善されるが、照射加速
係数は低下してしまう。(3)に関しては、最大線出力
密度が厳しくなるのはサイクル初期であシ、特殊燃料の
濃縮度をさらに高める事になシ最太線出力密度を制限値
以上にしてしまう事になる。(4)については、コスト
向上をまねいてしまう。(1) Special fuel loading at the low channel output position, (2
) Suppression of output peaking by control rods, (3) In the conventional example, the refueling interval for special fuel is shorter than the refueling interval for standard fuel; A method of compensating for the decrease in the irradiation acceleration coefficient by increasing the enrichment of the special fuel by increasing the enrichment of the special fuel by increasing the enrichment of the special fuel. Methods (1) and (2), in which the body is replaced by taking into account its thermal integrity and irradiation acceleration coefficient, improve thermal performance, but the irradiation acceleration coefficient decreases. Regarding (3), the maximum linear power density becomes severe at the early stage of the cycle, and if the enrichment of the special fuel is further increased, the maximum linear power density will exceed the limit value. Regarding (4), this will lead to an increase in costs.
以上示した如く、従来例では、照射加速係数、熱的観点
からも非常に厳しいと考えられる。As shown above, the conventional example is considered to be very severe from the irradiation acceleration coefficient and thermal standpoint.
本発明の目的は、上記欠点を取シ除き、監視用部材の照
射加速係数を低下する事なく、原子炉の熱的健全性が達
成しうる圧力管型原子炉を提供する事にある。SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned drawbacks and provide a pressure tube nuclear reactor that can achieve thermal integrity of the reactor without reducing the irradiation acceleration coefficient of the monitoring member.
本発明は以下の原理を利用している。 The present invention utilizes the following principles.
1つの燃料集合体で発生した高速中性子はその集合体内
及び重水中を移動中に吸収されたシ、減速されたシする
ため、周囲の集合体内に到達した時には熱中性子となっ
ている。従って、特殊燃料中の圧力管材料監視用部材が
受ける高速中性子は特殊燃料自身が核分裂によ多発生し
たものがほとんどであシ、特殊燃料周囲の標準燃料の核
分裂によ多発生した高速中性子の寄与はほとんどないと
考えられる。一方、特殊燃料の核分裂に寄与する特殊燃
料中の熱中性子には、上述のとおり、周囲の標準燃料の
核分裂によって発生した高速中性子が減速され熱中性子
束となったものも含寸れており、特殊最近接標準燃料の
濃縮度を低下させると監視部材の低下が予想されるが、
これは■圧力管型原子炉では重水を減速材として採用し
ているため、中性子の移動面積が軽水炉と比べて大きく
′、特殊燃料最近接ない標準燃料からの熱中性子が特殊
燃料中に入ってくるものががなシある事、■燃料は中性
子にとっては吸収体であるため、特殊燃料最近接の標準
燃料の濃縮度(富化度)を下げると、熱中性子の吸収が
減る効果がある事等の理由によシ、特殊燃料最近接標準
燃料の濃縮度(富化度)を下げても、特殊燃料への熱中
性子の寄与はそれe?f、ど低下しない。Fast neutrons generated in one fuel assembly are absorbed and decelerated while moving within the assembly and in heavy water, so when they reach the surrounding assembly they become thermal neutrons. Therefore, most of the fast neutrons received by the pressure pipe material monitoring member in the special fuel are those generated by nuclear fission in the special fuel itself, and are not caused by the fast neutrons frequently generated by the fission of the standard fuel surrounding the special fuel. It is thought that there is little contribution. On the other hand, as mentioned above, the thermal neutrons in the special fuel that contribute to the nuclear fission of the special fuel include the fast neutrons generated by the fission of the surrounding standard fuel that are decelerated and become a thermal neutron flux. If the enrichment level of the special nearest standard fuel is reduced, it is expected that the monitoring member will deteriorate.
This is because pressure tube reactors use heavy water as a moderator, so the area where neutrons move is larger than in light water reactors, and thermal neutrons from standard fuel that is not closest to the special fuel enter the special fuel. Fuel is an absorber for neutrons, so lowering the enrichment level of the standard fuel closest to the special fuel has the effect of reducing the absorption of thermal neutrons. For these reasons, even if the enrichment level of the standard fuel closest to the special fuel is lowered, the contribution of thermal neutrons to the special fuel will still be e? f, it doesn't drop.
従って、第2図に示す如く、照射加速係数は特殊燃料最
近接標準燃料の濃縮度(富化度)を下げても、それほど
低下しない。一方、特殊燃料最近接標準燃料の濃縮度(
富化度)を低下させているため最大線出力密度、最小限
界出力比などの熱的余裕は増大する。Therefore, as shown in FIG. 2, even if the enrichment (enrichment) of the standard fuel closest to the special fuel is lowered, the irradiation acceleration coefficient does not decrease much. On the other hand, the enrichment of the standard fuel closest to the special fuel (
Thermal margins such as maximum linear power density and minimum critical power ratio increase because the enrichment) is lowered.
以下、具体的な一実施例について説明する。 A specific example will be described below.
実施例を第3図に示す。ベースとなる炉心は2領域炉心
である。すなわち標準燃料チャンネルは出力分布の平坦
化のため、プルトニウム富化度の異なる2種類が炉心中
央部と周辺部に配置されている。内側標準燃料チャンネ
ルlは外側標準燃料チャンネル2よシプルトニウム富化
夏が低くなっている。An example is shown in FIG. The base core is a two-region core. That is, in order to flatten the power distribution, two types of standard fuel channels with different levels of plutonium enrichment are arranged in the center and periphery of the core. The inner standard fuel channel 1 has a lower cyplutonium enrichment than the outer standard fuel channel 2.
この炉心に特殊燃料チャンネル3が2体装荷されている
。ここで、第3図に示す如く、特殊燃料チャンネル3を
囲む最近接の標準燃料チャンネル4のプルトニウム富化
度は外側標準燃料プルトニウム富化度よ如低くするもの
とし、具体的には内側標準燃料チャンネルlと同一とす
る。このようにする事により、特殊燃料周囲用標準燃料
チャンネルとしてプルトニウム富化度の異々るものを新
たに製造する必要はない。Two special fuel channels 3 are loaded in this core. Here, as shown in FIG. 3, the plutonium enrichment of the standard fuel channel 4 closest to the special fuel channel 3 is set to be lower than the plutonium enrichment of the outer standard fuel. It is assumed to be the same as channel l. By doing this, there is no need to newly manufacture standard fuel channels for surrounding special fuels with different plutonium enrichment levels.
本実施例を採用する事により、圧力管監視用部材の照射
加速係数が増大可能となると同時に、第5図に示すよう
に特殊燃料周囲標準燃料チャンネル4のチャンネル出力
が低下出来、従って最大線出力密度も制限値を十分満足
するものとなる。By adopting this embodiment, the irradiation acceleration coefficient of the pressure pipe monitoring member can be increased, and at the same time, as shown in Fig. 5, the channel output of the standard fuel channel 4 surrounding the special fuel can be decreased, and therefore the maximum linear output The density also satisfies the limit value.
本発明によシ、圧力管の監視が十分可能となシ、かつ、
燃料の熱的裕度が増大し、原子炉の安 住が向上する。According to the present invention, it is possible to sufficiently monitor pressure pipes, and
The thermal margin of the fuel increases, improving the safety of the reactor.
第1図は従来例における燃料配置図、第2図は特殊燃料
集合体図及び圧力管監視用部材装荷ギャプセル部拡大図
、第3図は特殊燃料最近接の標準燃料の濃縮度を低下さ
せた時の圧力管監視用部材における高速中性子束の変化
を示す図、第4図は本発明の一実施例における燃料配置
図、第5図は従来例と実施例における最大線出力密度の
比較図である。
1・・・内側標準燃料チャンネル、2・・・外側標準燃
料チャンネル、3・・・特殊燃料チャンネル、4・・・
特殊第1 図
ち
第 2 図
第 3 図
ギし朱盗未1吊涌」剖ガ乞料のデルLニ欠J冨化展(v
tb’l)$4−ロFigure 1 is a diagram of the fuel arrangement in the conventional example, Figure 2 is a diagram of the special fuel assembly and an enlarged view of the pressure pipe monitoring member loading gap cell, and Figure 3 is the one in which the enrichment of the standard fuel closest to the special fuel has been reduced. Fig. 4 is a diagram showing the fuel arrangement in an embodiment of the present invention, and Fig. 5 is a comparison diagram of the maximum linear power density in the conventional example and the embodiment. be. 1...Inner standard fuel channel, 2...Outer standard fuel channel, 3...Special fuel channel, 4...
Special 1st figure 2nd figure 3rd figure
tb'l) $4-ro
Claims (1)
最近接の標準燃料チャンネルには、回シの標準燃料より
も濃縮度を低下させた燃料を使用することを特徴とする
圧力管型原子炉。1. A pressure tube nuclear reactor characterized in that the standard fuel channel closest to the special fuel channel loaded with pressure tube material monitoring components uses fuel with a lower enrichment than the standard fuel of the recycler. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58095621A JPS59222788A (en) | 1983-06-01 | 1983-06-01 | Pressure tube type reactor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58095621A JPS59222788A (en) | 1983-06-01 | 1983-06-01 | Pressure tube type reactor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59222788A true JPS59222788A (en) | 1984-12-14 |
Family
ID=14142605
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58095621A Pending JPS59222788A (en) | 1983-06-01 | 1983-06-01 | Pressure tube type reactor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59222788A (en) |
-
1983
- 1983-06-01 JP JP58095621A patent/JPS59222788A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4777016A (en) | Fuel assembly | |
JPH04301593A (en) | Fuel assembly | |
JPH051912B2 (en) | ||
JP2510565B2 (en) | Reactor fuel assembly | |
JPS59222788A (en) | Pressure tube type reactor | |
JPH0588439B2 (en) | ||
JPS60201284A (en) | Fuel aggregate | |
JPH0631744B2 (en) | Boiling water reactor | |
JP3212744B2 (en) | Fuel assembly | |
JPS60177293A (en) | Nuclear reactor | |
JP2502173B2 (en) | Fast reactor core | |
JPS5814080A (en) | Fuel assembly | |
JP2632726B2 (en) | Fuel assembly for boiling water reactor | |
JPS6325593A (en) | Boiling water type reactor | |
JPS58131588A (en) | Boiling-water reactor | |
JPS63231293A (en) | Core for nuclear reactor | |
JPH063478A (en) | Fuel assembly and core of reactor | |
JPS636490A (en) | Nuclear-reactor fuel aggregate | |
JPH07107555B2 (en) | Control rod for boiling water reactor and method of operating boiling water reactor using the same | |
JPS60238784A (en) | Fuel aggregate | |
JPS62132192A (en) | Fuel aggregate for boiling water type reactor | |
JPS62190500A (en) | Fuel production blanket | |
JPS5895286A (en) | Fuel assembly | |
JPS60222791A (en) | Nuclear reactor | |
JPH0378955B2 (en) |