JPS59221342A - Electrically conductive resin composition - Google Patents

Electrically conductive resin composition

Info

Publication number
JPS59221342A
JPS59221342A JP9484383A JP9484383A JPS59221342A JP S59221342 A JPS59221342 A JP S59221342A JP 9484383 A JP9484383 A JP 9484383A JP 9484383 A JP9484383 A JP 9484383A JP S59221342 A JPS59221342 A JP S59221342A
Authority
JP
Japan
Prior art keywords
coke
resin composition
conductive resin
weight
volume resistivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9484383A
Other languages
Japanese (ja)
Inventor
Masato Nagano
長野 正登
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Original Assignee
NOF Corp
Nippon Oil and Fats Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NOF Corp, Nippon Oil and Fats Co Ltd filed Critical NOF Corp
Priority to JP9484383A priority Critical patent/JPS59221342A/en
Publication of JPS59221342A publication Critical patent/JPS59221342A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)

Abstract

PURPOSE:To provide a composition composed of a thermoplastic resin and a finely pulverized coke, and giving a light-weight sheet or container, etc. having excellent mechanical strength and fluidity and uniform electrical conductivity. CONSTITUTION:100pts.wt. of a thermoplastic resin is compounded with 30- 120pts.wt. of finely pulverized coke (having a 50% weight diameter of 8-60mu). The resin is e.g. a polyolefin, an olefinvinyl acetate copolymer, etc. The volume resistivity and its lot-to-lot variability of the composition are extremely low and the uniform electrical conductivity can be maintained even if the kneading time is varied.

Description

【発明の詳細な説明】 本発明は、シート、板、収納容器等の形態で用いられる
導電性を有する樹脂組成物で、均一なる導電性能を保持
し、軽量、かつ機械的強度および流動特性に優れた導電
性樹脂組成物に関するものである。
Detailed Description of the Invention The present invention is an electrically conductive resin composition used in the form of sheets, plates, storage containers, etc., which maintains uniform electrical conductivity, is lightweight, and has excellent mechanical strength and fluidity. This invention relates to an excellent conductive resin composition.

ポリオレフィン、ポリ塩化ビニル等の熱可塑性*脂と銀
、銅等の金鴫粉又はカーボンブラックを混練することに
より導電性(2)脂組我物を優ることはよく知られてい
る。
It is well known that conductivity (2) is superior to resin compositions by kneading thermoplastic resins such as polyolefins and polyvinyl chloride with gold powder or carbon black such as silver and copper.

導電性11を脂組戎物け111M脂固有の易加工性、耐
腐食性、軽量という利点と相まって導電性が良好なので
例えばl01L81等の静電気対策(工0マガジン、パ
ーツキャビネット等)に用いられている。
Combining the electrical conductivity 11 with the advantages of easy workability, corrosion resistance, and light weight inherent in fat assembly Ebimonoke 111M resin, it has good electrical conductivity, so it is used for static electricity countermeasures (engineering magazines, parts cabinets, etc.) such as 101L81. There is.

この導電性樹脂組成物に含まれるカーボンブラックは、
導電性樹脂組成物の比重を増大させない等の長所を有す
るが、熱可塑性樹脂との混411において、その混練時
間、混練トルク等の変化により、導電性111111組
我物の電組成物敏感に変化し、また添加量の増加に従い
、メルトインデックス(以下、IIと略記)で代表され
る流動特性の低下が顕著になってくるという欠点を有す
る。また、銀、銅等の会嬌粉を用いた場合は、カーボン
ブラックに比較し、それ自体の電導度が高い点での有利
性はあるが、合−粉表面の酸化により金閾粉粒子間の接
触抵抗が増加しやすく、峡品の比重が増大し、かつ、機
械的強度の低下が着くなり、綜合的特性において劣ると
いう欠点があった。
The carbon black contained in this conductive resin composition is
Although it has the advantage of not increasing the specific gravity of the conductive resin composition, when mixing it with a thermoplastic resin, the conductivity of the conductive resin composition changes sensitively due to changes in the kneading time, kneading torque, etc. However, it also has the disadvantage that as the amount added increases, the fluidity properties represented by the melt index (hereinafter abbreviated as II) become markedly lowered. In addition, when using a composite powder of silver, copper, etc., it has the advantage of having high conductivity itself compared to carbon black, but due to the oxidation of the composite powder surface, the particles of the gold threshold The contact resistance tends to increase, the specific gravity of the product increases, the mechanical strength decreases, and the overall properties are inferior.

本発明者らは従来の導電性m脂組成物0欠点を改善し、
問題点を解決するために鋭意研究した結果、導電性添加
剤に微粉コークスを用いれば、コークスは適度の導電性
を有すること、また、得られる導電性(2)脂組成物の
緒特性は添加されるコークスの量及びコークスの50%
重量重量板相関関係が大きいこと、さらにコークスの5
0%重量重量板〜60μであるとき、緒特性にすぐれた
導電性W詣組成物が得られるとの知見を得て本発明を完
成するにいたった。
The present inventors have improved the 0 drawbacks of conventional conductive m-lipid compositions,
As a result of intensive research to solve the problem, we found that if fine coke is used as a conductive additive, the coke will have appropriate conductivity, and the characteristics of the resulting conductive (2) fat composition will be amount of coke and 50% of coke
The weight-to-plate correlation is large, and the coke 5
The present invention was completed based on the finding that a conductive W composition with excellent properties can be obtained when the thickness is 0% weight to 60μ.

本発明の導電性11脂組成物は熱可塑性樹脂100重量
部に対して微粉コークス30〜120重量部を添加して
なることを特徴とするものである。
The conductive 11 fat composition of the present invention is characterized in that 30 to 120 parts by weight of fine coke is added to 100 parts by weight of thermoplastic resin.

導電性fM詣組我物のコークス添加量と体積抵抗率(Ω
・譚)との関係はコークスの種類、粒度によF)Rなる
が、その一実施態様が第1図に示される。
The amount of coke added and the volume resistivity (Ω
The relationship between F) and R depends on the type and particle size of coke, and one embodiment of this is shown in FIG.

第1図に示されるようにコークス添加量が30重社部以
下であると体積抵抗率がlQ”l、Q−cy++以上と
なり、導電性での面で効果が期待されず、120重量部
以上であると機械的強度が低下し実用に供されなくなる
As shown in Figure 1, if the amount of coke added is less than 30 parts by weight, the volume resistivity will be more than lQ''l,Q-cy++, and no effect in terms of conductivity can be expected, and if the amount is more than 120 parts by weight. If so, the mechanical strength will decrease and it will not be put to practical use.

汎用熱可塑性III旨には例えばポリオレフィン、オレ
フィンと醋酸ビニルとの共電合体、ポリ塩化ビニル、ポ
リスチレン、ポリアンド等が示される。
General-purpose thermoplastics III include, for example, polyolefins, co-electrolyte combinations of olefins and vinyl acetate, polyvinyl chloride, polystyrene, polyand, and the like.

コークスは石油コークス、ピックコークス、製司コーク
スのいずれでも、またそれらを混合したものでよい。こ
れを粉砕するには原料のコークスをスタンプミル、ハン
マーミル、ボールミル略で粉砕し、通篩により100〜
250μ程度以下の篩下のものとそれ以上の篩上のもの
に分け、篩上のものKは前述した方法に準じて再度粉砕
、通篩を繰カ返し、以下これを繰シ返す。このようにし
て篩下のものを寄せ集めた集団は通常最小粒径のもので
、およそ10 μ程度であり50%重量重量板よそ40
〜90μという分布に相当する。従って必要に応じては
更にエヤー・セパレーター等を用いて分級な行い、5O
N重量径で8〜60μの集団を得る。ちなみにこの状態
におけるコークスは鋭角的突起をもたない、極めて流動
性の良い粒として存在するため、取扱いも簡便である。
The coke may be petroleum coke, pick coke, sashimi coke, or a mixture thereof. To crush this, the raw material coke is crushed using a stamp mill, hammer mill, or ball mill, and then passed through a sieve.
Separate into those below the sieve of about 250 μm or less and those above the sieve, and those above the sieve K are crushed again and passed through the sieve according to the method described above, and this process is repeated thereafter. The mass of subsieve particles collected in this way usually has the smallest particle size, approximately 10 μm, and is about 40 μm in size on a 50% weight plate.
This corresponds to a distribution of ~90μ. Therefore, if necessary, perform further classification using an air separator, etc.
Obtain a population of 8-60μ in N weight diameter. Incidentally, coke in this state exists as grains with extremely good fluidity without sharp protrusions, so it is easy to handle.

コークスの粒径が50%電鰍径で60脂以上であると製
品樹脂の引張強度、曲げ、t!iJ撃強度等強度械的強
度の低下およびバラツキの増加傾向が顕著となるととも
に、電場間の振れ幅が大きくな夛好ましくない。一方、
50%重量重量板μ以下場合Ktlj、IIの低下傾向
が急勾配となシ、かつ、混線時にコークスを均一に分散
するために長時間を要する。
If the particle size of the coke is 50% of the diameter of 60% or more, the tensile strength of the product resin, bending, and t! It is undesirable that mechanical strength such as iJ impact strength tends to decrease and variations tend to increase significantly, and the amplitude of fluctuation between electric fields is large. on the other hand,
When the weight of the plate is less than 50% μ, the decreasing tendency of Ktlj, II is not steep, and it takes a long time to uniformly disperse coke during crosstalk.

本発明の導電性樹脂組成物はこれを製造するにあたって
混練時間が変化しても体積抵抗率及び体積抵抗率の四ッ
ト内変動が極めて小さく、かつ、導電性が均−Km保さ
れ、さらK 11−組成物として添加剤によるM工およ
び機械的強度の低下が少ないという利点を有し、従来の
添加剤にない特性を種々有している。
The conductive resin composition of the present invention has extremely small volume resistivity and intra-metal fluctuations in volume resistivity even if the kneading time changes during production, and maintains uniform conductivity for -Km. As a K11-composition, it has the advantage that there is little reduction in mechanical strength and mechanical strength due to additives, and it has various properties not found in conventional additives.

つぎに不発明の実施圃様を実施例について詳述するが、
本発明はこれらによって限定されるものではない。
Next, we will explain in detail the practical example of the non-inventive field.
The present invention is not limited to these.

実施例1−3 第1表に示される熱可[性11#脂のそれぞれに対して
、第1表に示す粒度のコークスを同表に示す割合に混じ
て、それぞれ同表に示す時間混練した。
Example 1-3 For each of the thermoplastic 11# fats shown in Table 1, coke with the particle size shown in Table 1 was mixed in the proportion shown in the table, and kneaded for the time shown in the table. .

コークスHF、0.91%、の製司コークスをスタンプ
ミルで微粉砕し、第1表に示される粒度、即ち50%重
量重量板大粒径になるよう―映した。
Seishi coke containing 0.91% coke HF was pulverized in a stamp mill and milled to have the particle size shown in Table 1, that is, a 50% large particle size by weight.

混練には加圧双腕型ニーダ−を用い、混練湿度は中密度
ポリエチレンの場合には155℃、エチレン−酢酸ビニ
ル共重合体(第1表ではEVムで示す)の場合には14
5℃とした。
A pressurized double-arm kneader is used for kneading, and the kneading humidity is 155°C for medium density polyethylene and 14°C for ethylene-vinyl acetate copolymer (shown as EV in Table 1).
The temperature was set at 5°C.

潜られたそれぞれの導電性1[組成物の体積抵抗率、I
I、引張降伏点強度を慣用の方法で求め優られた結果を
第1表に示す。なお体積抵抗率については同一試料につ
いて3回測彎しその最小〜最大の値を求めた。
The conductivity of each submerged 1 [volume resistivity of the composition, I
I. The tensile yield point strength was determined by a conventional method and the excellent results are shown in Table 1. Regarding the volume resistivity, the same sample was measured three times and the minimum to maximum values were determined.

比較例1〜5 第1表に示される熱可塑性1[のそれぞれに対して同表
に示される導電性添加剤を同表に示す割合に混じ、実施
例1〜3に準じて混練し導を性t!IWI組成物を調製
した。
Comparative Examples 1 to 5 For each of the thermoplastics 1 shown in Table 1, the conductive additives shown in the table were mixed in the proportions shown in the table, and the mixture was kneaded and conductive according to Examples 1 to 3. Sex t! An IWI composition was prepared.

得られた導電性樹脂組成物の特性を実施例1〜3に準じ
て測定し、碍た結果を第1表に示す。
The properties of the obtained conductive resin composition were measured according to Examples 1 to 3, and the results are shown in Table 1.

第1表から明らかなように、比較例3〜4で示されるカ
ーボンブラックを用いた場合、混練時間による体積抵抗
率の変化および体積抵抗率のロット内変動が極めて大き
いのに対し、実施例の場合はきわめて小さいことが認め
られた。
As is clear from Table 1, when the carbon blacks shown in Comparative Examples 3 and 4 were used, the change in volume resistivity due to kneading time and the intra-lot variation in volume resistivity were extremely large, whereas in the case of the examples It was recognized that the case was extremely small.

実施例1,2.3と比較例3.4を対照すると、カーボ
ンブラックを用いた比較例3.4では体積抵抗率(Ω・
m)が安定するのに要する混線時間が大きいことが詔め
られた。
Comparing Examples 1 and 2.3 and Comparative Example 3.4, Comparative Example 3.4 using carbon black has a lower volume resistivity (Ω・
It was criticized that the time required for crosstalk to become stable was long.

また、体積抵抗率かははrgl−aと同じである実施例
2と比較例4とのXIの低下を求めてみると前者のII
が10で鍔看は5であシM工の低下は比較例4が大であ
ることが認められた。
In addition, when determining the decrease in XI between Example 2 and Comparative Example 4, where the volume resistivity is the same as rgl-a, the former's II
was 10, and tsuba was 5. It was observed that Comparative Example 4 had a large decrease in M-work.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は#it性樹脂組我物のコークス添加量(樹11
00*1isK対するコークス添加重量部)と体積抵抗
率(Ω・crn)を示す。 特許出願人 日本油脂株式会社 代理人弁理士 浸 野 II  司 第  II!! 30  50        +00 手  続  補  正  書 昭和58年6月28日 特許庁長官 若 杉 和 夫 殿 1、事件の表示 昭和58年特許願第94843号 2、発明の名称 導電性樹脂組成物 8、補正をする者 事件との関係  特許出願人 住 所 東京都千代田区有楽町1丁目10番1号名 称
 (434)日本油I旨株式会社4□代理人 〒103 住 所、東京都中央区日本橋室町1丁目2誉地自発補正 6、補正の対象 (1) 明細書の発明の詳細な説明 (2)図  面 (1)  明細書4ペ一ジ5行「醋酸ビニル」を「酢酸
ビニル」と訂正する。 (2)  明細書4ペ一ジ8行「ビックコークス」を「
ピッチコークス」と訂正する。 (3)第1図を添付したものと差し替える。 訂正個所はコピーした図面に赤字で示す。
Figure 1 shows the amount of coke added to #it resin composition (Tree 11).
00*1 (weight part of coke added to isK) and volume resistivity (Ω·crn) are shown. Patent applicant Nippon Oil & Fats Co., Ltd. Representative patent attorney Isino II Tsukasa II! ! 30 50 +00 Procedures Amendment Written on June 28, 1981 Kazuo Wakasugi, Director General of the Patent Office 1. Indication of the case 1982 Patent Application No. 94843 2. Name of invention Conductive resin composition 8. Amendment Patent applicant address: 1-10-1 Yurakucho, Chiyoda-ku, Tokyo Name (434) Nippon Oil Ishi Co., Ltd. 4□ Agent 103 Address: 1-chome Muromachi, Nihonbashi, Chuo-ku, Tokyo 2 Yonachi voluntary amendment 6, subject of amendment (1) Detailed explanation of the invention in the specification (2) Drawings (1) "Vinyl acetate" in line 5 of page 4 of the specification is corrected to "vinyl acetate." (2) Line 8 on page 4 of the statement “Big coke” is replaced with “
Pitch coke,” he corrected. (3) Replace Figure 1 with the attached one. Corrections are indicated in red on the copied drawing.

Claims (2)

【特許請求の範囲】[Claims] (1)  熱可塑性圏1Ii1100重量部と微粉砕コ
ークス30〜120Mm部とからなる導電性樹脂組成物
(1) A conductive resin composition comprising 1100 parts by weight of thermoplastic sphere 1Ii and 30 to 120 Mm parts of finely pulverized coke.
(2)  酌記微粉砕コークスの50%重量径が8〜6
0μであることを特徴とする特許請求の範囲第1項記載
の導電性樹脂組成物。
(2) The 50% weight diameter of the finely pulverized coke is 8 to 6.
The conductive resin composition according to claim 1, wherein the conductive resin composition has a particle diameter of 0μ.
JP9484383A 1983-05-31 1983-05-31 Electrically conductive resin composition Pending JPS59221342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9484383A JPS59221342A (en) 1983-05-31 1983-05-31 Electrically conductive resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9484383A JPS59221342A (en) 1983-05-31 1983-05-31 Electrically conductive resin composition

Publications (1)

Publication Number Publication Date
JPS59221342A true JPS59221342A (en) 1984-12-12

Family

ID=14121314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9484383A Pending JPS59221342A (en) 1983-05-31 1983-05-31 Electrically conductive resin composition

Country Status (1)

Country Link
JP (1) JPS59221342A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61283662A (en) * 1985-06-05 1986-12-13 フアイザ−・ホスピタル・プロダクツ・グル−プ・インコ−ポレ−テツド Laser beam resistant material
US5514299A (en) * 1994-07-11 1996-05-07 Bridgestone/Firestone, Inc. Static dissipative container liner and method of making same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5379937A (en) * 1976-12-24 1978-07-14 Yokohama Rubber Co Ltd:The Pressure-sensitive electro-conductive rubber composition
JPS5447744A (en) * 1977-09-22 1979-04-14 Iwao Hishida Resin composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5379937A (en) * 1976-12-24 1978-07-14 Yokohama Rubber Co Ltd:The Pressure-sensitive electro-conductive rubber composition
JPS5447744A (en) * 1977-09-22 1979-04-14 Iwao Hishida Resin composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61283662A (en) * 1985-06-05 1986-12-13 フアイザ−・ホスピタル・プロダクツ・グル−プ・インコ−ポレ−テツド Laser beam resistant material
JPH0259735B2 (en) * 1985-06-05 1990-12-13 Pfizer Hospital Prod
US5514299A (en) * 1994-07-11 1996-05-07 Bridgestone/Firestone, Inc. Static dissipative container liner and method of making same

Similar Documents

Publication Publication Date Title
EP1226588B1 (en) Electroconductive curable resin composition, cured product thereof and formed product using the composition
JPH0813902B2 (en) Conductive resin composition
US4396660A (en) Electroconductive resin composition and a videodisc record
ES487660A1 (en) Conductive molding composition
WO2014185452A1 (en) Carbon black, electrically conductive resin composition, and electrode mixture
JPS6248982B2 (en)
Király et al. Effect of graphite and carbon black fillers on the processability, electrical conductivity and mechanical properties of polypropylene-based bipolar plates
JPH08188407A (en) Filler material
JPS59221342A (en) Electrically conductive resin composition
CN104312035A (en) Polyvinyl chloride plastics containing coal fly ash and preparation method thereof
JP3313837B2 (en) Conductive plastic composition
DE2517358A1 (en) POLYAETHYLENE MIXTURE FOR THE PRODUCTION OF SEMI-CONDUCTIVE FILMS FOR BAGS AND BAGS
US4592862A (en) Conductive resin composition and information record
US4655963A (en) Electroconductive resin composition using fluorine-containing graft copolymer
JPS581864A (en) Sheet for jacketing of floppy disk
CN114678537A (en) Plastic high-conductivity composite material for flow battery
US10790074B1 (en) PTC circuit protection device
JPS61293241A (en) Electrically conductive elastomer composition containing vulcanized rubber powder
JPS61107663A (en) Worm-like swelled graphite conductor for silver oxide cell
JPS62223255A (en) Tetrafluoroethylene polymer composition
CN114043791B (en) Antistatic composite material and preparation method thereof
JPS5810303A (en) Conductive resin composition and video disc record
JPS59217737A (en) Plastic for shielding electromagnetic wave
JPH02141000A (en) Resin composite for shielding from electromagnetic wave
JPS6255533B2 (en)