JPS59221591A - Connector for heat pipe - Google Patents

Connector for heat pipe

Info

Publication number
JPS59221591A
JPS59221591A JP9560483A JP9560483A JPS59221591A JP S59221591 A JPS59221591 A JP S59221591A JP 9560483 A JP9560483 A JP 9560483A JP 9560483 A JP9560483 A JP 9560483A JP S59221591 A JPS59221591 A JP S59221591A
Authority
JP
Japan
Prior art keywords
heat
connector
heat pipe
wick
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9560483A
Other languages
Japanese (ja)
Inventor
Yasuaki Akatsu
康昭 赤津
Shozo Nakamura
中村 昭三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9560483A priority Critical patent/JPS59221591A/en
Publication of JPS59221591A publication Critical patent/JPS59221591A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0275Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To prevent the decrease in the heat transfer capacity at a connector by providing the function of a heat pipe for the connector. CONSTITUTION:A connector 1c is formed in a socket shape of a pipe joint in a structure having an annular space that a wick 2c and a vapor passage 4c are disposed in the thickness in double plates. The wick 2c provided therein is formed of mesh or porous material formed of sintered metal, work fluid 3c is sealed in the space, the wick 2c is in a moistened state, and the space is airtightly sealed. The latent heat produced by the condensation of the vapor 7a of a heat pipe 1c is transferred from a heat input unit 5c of a connector 3c through a contacting surface 10, thereby evaporating the fluid 3c. The work fluid vapor 7c produced in the input unit 5c of the connector 3c passes through a vapor passage 4c, is condensed in a heat output unit 6c to dissipate latent heat. This heat is transmitted through the contacting surface 11 to the heat pipe 1b, thereby generating work fluid vapor 7b.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はヒートパイプを用いて長距離の熱移送をする際
に使用するコネクターに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a connector used for long-distance heat transfer using a heat pipe.

〔発明の背景〕[Background of the invention]

従来のヒートパイプは毛細管現象を利用して熱の輸送を
行なう装置であり、加熱部で蒸発した蒸気は気圧差によ
り冷却部へ移動し、ここで凝縮。
Conventional heat pipes are devices that transport heat using capillary action, and the vapor that evaporates in the heating section moves to the cooling section due to the pressure difference, where it condenses.

液化する。さらに、この液化した流体は毛細管現象によ
り加熱部へ移動し、このプロセスをくり返して、熱を潜
熱の形で送る。このヒートパイプの構成を第1図に示す
liquefy. Further, this liquefied fluid moves to the heating section by capillary action and the process is repeated, transferring heat in the form of latent heat. The structure of this heat pipe is shown in FIG.

図において、■はrfj刺谷器、2はウィックで細かい
メツシュが形成された網状のものか、あるいは、焼結金
属等で作られる多孔質材を暫封容器1の内面に彊り付け
である。密封容器1内には動作流体3が刺入され、ウィ
ック2が濡れた状態にある。4は蒸気通路、5は熱入力
部、6は熱出力部、7は動作流体3の蒸発気体である。
In the figure, ■ is an RFJ sashimi device, and 2 is a net-like wick with a fine mesh formed thereon, or a porous material made of sintered metal etc. is attached to the inner surface of the temporarily sealed container 1. . A working fluid 3 is inserted into the sealed container 1, and the wick 2 is in a wet state. 4 is a steam passage, 5 is a heat input section, 6 is a heat output section, and 7 is an evaporated gas of the working fluid 3.

次に、動作について説明する。まず、熱入力部5に熱入
力かあるとこの部分の動作流体3は熱を吸収して蒸発気
体7となる。この結果、密刺容器1内で動作流体3が熱
入力部5側で気体、熱出力部6側で液体と二つの状態が
存在することになるため、熱出力部6側に比べて熱入力
部5側の圧力が高くなり、この圧力差によって蒸発気体
7が蒸気通路4を通って熱出力部6側へと移動する。熱
出力部6では熱が取り出されるため、蒸発気体7は凝縮
し、動作流体(液体)3として、ウィック2内に戻る。
Next, the operation will be explained. First, when there is heat input to the heat input section 5, the working fluid 3 in this section absorbs heat and becomes evaporated gas 7. As a result, the working fluid 3 exists in two states in the closely spaced container 1: gas on the heat input section 5 side and liquid on the heat output section 6 side. The pressure on the side of the section 5 increases, and this pressure difference causes the evaporated gas 7 to move through the steam passage 4 to the side of the heat output section 6. Since heat is extracted in the heat output section 6, the evaporated gas 7 is condensed and returned to the wick 2 as a working fluid (liquid) 3.

ウィック2内に戻された動作流体3は毛細管現象による
表面張力によって移動し、再び、熱入力部に戻る。この
動作をくり返すことによって、熱入力部5から熱出力部
6へと、熱を移送することができる。
The working fluid 3 returned into the wick 2 is moved by surface tension due to capillary action and returns to the heat input section again. By repeating this operation, heat can be transferred from the heat input section 5 to the heat output section 6.

このヒートパイプを利用した熱移送の距離は、毛細管現
象による動作流体3の帰還力に左右されたが、その大き
さはウィック2の種類や動作流体3の種類、両者の組合
せによっても異なり、従来ヒートパイプとして量産化を
れているものは、直径10咽以下、長さ1m以下のもの
が大半を占めている。
The distance of heat transfer using this heat pipe was influenced by the return force of the working fluid 3 due to capillary action, but the magnitude also varied depending on the type of wick 2, the type of working fluid 3, and the combination of the two, and conventional Most of the mass-produced heat pipes have a diameter of 10 mm or less and a length of 1 m or less.

そこで、この様な短尺ヒートパイプを用いて長距離の熱
移送をするために、第2図に示すように、短尺ヒートパ
イプを複数本端面で直列接続して使用することが考えら
れている。
Therefore, in order to transfer heat over long distances using such short heat pipes, it has been considered to use a plurality of short heat pipes connected in series at their end faces, as shown in FIG.

第2図はヒートパイプla、lbを接着部8では列に接
続した場合の縦断面図である。このように、ヒートパイ
プを直列に接続した場合には、夫夫の端末部が熱移送の
減速壁となって、ヒートパイプとしての能力を失なわせ
る。すなわち、ヒートパイプ端末部は金属、接着材、空
気層から成って居ジ、ヒートパイプとしての効果は全く
ない部分となって居ジ、一方のヒートパイプ1aから移
送される熱エネルギは、この壁があるために、他方のヒ
ートパイプ1bへの熱移送が接触面を形成する材料の熱
伝導率に依存してしまうため、ヒートパイグ本来の高速
熱輸送能力が、この部分によって失なわれる。
FIG. 2 is a longitudinal cross-sectional view of the case where heat pipes la and lb are connected in a row at the adhesive portion 8. As shown in FIG. In this way, when heat pipes are connected in series, the end portions of the ends act as a wall that slows down heat transfer, causing the heat pipes to lose their ability to function as heat pipes. That is, the end portion of the heat pipe is made of metal, adhesive, and an air layer, and has no effect as a heat pipe.Thermal energy transferred from one heat pipe 1a is transferred to this wall. Because of this, the heat transfer to the other heat pipe 1b depends on the thermal conductivity of the material forming the contact surface, and the inherent high-speed heat transfer ability of the heat pipe is lost in this part.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、ヒートパイプのコネクターを改良し、
ヒートパイプ接続部の熱輸送能力を大巾に増加した、ヒ
ートパイプを提供するにある。
The object of the present invention is to improve a heat pipe connector,
To provide a heat pipe in which the heat transport capacity of a heat pipe connection part is greatly increased.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を図面を径間しながら説明する。 Hereinafter, the present invention will be explained with reference to the drawings.

第3図は本発明の一実施例を示すものであって、2本の
ヒートパイプの熱出力部と熱入力部をヒートパイプの効
果を備えたコネクターにより、直線的に接続した例であ
る。コイ・フタ−ICは従来の配管接手のソケット状を
し、その板厚内にウィック2Cと蒸気通路4Cを配置し
た二重板からなる還状窒間をもつ構造となっている。内
部に設けられるつ・rツク2Cは、従来のヒートパイプ
と同様に細かいメツシュが形成笛扛た網状のものか、あ
るいは焼結金属等で作られる多孔質材からなり、空間内
面の全面か、めるいは、一部分に設けられる。また空間
内には動作流体3Cが刺入され、ウィック2Cは濡れた
状態にあり、空間内は気密性が保たrている。
FIG. 3 shows an embodiment of the present invention, in which the heat output part and the heat input part of two heat pipes are linearly connected by a connector having the effect of a heat pipe. The carp-lid IC is shaped like a socket of a conventional pipe joint, and has a structure with a double plate in which a wick 2C and a steam passage 4C are arranged within the thickness of the plate. The tube 2C provided inside is either a net-like structure with a fine mesh formed thereon like a conventional heat pipe, or it is made of a porous material made of sintered metal or the like, and can be placed on the entire inner surface of the space. A glaze is provided in one part. Further, the working fluid 3C is inserted into the space, the wick 2C is in a wet state, and the space is kept airtight.

熱入力側のと一ドパイブ1aとコネクターICは接触面
10で接触、あるいは、浴着等により接続されている。
The heat input side dove pipe 1a and the connector IC are in contact with each other at a contact surface 10 or are connected by a bath coat or the like.

ヒートパイプ1aの動作流体蒸気7aの凝縮にともなう
潜熱は、接触面lOを介してコネクター30の熱入力部
5Cから熱移送され、動作流体3Cの蒸発が生じる。こ
の際、接触面10の部分での熱移送能力はヒートノ<イ
ブとコネクターの壁材質の熱伝導率に左右されるが、こ
れによる熱移送能力の低下分を接触面11の大きさを変
えることにより捕なうことが容易にできる。
The latent heat accompanying the condensation of the working fluid vapor 7a of the heat pipe 1a is transferred from the heat input portion 5C of the connector 30 via the contact surface 1O, causing evaporation of the working fluid 3C. At this time, the heat transfer ability at the contact surface 10 depends on the thermal conductivity of the wall material of the heat nove and the connector, but the size of the contact surface 11 can be changed to compensate for the decrease in heat transfer ability. It is easy to catch.

熱出力側でも、コネクターICとヒートノくイブ1bと
の接続は熱入力側の場合と同様である。コネクター30
の熱入力部5Cで発生した動作流体蒸気7Cは蒸・気通
路4Cを通り、熱出力部6Cで凝縮し潜熱を放熱する。
On the heat output side, the connection between the connector IC and the heat nozzle 1b is the same as on the heat input side. connector 30
The working fluid vapor 7C generated at the heat input section 5C passes through the steam/air passage 4C, condenses at the heat output section 6C, and radiates latent heat.

この熱は接触面11を介してヒートパイプ1bに伝えら
れ、動作流体蒸気7bを発生させ、ヒートパイプla、
l:υヒートノくイブ1bへと熱輸送が行なわれる。こ
の際、接触部での熱輸送能力低下分を接触面11の大き
さで調整することは熱入力側の場合と同様である。
This heat is transferred to the heat pipe 1b via the contact surface 11, generating working fluid vapor 7b, and heat pipe la,
Heat is transported to Eve 1b through l:υheat. At this time, the reduction in heat transport capacity at the contact portion is adjusted by the size of the contact surface 11, as in the case of the heat input side.

このように、本発明ではコネクターにヒートパイプの機
能をもたせることによシ、従来ヒートパイプで問題でめ
った接続部での熱移送能力低下を防止することができ、
長距離の熱移送を可能にする。
As described above, in the present invention, by providing the connector with the function of a heat pipe, it is possible to prevent a decrease in heat transfer ability at the connection part, which is a problem that rarely occurs with conventional heat pipes.
Enables long-distance heat transfer.

第4図は曲り部に使用されるエルボ形コネクターの実施
例であり、第5図は縮少部(拡大部も同じ)に使用され
る異径ソケットコネクタの実施例を示す断面図である。
FIG. 4 is an embodiment of an elbow-shaped connector used in a bent portion, and FIG. 5 is a sectional view showing an embodiment of a socket connector of different diameters used in a reduced portion (the same applies to an enlarged portion).

このようなコネクターはソケット形のみではヒートパイ
プが直線的に配置されてしまうのに対して、実施例に示
すエルボ形、異径ソケット等を組合せて使用することに
より、ヒートパイプの敷設に自由度が生じるメリットが
ある。
With such a connector, if the socket type is used alone, the heat pipes will be arranged in a straight line, but by using a combination of the elbow type, different diameter sockets, etc. shown in the example, you can have more freedom in laying the heat pipes. There is an advantage that this occurs.

第6図は熱輸送の際に熱の分岐1合流用として用いられ
るチーズ形コネクターの断面図である。
FIG. 6 is a sectional view of a cheese-shaped connector used for merging one branch of heat during heat transport.

接触部の構成、動作はソケット形と変らないが、接触面
の大きさ、パイプ径を変えることにより、熱移送の割合
を使用目的に応じて適当に変えることができる。
The structure and operation of the contact part are the same as those of the socket type, but by changing the size of the contact surface and the pipe diameter, the rate of heat transfer can be changed appropriately depending on the purpose of use.

第7図は内壁を取除き、ヒートパイプla。Figure 7 shows the heat pipe la after removing the inner wall.

1bとコネクター1gの外壁とによって形成される気密
空間の内面の全部、あるいは、1部分にクイック2gを
取りつけると同時に、動作流体3gの蒸気が通る蒸気通
路12を設けることを特徴とした実施例を示す。
An embodiment characterized in that the quick 2g is attached to all or a part of the inner surface of the airtight space formed by the outer wall of the connector 1b and the outer wall of the connector 1g, and at the same time a steam passage 12 is provided through which the vapor of the working fluid 3g passes. show.

図はウィック2gをヒートパイプla、lb側の表面に
設けた場合であり、そのウィック2gには外壁に接する
程度の高さの突起を複数個所設け、動作流体3gが重力
の作用により気密空間の最下部に停滞してしまい(クイ
ックと未接触状態)、毛細現象による表面張力によって
得られる動作流体(液体)の帰還力を損なわないよりに
する効果をもたせている。
The figure shows a case in which a wick 2g is provided on the surface of the heat pipes la and lb. The wick 2g is provided with multiple protrusions high enough to touch the outer wall, and the working fluid 3g is caused by the action of gravity to fill the airtight space. It stagnates at the bottom (not in contact with the quick) and has the effect of not impairing the return force of the working fluid (liquid) obtained by the surface tension caused by capillarity.

第8図はヒー ドパイブとコネクターの接続を接触によ
った場合の実施例について示したものである。
FIG. 8 shows an embodiment in which the heat pipe and the connector are connected by contact.

図はソケット形コネクターの例であり、ヒートパイプl
a、lbの端末部の外周面とソケットコネクターICの
内壁内周面を、それぞれが適合するテーバ面15とし、
さらにヒートパイプla。
The figure shows an example of a socket type connector, and a heat pipe l.
The outer circumferential surface of the terminal portions a and lb and the inner circumferential surface of the inner wall of the socket connector IC are respectively made into compatible tapered surfaces 15,
Furthermore, heat pipe la.

1bの端末近くに7ランジ13a、13bを取付け、ソ
ケットコネクター1cの端末にも同サイズのフランジ1
4を取付けて、各フランジ13aと14.13bと14
を締付けることにより、テーバ面15での接触を良くし
接触熱抵抗を小さくし、この部分での熱輸送能力を改善
し、組立、解体等の作業性を良くする。この他、フラン
ジにようf、たとえば、接触面部をネジ構造とするか、
あるいは、テーバ面とネジh′イ造とを併用してもよい
。なお、9は熱流方向を示す。
Install 7 flange 13a, 13b near the terminal of socket connector 1b, and attach flange 1 of the same size to the terminal of socket connector 1c.
4, each flange 13a and 14.13b and 14
By tightening, the contact at the taber surface 15 is improved, the contact thermal resistance is reduced, the heat transport ability in this area is improved, and the workability of assembly, disassembly, etc. is improved. In addition, the flange may have a threaded structure, for example, the contact surface may have a threaded structure.
Alternatively, the tapered surface and the thread h' feature may be used together. Note that 9 indicates the direction of heat flow.

〔発明の効果〕〔Effect of the invention〕

本発明によれば高い効率で熱吸収又は熱放散を行なうこ
とができ、ヒートパイプのもつ熱移送能力を無駄なく利
用することができる。
According to the present invention, heat absorption or heat dissipation can be performed with high efficiency, and the heat transfer ability of the heat pipe can be utilized without waste.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のヒートパイプの断面図、第2図は従来の
ヒートパイプの接続を示す接続部分の断面図、第3図な
いし第6図は本発明の実施例を示すそれぞれ、ソケット
形、エルボ形、異径ソケット形、チーズ形のコネクター
の断面図、第7図は本発明の他の実施例の断面図、第8
図は本発゛明のコネクターとヒートパイプとの接続を7
う/ジによった場合の実施例を示−を断面図である。 1・・・ヒートパイプ、2・・・ウィック、3・・・動
作流体、8・・・接触部、10.11・・・ヒートパイ
プとコネクターの接触部、12・・・蒸気通路、13.
14・・・フ第 /  国 第 2 口 孔 第 3 国 第 4 日 第 5 図 第 6 日 早 7 国 事 8  口
Fig. 1 is a cross-sectional view of a conventional heat pipe, Fig. 2 is a cross-sectional view of a connecting part showing a connection of a conventional heat pipe, and Figs. 3 to 6 show embodiments of the present invention. Cross-sectional views of elbow type, different diameter socket type, and cheese-type connectors; FIG. 7 is a cross-sectional view of another embodiment of the present invention;
The figure shows the connection between the connector of the present invention and the heat pipe.
FIG. 3 is a cross-sectional view showing an example of the case where the wires are mounted. DESCRIPTION OF SYMBOLS 1... Heat pipe, 2... Wick, 3... Working fluid, 8... Contact part, 10.11... Contact part of heat pipe and connector, 12... Steam passage, 13.
14...F th / National 2nd port 3rd country 4th day 5th figure 6th day early 7 National affairs 8 port

Claims (1)

【特許請求の範囲】 1、 コネクターを形成する壁板厚内に空間を設け、こ
の墾間内にウィック、動作流体を入れて刺をし、前記壁
間に気笛性ケ保たせたことを特徴とするヒートパイプ用
コイ、フタ−。 2、特許請求の範囲@1項において、前記空間は前記壁
板に設けた溝であることを特徴とするヒートパイプ用コ
ネクター。 3、%許a〜求の範囲第1項に2いて、前記空間内に設
けた前記ウィックに、前記空間を介して向き合う壁に複
数個の突起を設けたことをl特徴とするヒートパイプ用
コネクター。 4、特許請求の範囲第1項にνいて、ヒートパイブイ幾
能を備えた前記コネクターと前記ヒートパイプとの接触
面をテーパ構造にすることを特徴とするヒートパイプ用
コネクター。
[Claims] 1. A space is provided within the thickness of the wall plate forming the connector, and a wick and a working fluid are put in the space and a prick is inserted to maintain a whistle between the walls. Characteristic carp and lid for heat pipes. 2. The heat pipe connector according to claim 1, wherein the space is a groove provided in the wall plate. 3. For a heat pipe, characterized in that the wick provided in the space is provided with a plurality of protrusions on walls facing each other across the space. connector. 4. A heat pipe connector according to claim 1, characterized in that a contact surface between the connector having a heat pipe buoy geometry and the heat pipe has a tapered structure.
JP9560483A 1983-06-01 1983-06-01 Connector for heat pipe Pending JPS59221591A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9560483A JPS59221591A (en) 1983-06-01 1983-06-01 Connector for heat pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9560483A JPS59221591A (en) 1983-06-01 1983-06-01 Connector for heat pipe

Publications (1)

Publication Number Publication Date
JPS59221591A true JPS59221591A (en) 1984-12-13

Family

ID=14142150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9560483A Pending JPS59221591A (en) 1983-06-01 1983-06-01 Connector for heat pipe

Country Status (1)

Country Link
JP (1) JPS59221591A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6868898B2 (en) * 2003-03-26 2005-03-22 Intel Corporation Heat pipe having an inner retaining wall for wicking components
US20090178785A1 (en) * 2008-01-11 2009-07-16 Timothy Hassett Composite heat pipe structure
CN111076585A (en) * 2019-11-28 2020-04-28 北京空间机电研究所 Truss-like vapour liquid phase transition capillary pump subassembly for heat transfer device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6868898B2 (en) * 2003-03-26 2005-03-22 Intel Corporation Heat pipe having an inner retaining wall for wicking components
US20090178785A1 (en) * 2008-01-11 2009-07-16 Timothy Hassett Composite heat pipe structure
CN111076585A (en) * 2019-11-28 2020-04-28 北京空间机电研究所 Truss-like vapour liquid phase transition capillary pump subassembly for heat transfer device

Similar Documents

Publication Publication Date Title
US4352392A (en) Mechanically assisted evaporator surface
EP0316044B1 (en) Heat pipe working liquid distribution system
US4067315A (en) Solar heat pipe
US20050092467A1 (en) Heat pipe operating fluid, heat pipe, and method for manufacturing the heat pipe
US3952798A (en) Internally heated heat pipe roller
US7137442B2 (en) Vapor chamber
US20060207750A1 (en) Heat pipe with composite capillary wick structure
US7866373B2 (en) Heat pipe with multiple wicks
US4036291A (en) Cooling device for electric device
US7866374B2 (en) Heat pipe with capillary wick
US20070240858A1 (en) Heat pipe with composite capillary wick structure
US20070240855A1 (en) Heat pipe with composite capillary wick structure
US3746081A (en) Heat transfer device
US3811496A (en) Heat transfer device
KR20020042421A (en) Apparatus for dense chip packaging using heat pipes and thermoelectric coolers
TWM583932U (en) Flexible heat pipe
US4058160A (en) Heat transfer device
US3828849A (en) Heat transfer device
JPS59221591A (en) Connector for heat pipe
JPS5816187A (en) Heat transfer device
GB2167550A (en) Cooling apparatus for semiconductor device
SU800577A1 (en) Heat pipe
US3955619A (en) Heat transfer device
KR20080087431A (en) Heat pipe of long distance
TW200907277A (en) Heat pipe