JPS59221434A - Correcting and control system for unequality of intercylinder fuel injection amount - Google Patents

Correcting and control system for unequality of intercylinder fuel injection amount

Info

Publication number
JPS59221434A
JPS59221434A JP9485783A JP9485783A JPS59221434A JP S59221434 A JPS59221434 A JP S59221434A JP 9485783 A JP9485783 A JP 9485783A JP 9485783 A JP9485783 A JP 9485783A JP S59221434 A JPS59221434 A JP S59221434A
Authority
JP
Japan
Prior art keywords
cylinder
engine
injection amount
cylinders
fuel injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9485783A
Other languages
Japanese (ja)
Inventor
Manabu Furubayashi
古林 学
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP9485783A priority Critical patent/JPS59221434A/en
Publication of JPS59221434A publication Critical patent/JPS59221434A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • F02D41/1498With detection of the mechanical response of the engine measuring engine roughness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/08Introducing corrections for particular operating conditions for idling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1015Engines misfires

Abstract

PURPOSE:To control unpleasant vibration of engine by correcting the amount of feul injected in such a way that the deviation between average values for the operation periods of each cylinder and the operation periods of all the cylinders becomes less than a given value during the idling period. CONSTITUTION:A cylinder-discriminating pulse sensor 8 and an upper dead point angle sensor 9 are provided to a control unit 1, by which whether engine is in idling state or not is judged. When idling state is judged, the average period of all the cylinders is obtained and then the variation rate of each cylinder is obtained. The deviation between the average period and the period of all the cylinder is obtained, and the fuel injection amount of each cylinder is corrected in such a way as to lower the deviation to less than a reference value. The unpleasant vibration of the engine can thus be suppressed.

Description

【発明の詳細な説明】 本発明は、エンジンにおける各気筒毎に燃料噴射量が僅
かながら相違するとき、その不均率を求めて補正するた
めの気筒間燃料噴射量不埒率補正制御方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an inter-cylinder fuel injection amount disparity correction control method for determining and correcting the disproportionality when the fuel injection amount differs slightly between cylinders in an engine. It is.

さて、エンジンにおける燃料噴射装置は、ノズルやデリ
バリバルブの寸法公差などにより、気筒毎の噴射量に若
干の差があり(この差の程度が不均率によって表わされ
る)、このためにエンジンの回転速度が爆発周期毎に変
動し、不快な振動を発生する。この振動は、車が高速で
走行しているときは余り問題にならないが、アイドリン
グ時には不快な振動に感じられるため特に問題になる。
Now, in the fuel injection system of an engine, there is a slight difference in the amount of injection from cylinder to cylinder due to dimensional tolerances of the nozzle and delivery valve (the degree of this difference is expressed by the non-uniformity factor), and this causes the engine speed to change. The speed fluctuates with each explosion cycle, producing unpleasant vibrations. This vibration does not cause much of a problem when the car is running at high speed, but it becomes a particular problem when the car is idling, as it can be felt as an unpleasant vibration.

この振動は不均率が大きいほど大きく、特にAl1車の
場合はフライホイールの慣性質量が小さいために一層敏
感で問題になる事が多かっ゛た。特に分配型噴射ポンプ
の場合には不均率の調整は困難で部品の寸法公差を小さ
くするにも限度があるため深刻な問題であった。
This vibration increases as the non-uniformity ratio increases, and in the case of Al1 vehicles in particular, the inertial mass of the flywheel is small, so it is more sensitive and often causes problems. Particularly in the case of distribution type injection pumps, it is difficult to adjust the disproportionality, and there are limits to reducing the dimensional tolerance of parts, which is a serious problem.

そこで各気筒に対する噴射量の不均率を補正し各気筒に
等量の燃料を噴射することができるようにした燃料噴射
ポンプも提案(特開昭56−141026号公報参照)
されているが、ががる既提案のものは、電子式エンジン
制御装置を前提としたものではなかったために、その実
現に際して高精度の電破弁を余分に必要とするなど、コ
スト的に高いものになるという欠点があった。
Therefore, we proposed a fuel injection pump that corrects the unevenness of the injection amount for each cylinder and injects the same amount of fuel into each cylinder (see Japanese Patent Application Laid-Open No. 141026/1983).
However, since the existing proposal by Gagaru was not based on the premise of an electronic engine control device, it required an extra high-precision electric rupture valve to realize it, resulting in high costs. It had the disadvantage of becoming a thing.

本発明は、上述のような従来の技術的事情にかんがみな
されたものであり、従って本発明の目的は、電子式エン
ジン制御装置を前提として、高い追加コストを要するこ
となく、コスト低床な手段で実現できる所の気筒間燃料
噴射毒不均率補正制御方法を提供することにある。
The present invention has been made in view of the above-mentioned conventional technical circumstances, and therefore, an object of the present invention is to provide a low-cost means without requiring high additional costs, based on the premise of an electronic engine control device. It is an object of the present invention to provide a control method for correcting fuel injection poison non-uniformity between cylinders, which can be realized in the following manner.

」二記目的を達成するため、本発明による気筒間然イ′
1噴射量不均率補正制御方法は、エンジンがアイドリン
グ状態にあることを検出する段階と、アイドリング状態
にあるとき、エンジンに含まれる各気筒の動作周期を計
測して記憶する段階と、エンジンに食中れる全気筒の動
作周期の平均値を算出する段階と、各気筒毎の動作周期
の前記平均値に対する変動率を算出して記憶する段階と
、変動率が規準値に対して一定限度を超えて相違する気
flijに刻しては、当該気筒の噴射量目標値を一定量
だけ変更する段階とを少なくとも含み、全気筒のそれで
nの前記変動率が前記規準値から一定限度のずれ範囲内
に収まるまで前記各段階を繰り返し実行するようにした
ことを特徴としている。
In order to achieve the second object, the present invention provides a cylinder-to-cylinder engine.
1. The injection amount imbalance correction control method consists of a step of detecting that the engine is in an idling state, a step of measuring and storing the operating cycle of each cylinder included in the engine when the engine is in an idling state, and a step of detecting that the engine is in an idling state. a step of calculating the average value of the operating cycles of all the cylinders being affected; a step of calculating and storing the variation rate of the operating cycle of each cylinder with respect to the average value; The step of changing the injection amount target value of the cylinder concerned by a certain amount, the fluctuation rate of n for all cylinders being within a certain limit deviation range from the standard value. It is characterized in that each of the steps described above is repeatedly executed until the amount falls within the range.

次に図を参照して本発明の一実施例を説明する。Next, an embodiment of the present invention will be described with reference to the drawings.

第1図は、本発明の前提とする電子式エンジン制御装置
の概要を示すブロック図である〇同図を参照する。コン
トロール・ユニット1に対し、センサ2〜7から、アク
セル位許、燃料噴射量、エンジン回転、燃料温度、冷却
水温度、車速等が入力され、またメインスイッチ10.
セットスイッチ11、リジュームスイッチ12、ブレー
キ・クラッチスイッチ13、エア・フンスイッチ14、
スタートスイッチ15から各スイッチ出力が入力される
FIG. 1 is a block diagram showing an outline of an electronic engine control device on which the present invention is based. Refer to the same figure. Accelerator position, fuel injection amount, engine rotation, fuel temperature, coolant temperature, vehicle speed, etc. are input to the control unit 1 from sensors 2 to 7, and main switch 10.
Set switch 11, resume switch 12, brake/clutch switch 13, air/fun switch 14,
Each switch output is input from the start switch 15.

コントロール・ユニット1では、これらの入力信号を取
り込み、所定の演算等を行った後、アクチュエータ2o
に対して燃料噴射量を指示すると共に、そのタイミング
制御を行う。なお、21はクルーズ表示ランプであり、
22は自己詮所表示ランプである。
The control unit 1 takes in these input signals, performs predetermined calculations, etc., and then controls the actuator 2o.
The system instructs the fuel injection amount and controls its timing. In addition, 21 is a cruise indicator lamp,
22 is a self-inspection indicator lamp.

第2図は、本発明による制御方法を実現するために第1
図の制御装置に追加すべきセンサを示したブロック図で
ある0すなわち、気筒判別ノぐルスセンザ8と上死点角
度センサ9をコントロール・ユニット1に追加するだけ
で、本発明による制御方法を実現することが可能になる
0 なお、気筒判別パルスセンサ8は、4気筒のエンジンを
想定した場合、エンジン2回転に1パルスを発生するよ
う、例えば噴射ポンプの#ICyA!(気前)の圧送前
にパルスを出力するように取付ける。また上死点角度セ
ンサ9は、クランクシャフト(フライホイールまたはフ
ロンFプーリー)に正確に各気筒の上死点毎にパルス(
Top DeadCcnterパルス、略してTDCパ
ルス)を出力するよう取付ける。
FIG. 2 shows the first step to realize the control method according to the present invention.
0 is a block diagram showing the sensors to be added to the control device shown in FIG. In addition, assuming a four-cylinder engine, the cylinder discrimination pulse sensor 8 generates one pulse every two revolutions of the engine, such as #ICyA! of the injection pump. Installed to output a pulse before pumping (generous). In addition, the top dead center angle sensor 9 sends a pulse (
Install it to output the Top Dead Ccnter pulse (TDC pulse for short).

コントロール・ユニット1では、センサ8からの気筒判
別パルスの入力後、最初にセンサ9から入力されるTD
Cパルスを:tf:1.CyIlに属するパルスと判別
し、以後、各気筒の爆発順序に従って13t14.#2
の順に’f’ D Cパルスを判別する。
In the control unit 1, after the cylinder discrimination pulse is input from the sensor 8, the TD that is first input from the sensor 9
C pulse: tf:1. It is determined that the pulse belongs to CyIl, and thereafter, 13t14. #2
The 'f' DC pulse is determined in this order.

第3図は、上述のようにして得られる気筒判別パルスと
i’ D Cパルスから、各気筒の動作周期を計測する
際の各信号のタイミング関係を示すチャートである。
FIG. 3 is a chart showing the timing relationship of each signal when measuring the operating period of each cylinder from the cylinder discrimination pulse and i' DC pulse obtained as described above.

同図に見られるように、各気筒のTDCパルスから次の
気筒のTDCパルスまでの周期をクロックパルスで計測
し、これを順次繰返して4気筒間各周期をそれぞれ求め
て記tホさせる(例えば、#1→#3の周期を=# I
 CyAの番地にメモリする)0これを例えばlOサイ
クル分31゛測し平均する。この結果、例えば#1→#
3の周期が02−)01の周期より長ければ、(#l→
#3の平均角速度の万が#2→#1より遅いので)#2
の爆発力より#1の爆発力の方が小さい。即ち、噴射量
が少ないと判断する。何故ならば、慣性マスは等しいの
で出力と角速度は比例するからである。同様に順次爆発
順序の隣り合う気筒同志を比較し°Cいき、最も噴射量
の少ない気筒と多1r>気筒を識別する。
As shown in the figure, the period from the TDC pulse of each cylinder to the TDC pulse of the next cylinder is measured using a clock pulse, and this is sequentially repeated to obtain and record each period among the four cylinders (for example, , the period of #1 → #3 = # I
(Memorized at address CyA) 0 This is measured for 31 cycles, for example, and averaged. As a result, for example #1 → #
If the period of 3 is longer than the period of 02-)01, (#l→
Since the average angular velocity of #3 is slower than #2 → #1) #2
The explosive force of #1 is smaller than the explosive force of #1. That is, it is determined that the injection amount is small. This is because the inertial masses are equal, so the output and angular velocity are proportional. Similarly, adjacent cylinders in the order of explosion are sequentially compared in °C to identify the cylinder with the smallest injection amount and the cylinder with the largest injection amount.

第4図に、各周期とその間における灰時角速度の関係を
示した。なお、瞬時角速度のグラフにおいて、↑印は各
気筒の燗発による回転上昇を示している。
FIG. 4 shows the relationship between each period and the gray angular velocity during that period. In addition, in the instantaneous angular velocity graph, the ↑ mark indicates an increase in rotation due to heating of each cylinder.

第2図に戻り、コントロール・ユニット1では、上述の
ようにして識別した噴射量の少ない気筒の噴射が始まる
前に、噴射量の目標値を成る割合(例えば1チ)だけ増
し、多い気筒の場合には逆に減らすような制御を行う。
Returning to FIG. 2, the control unit 1 increases the target value of the injection amount by a certain percentage (for example, 1 inch) before starting injection in the cylinder with the smaller injection amount identified as described above, and increases the target value of the injection amount in the cylinder with the larger injection amount. In some cases, control is performed to reduce the amount.

そして再び、各気筒毎の動作周期の計測、噴射量の制御
を縁り返すことにより、各気筒毎の動作周期の差(ひい
ては燃料噴射量の相違)が成る規準値以下に収まるよう
にする。このようにして最終的に得られた各気筒毎の噴
射量の補正率をメモリに記憶しておけば、この補正率に
従って、アイドリング時に、直ちに気筒間燃料噴射量平
均率補正制御を実施して不快な振動を防止することがで
きる。
Then, by repeating the measurement of the operating cycle and the control of the injection amount for each cylinder, the difference in the operating cycle (and therefore the difference in the fuel injection amount) for each cylinder is kept below the standard value. If the correction factor of the injection amount for each cylinder finally obtained in this way is stored in the memory, the inter-cylinder fuel injection amount average rate correction control can be performed immediately during idling according to this correction factor. Unpleasant vibrations can be prevented.

第5図は本発明に従ってコントロールQユニットが実行
する動作の流れを示すフローチャートである0 同図において、ステップ■は、アイドリング状態にある
か否かを判別するためのステップである。
FIG. 5 is a flowchart showing the flow of operations executed by the control Q unit according to the present invention. In FIG.

■〜■の各ステップについては、改めて説明するまでも
ないであろう。
There is no need to explain each step of (1) to (2) again.

第6図は、・第4図に対応して噴射量の増減制御を行う
場合のカパナの制御特性を示した特性図である。同図に
おいて、補正前の噴射量目標値が、#1 t#3##4
 ##2の各TDCにわたり、一定であったのに対し、
不拘率補正後の噴射量目標値は、点線の折れ線で表示さ
れており、これに対し、カバナの実際の応答特性は、実
線で示した如くなる。各噴射時期に、・印で示された量
の燃料が噴射されることになるわけである〇 本発明によれば、以上説明したような計測、制御をエン
ジンがアイドリング状態になる度毎に行い、不拘率の補
正率が何らかの理由でそれまでと変化した場合には、再
補正するという学習制御を実行するものであるから、エ
ンジンによる不快な振動を常に抑圧できるという利点が
ある。
FIG. 6 is a characteristic diagram showing the control characteristics of the kapana when controlling the increase/decrease of the injection amount, corresponding to FIG. 4. In the same figure, the injection amount target value before correction is #1 t#3##4
While it was constant across each TDC of ##2,
The injection amount target value after correction of the unrestricted rate is shown by a dotted line, whereas the actual response characteristic of the cabana is shown by a solid line. At each injection timing, the amount of fuel indicated by the mark is injected.According to the present invention, the measurement and control as described above are performed every time the engine is in an idling state. If the correction factor of the unrestrained factor changes from the previous one for some reason, learning control is executed to correct it again, so there is an advantage that unpleasant vibrations caused by the engine can be constantly suppressed.

上記実施側では、角速度変動の検出方法としてTDC毎
の(クランク角1go’)周期を「を測する方法を示し
たが、この他にも回転センサの周波数入力を高速F−V
変換してアナログ電圧の極大と極小を比べる方法(第4
図下の図の矢印を計測)等も考えられる。
In the above-mentioned implementation side, a method of measuring the period of (crank angle 1 go') for each TDC was shown as a method of detecting angular velocity fluctuations, but there are other ways to measure the frequency input of the rotation sensor at high speed F-V
How to convert and compare the maximum and minimum of analog voltage (Part 4)
(Measure the arrow in the figure below) is also considered.

」1記実施例では角速度変動の気筒差をアイドリング時
に計測しているが、他の条件でも定常状態である事を判
断するロジックを追加すれば可能である。又、不拘率の
制御が必要になるのは主にアイドリング時だけなので、
不拘率補正をアイドル時に限定して実施する事も実際的
である(上記例ではアイドリング時の補正率をメモリし
て、すべての運転条件で補正しているが実質的には高速
時は、カバナの応答が追従せず補正されないと思われる
)。
In the first embodiment, the cylinder difference in angular velocity fluctuation is measured during idling, but it is also possible under other conditions by adding logic to determine whether the engine is in a steady state. In addition, control of the non-retention rate is mainly necessary only during idling, so
It is also practical to perform the unrestrained rate correction only when idling (in the above example, the idling correction rate is memorized and corrected under all driving conditions, but in reality, when driving at high speed, the cabana It seems that the response of

本発明は分配型ポンプに限らず、ラインポンプ、ユニッ
トインジェクター、ガソリン噴射等すべての電子制御噴
射システムに適用できる事は論をまたない。
It goes without saying that the present invention is applicable not only to distribution type pumps but also to all electronically controlled injection systems such as line pumps, unit injectors, and gasoline injection systems.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の前提とする電子式エンジン制御装置の
概要を示すブロック図、第2図は本発明による制御方法
を実現するために第1図の制御装置に追加すべきセンサ
を示したブロック図、第3図は気筒判別パルスとTDC
パルスから各気筒の動作周期を計測する際の各信号のタ
イミング関係を示すチャート、第4図は各気筒の動作周
期とその間における瞬時角速度の関係を示すグラフ、第
5図は本発明に従ってコントロール・ユニットが実行す
る動作の流れを示すフローチャート、第6図は第4図に
対応して噴射量の増減制御を行う場合のカバナの制御特
性を示した特性図、である。 符号説明 8・・・・・・気筒判別パルスセンサ、9・・・・・・
上死点角度センサ 代理人 弁理士 並 木 昭 夫 代理人 弁理士 松 崎    清 芋l     井3    祥4    η2    
井ITDC 第6図 一一一一−クランク角(B奇P譜)
FIG. 1 is a block diagram showing an overview of the electronic engine control device on which the present invention is based, and FIG. 2 shows sensors that should be added to the control device in FIG. 1 in order to realize the control method according to the present invention. Block diagram, Figure 3 shows cylinder discrimination pulse and TDC
A chart showing the timing relationship of each signal when measuring the operating period of each cylinder from pulses, FIG. 4 is a graph showing the relationship between the operating period of each cylinder and the instantaneous angular velocity during that period, and FIG. FIG. 6 is a flowchart showing the flow of operations executed by the unit, and FIG. 6 is a characteristic diagram showing the control characteristics of the cabana when controlling the increase/decrease of the injection amount, corresponding to FIG. 4. Code explanation 8... Cylinder discrimination pulse sensor, 9...
Top dead center angle sensor agent Patent attorney Akio Namiki Agent Patent attorney Kiyoimo Matsuzaki I3 Sho4 η2
IITDC Figure 6 111-Crank angle (B odd P score)

Claims (1)

【特許請求の範囲】[Claims] 1)エンジンがアイドリング状態にあることを検出する
段階と、アイドリング状態にあるとき、エンジンに含ま
れる各気筒の動作周期を計測して記ff4する段階と、
エンジンに含まれる金気筒の動作周期の平均値を算出す
る段階と、各気筒毎の動作周期の前記平均値に対する変
動率を算出して記憶する段階と、変動率が規準値に対し
て一定限度を超えて相違する気筒に対しては、当該気筒
の噴射量目標値を一定量だけ変更する段階とを少なくと
も含み、全気筒のそれぞれの前記変動率が前記規準値か
ら一定限度のずれ範囲内に収まるまで前記各段階を繰り
返し実行するようにしたことを特徴とする気筒間燃料噴
射量不埒率補正制御方法。
1) a step of detecting that the engine is in an idling state; and a step of measuring and recording the operating cycle of each cylinder included in the engine when the engine is in an idling state;
A step of calculating the average value of the operating cycles of the cylinders included in the engine, a step of calculating and storing the fluctuation rate with respect to the average value of the operating cycle of each cylinder, and a step of calculating and storing the fluctuation rate with respect to the average value, and a step in which the fluctuation rate is within a certain limit with respect to the standard value. For cylinders that differ by more than 100 yen, the method includes at least the step of changing the injection amount target value of the cylinder by a certain amount, so that the fluctuation rate of each of all cylinders is within a certain limit deviation range from the standard value. 1. A control method for correcting inter-cylinder fuel injection amount disobedience, characterized in that each step is repeatedly executed until the amount of fuel injection between cylinders is corrected.
JP9485783A 1983-05-31 1983-05-31 Correcting and control system for unequality of intercylinder fuel injection amount Pending JPS59221434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9485783A JPS59221434A (en) 1983-05-31 1983-05-31 Correcting and control system for unequality of intercylinder fuel injection amount

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9485783A JPS59221434A (en) 1983-05-31 1983-05-31 Correcting and control system for unequality of intercylinder fuel injection amount

Publications (1)

Publication Number Publication Date
JPS59221434A true JPS59221434A (en) 1984-12-13

Family

ID=14121697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9485783A Pending JPS59221434A (en) 1983-05-31 1983-05-31 Correcting and control system for unequality of intercylinder fuel injection amount

Country Status (1)

Country Link
JP (1) JPS59221434A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6114446A (en) * 1984-06-28 1986-01-22 Nippon Denso Co Ltd Fuel injection quantity control for internal-combustion engine
JPS6146444A (en) * 1984-08-10 1986-03-06 Nippon Denso Co Ltd Fuel injection quantity control method for internal-conbustion engine
US4779595A (en) * 1985-12-28 1988-10-25 Diesel Kiki Co., Ltd Apparatus for controlling idling operation of internal combustion engine
JPH02227534A (en) * 1989-03-01 1990-09-10 Hitachi Ltd Combustion control device for multi-cylinder engine and its method
WO1990014514A1 (en) * 1989-05-15 1990-11-29 Japan Electronic Control Systems Co., Ltd. Error detection device for each cylinder in fuel supply control device for internal combustion engine, learning device for each cylinder and diagnostic device for each cylinder

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6114446A (en) * 1984-06-28 1986-01-22 Nippon Denso Co Ltd Fuel injection quantity control for internal-combustion engine
JPS6146444A (en) * 1984-08-10 1986-03-06 Nippon Denso Co Ltd Fuel injection quantity control method for internal-conbustion engine
US4779595A (en) * 1985-12-28 1988-10-25 Diesel Kiki Co., Ltd Apparatus for controlling idling operation of internal combustion engine
JPH02227534A (en) * 1989-03-01 1990-09-10 Hitachi Ltd Combustion control device for multi-cylinder engine and its method
WO1990014514A1 (en) * 1989-05-15 1990-11-29 Japan Electronic Control Systems Co., Ltd. Error detection device for each cylinder in fuel supply control device for internal combustion engine, learning device for each cylinder and diagnostic device for each cylinder
US5131372A (en) * 1989-05-15 1992-07-21 Japan Electronic Control Systems Co., Ltd. Apparatus for controlling the respective cylinders in the fuel supply system of an internal combustion engine

Similar Documents

Publication Publication Date Title
JP3348107B2 (en) Method for adjusting fuel injection amount of internal combustion engine
JP2556964B2 (en) Idle operation control device for internal combustion engine
US4688535A (en) Apparatus for influencing control quantities of an internal combustion engine
US5021960A (en) Combustion fault detection apparatus and control system for internal combustion engine
KR19990023730A (en) Fuel injection control system for internal combustion engine
JPH11182299A (en) Torque control device for engine
US5060618A (en) Method and apparatus for controlling torque variations in an internal combustion engine
JPH0116331B2 (en)
US4725954A (en) Apparatus and method for controlling fuel supply to internal combustion engine
JPS59221434A (en) Correcting and control system for unequality of intercylinder fuel injection amount
US7007685B2 (en) Air-fuel ratio control device of internal combustion engine
JPH0723582Y2 (en) Ignition timing control device for internal combustion engine
JPH0223268A (en) Ignition timing control device for internal combustion engine
JPS629740B2 (en)
JP3216577B2 (en) Air-fuel ratio control method for internal combustion engine
JP3262003B2 (en) Output fluctuation detection method for multi-cylinder internal combustion engine
JP3279179B2 (en) Detection method in a multi-cylinder internal combustion engine
JP3246328B2 (en) Detection method in internal combustion engine
JP3246325B2 (en) Detection method in internal combustion engine
JP3218970B2 (en) Detection method in internal combustion engine
JP2535895B2 (en) Air-fuel ratio control device for internal combustion engine
JPH07116962B2 (en) Air-fuel ratio controller for internal combustion engine
JPS63140867A (en) Engine controller
JPS6035156A (en) Fuel injection device for internal-combustion engine
JPH0788809B2 (en) Ignition timing control device for internal combustion engine