JPS5922076A - Ultrasonic holography device - Google Patents
Ultrasonic holography deviceInfo
- Publication number
- JPS5922076A JPS5922076A JP57130227A JP13022782A JPS5922076A JP S5922076 A JPS5922076 A JP S5922076A JP 57130227 A JP57130227 A JP 57130227A JP 13022782 A JP13022782 A JP 13022782A JP S5922076 A JPS5922076 A JP S5922076A
- Authority
- JP
- Japan
- Prior art keywords
- signal
- oscillator
- convolution
- ultrasonic
- mixers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T11/00—2D [Two Dimensional] image generation
- G06T11/003—Reconstruction from projections, e.g. tomography
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は、超音波を用いて生体の断層像を得る超音波診
断装置に係り、方位分解能が1つの断層像内でほぼ一様
であるため解像度の優れた画質を得ることが可能となる
超音波装置に関する。。[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to an ultrasonic diagnostic apparatus that obtains a tomographic image of a living body using ultrasonic waves. The present invention relates to an ultrasonic device that can obtain image quality with excellent resolution. .
超音波パルスを生体内に放射し、6響特性の異なる各組
織の境界から反射してくる信号から生体内の情報を得る
超音波検査法は無侵襲で行なうことができるため、被検
者に苦痛を与えることがない。また、X線検査と比較し
て被爆障害が少なく、造影剤を用いなくても軟部組織の
断層像を得ることが出来るなどの利点を有しており、近
年急速に普及している。Ultrasonic testing, in which ultrasound pulses are emitted into the body and information about the body is obtained from the signals reflected from the boundaries of tissues with different acoustic characteristics, can be performed non-invasively, so It doesn't cause any pain. Furthermore, compared to X-ray examinations, it has the advantage of causing fewer radiation exposure injuries and being able to obtain tomographic images of soft tissue without using a contrast agent, and has become rapidly popular in recent years.
従来の装置において分解能のよい画像を得るには超音波
ビームを集束させなくてはならない。この場合、電子走
査装置に使用されている配列型超音波探触子では配列方
向でのビーム集束は電子的に、またこれと直角な方向で
は音響レンズによって行なわれている。しかし、これら
の方法では集束された超音波は集束点付近に限定され、
この部分でしか良好な画像は得られなかった、。In conventional devices, the ultrasound beam must be focused to obtain images with good resolution. In this case, in the array type ultrasonic probe used in the electronic scanning device, beam focusing in the array direction is performed electronically, and in a direction perpendicular to this, an acoustic lens is used. However, in these methods, the focused ultrasound is limited to the vicinity of the focal point,
Good images could only be obtained in this area.
本発明は、このような問題点に鑑みなされたもので、こ
の断層像の分解能は距離(深さ)に依存しなく常に良好
な画像が得られる超音波診断装置を提供することを目的
とする1゜
〔発明の紙装〕
本発明は、レーダ分野で行なわれている開口合成法を超
音波装置に応用したものであり、その原理を第1図に示
す。配列された超音波トランスデユーサのうち、所定の
部分が電子スイッチにより選択され、Z軸方向に対して
超音波の送、受信を行なう。The present invention has been made in view of these problems, and an object of the present invention is to provide an ultrasonic diagnostic apparatus in which the resolution of tomographic images does not depend on distance (depth) and good images can always be obtained. 1. [Paper packaging of the invention] The present invention is an application of the aperture synthesis method used in the radar field to an ultrasonic device, and the principle thereof is shown in FIG. A predetermined portion of the arrayed ultrasonic transducers is selected by an electronic switch and transmits and receives ultrasonic waves in the Z-axis direction.
いま、Pn点(Xn、Zn)に反射物体(反射係数をγ
1とする)を仮定すれば、配列トランスデー−サのm′
番目(Xm′+ 0)から放射され、Pnで皮射し、再
び前記トランスデユーサで受信される信号(Sr )は
送信波(St)をf(t) m wotとすればSr
=r(1((t −tn)sin(2πfo(t −t
n)) ・・・・(11となる。但し、
fo:超音波周波数
r(t):送信パルス包絡線
■:媒質中の超音波速度
受信された信号は超音波周波数fOにほぼ等しい基準信
号sin wot 、 cas wotで同期検波され
、更にフィルタによって高周波成分(2fo)が除去さ
れる。Now, a reflective object (reflection coefficient is γ) is placed at point Pn (Xn, Zn).
1), then m′ of the array transducer
The signal (Sr) radiated from the th (Xm' + 0), radiated at Pn, and received again by the transducer is Sr if the transmitted wave (St) is f(t) m wot.
= r(1((t −tn) sin(2πfo(t −t
n)) ...(11. However, fo: Ultrasonic frequency r(t): Transmission pulse envelope ■: Ultrasonic velocity in the medium The received signal is a reference signal approximately equal to the ultrasonic frequency fO Synchronous detection is performed using sin wot and cas wot, and a high frequency component (2fo) is further removed by a filter.
すなわちこのときの信号(S)は となる。In other words, the signal (S) at this time is becomes.
との間でたたみ込みが行なわれS−Z平面にPnの像が
構成される。Convolution is performed between Pn and an image of Pn is constructed on the SZ plane.
第2図は1つのターゲットが位W’−”n(Xn Zn
)にあるときに得られるホログラムである。超音波を用
いたパルス反射法では、パルス幅が1朋前後(1,5n
sec)と極めて細いだめに基準信号との間でのたたみ
込み(相関)処理は図中の破線に沿って行なわれること
が望ましい。すなわち、この場合、(Xn Zn、)を
中心とした破線(b)にそって相関をとった場合の出力
が最も大きくなる。しかしながら、Cモード画像表示の
ようにトランスデー−すから一定の深さの横断面を1停
る場合にこのような処理法をとるとx+Y方向のみなら
ずZ方向にも多くのメモリが必要となる。。Figure 2 shows one target at position W'-”n(Xn Zn
) is a hologram obtained when In the pulse reflection method using ultrasonic waves, the pulse width is around 1 mm (1.5 nm).
It is desirable that the convolution (correlation) process between the sec) and the extremely thin reference signal be performed along the broken line in the figure. That is, in this case, the output when the correlation is taken along the broken line (b) centered on (Xn Zn,) is the largest. However, if such a processing method is used when the transducer makes one stop at a cross section of a certain depth, such as in C-mode image display, a large amount of memory is required not only in the x+Y direction but also in the Z direction. Become. .
尚、第2図において、斜線部は負極性を示す。In addition, in FIG. 2, the shaded area indicates negative polarity.
本発明は、例えばCモード表示の場合においてより少な
いメモリ容重でほぼ同等の性能(解像力)を得ることを
目的として行なわれたものである。The present invention has been carried out for the purpose of obtaining substantially the same performance (resolution) with a smaller memory capacity in the case of C mode display, for example.
第3図は処理に用いられる信号をホログラムから直線状
(矢印方向)に抽出した場合であるが、ホログラムが双
曲線状であるため、たとえ、各トランスデユーサ素子か
ら放射されるビーム幅が大きくても処理のために抽出さ
れるデータの量が限られてしまい、したがって、良好な
解像度を得ることができない。Figure 3 shows the case where the signals used for processing are extracted linearly (in the direction of the arrow) from the hologram, but since the hologram is hyperbolic, even if the beam width emitted from each transducer element is large, However, the amount of data extracted for processing is limited and therefore good resolution cannot be obtained.
第4図は本発明の詳細な説明するだめのもので、たとえ
ば深さの異なる2枚の画像情報がメモリ内に記憶され、
これらは(Xn + Zn )を中心にして直糾kOB
OCnに沿ってたたみ込み積分が行なわれる。FIG. 4 is a detailed explanation of the present invention. For example, two images with different depths are stored in the memory,
These are direct kOB centered around (Xn + Zn)
Convolution is performed along OCn.
但し、たたみ込みの前にまずAn CnのデータはBn
の両端で加算付加される。However, before convolution, the data of An Cn is converted to Bn
Addition is added at both ends.
第5図(a) (b)はBn及び八〇〇〇でのホログラ
ム振幅であり同図(C)は加算された後のホログラム振
幅を示す。FIGS. 5(a) and 5(b) show the hologram amplitudes at Bn and 8000, and FIG. 5(C) shows the hologram amplitudes after addition.
第5図に示すように合成されたホログラム(C)は第2
図のような双曲線に沿って得られるホログラム振幅とほ
ぼ同等のものを作ることができ、したかって、この合成
ホログラムを用いてたたみ込みを行なえば、分解能を高
めることができる。As shown in Figure 5, the synthesized hologram (C) is the second
It is possible to create a hologram amplitude approximately equivalent to that obtained along the hyperbola shown in the figure, and therefore, by performing convolution using this composite hologram, resolution can be improved.
第5図(a)、(b)は第3図での方法による再構成パ
ターンを、また同図(C)は合成ホログラムによって得
られる再構成パターンを示すもので、後者ではビーム幅
を50%以上細くすることが可能となる。Figures 5(a) and 5(b) show reconstructed patterns obtained by the method in Figure 3, and Figure 5(C) shows reconstructed patterns obtained by a composite hologram, in which the beam width is reduced by 50%. It is possible to make it thinner.
本発明のようにトランスデー−サより一定の距離にちる
ホログラムデータを離散的に複数枚記録し、これらを加
算合成した後で基準信号とたたみ込みを行なうことによ
り、メモリ容量を115〜名〇減らすことがり能となる
。As in the present invention, by discretely recording a plurality of hologram data at a certain distance from the transducer, adding and synthesizing these data, and then convolving them with the reference signal, the memory capacity can be reduced from 115 to 1000 yen. It is possible to reduce it.
第7図に本発明の一実施例を示す。 FIG. 7 shows an embodiment of the present invention.
N個配列された振動子(1)のうちまず(1−1)〜(
1−L)のL本が電子スイッチ(2−1)〜(2−N)
によって選択される。この時の受信信号は2つのミキサ
(4−1)、(4−2)に送られ、発振器(3)の信号
との間で乗算が行なわれる。この場合、発振器(3)の
信号はミキサ(4−1)には直接、またミキサ(4−2
)には移相器Ql)により“72位相シフトしてから送
られる。ミキサの出力は、低域通過フィルタ(5−1)
〜(5−2)においてその高側波成分(2ro付近)が
除去された後、ザンブル・ホールド回路(6−1)、(
6−2)、アナログディジタル変換器(7−1)、(7
−2)を介して記憶回路(8−1)。Of the N vibrators (1) arranged, first (1-1) to (
L pieces of 1-L) are electronic switches (2-1) to (2-N)
selected by The received signal at this time is sent to two mixers (4-1) and (4-2), and multiplied with the signal from the oscillator (3). In this case, the signal of the oscillator (3) is sent directly to the mixer (4-1) and also to the mixer (4-2).
) is sent after being phase shifted by 72 by a phase shifter Ql).The output of the mixer is passed through a low-pass filter (5-1).
After the high side wave component (near 2ro) is removed in ~(5-2), the Zumble hold circuit (6-1), (
6-2), analog-to-digital converter (7-1), (7
-2) through the storage circuit (8-1).
(8−2)に記憶される。(8-2).
次に振動子は送信時には(1−1)〜(1−L)がまた
受信時には(1−2)〜(1−LH)の各り本が選択さ
れ、このとき得られた信号は前記同様の過程を経て記憶
回路(8−1)、(8−2)に記憶される。Next, the transducer selects each of (1-1) to (1-L) when transmitting, and each of (1-2) to (1-LH) when receiving, and the signals obtained at this time are the same as above. The data is stored in the memory circuits (8-1) and (8-2) through the process of.
以下同様の動作が1−(N−L+1)〜1−Hの振動子
が選択されるまで繰υ返し行なわれる。Thereafter, similar operations are repeated until vibrators 1-(N-L+1) to 1-H are selected.
ディジタル値で記憶された受信信号は信号処理回路(9
)にて、前述の如く深さの異なる情報を適当に加算合成
した後、記憶回路■(161で予め記憶されている基準
信号Scとたたみ込み計算が行なわれ、その結果は一旦
りレームメモIJHに記憶された後、モニタ(15)上
に表示されるかあるいはX線フィルムα1等に記録され
る。The received signal stored as a digital value is processed by a signal processing circuit (9
), after appropriately adding and synthesizing the information with different depths as described above, convolution calculation is performed with the reference signal Sc stored in advance in the memory circuit (161), and the result is temporarily stored in the frame memo IJH. After being stored, it is displayed on a monitor (15) or recorded on an X-ray film α1 or the like.
第1図は開口合成法の原理を示す図、第2図はたたみ込
み処理の一般的手法を示す図、第3図は従来のCモード
法のたたみ込み法を示す図、第4図及び第5図は本発明
のたたみ込み法の原理を説明する為の図、第6図は本発
明によるシミュレーション結果を示す図、第7図は本発
明の1実施例の構成図である。
1−1〜1−N・・・・・・・超音波振動子2−1〜2
−N・・・・・・電子スイッチ3・・・・・・発振器
4−1.4−2・・・ミキサ6−1.6−2・・・
・・・サンプルホールド回路7−1.7−2・・・・・
・・アナログディジタル変換器8−1.8−2・・・・
・・・記憶回路9・・・・・・・信号処理回路 1
1・・・・・・・移相器14・・・・・・・フレームメ
モリ 15・・・・・モ ニ タ16・・・・・・
・記憶回路tl 17・・・・・・・X線フィ
ルム代理人 弁理士 則 近 憲 佑
(ほか1名)
第2図
第3図
第5図
第6図
2a 1lfi ごグ門Figure 1 is a diagram showing the principle of the aperture synthesis method, Figure 2 is a diagram showing a general method of convolution processing, Figure 3 is a diagram showing the conventional C-mode convolution method, Figures 4 and FIG. 5 is a diagram for explaining the principle of the convolution method of the present invention, FIG. 6 is a diagram showing simulation results according to the present invention, and FIG. 7 is a block diagram of one embodiment of the present invention. 1-1~1-N... Ultrasonic transducer 2-1~2
-N... Electronic switch 3... Oscillator
4-1.4-2...Mixer 6-1.6-2...
...Sample hold circuit 7-1.7-2...
・・Analog-digital converter 8-1.8-2・・・・
...Memory circuit 9...Signal processing circuit 1
1... Phase shifter 14... Frame memory 15... Monitor 16...
・Memory circuit TL 17...X-ray film agent Patent attorney Nori Chika Kensuke (and 1 other person) Figure 2 Figure 3 Figure 5 Figure 6 Figure 6 2a 1lfi Gogumon
Claims (1)
機械的に移動する手段あるいは電子的に切り替えて動作
させる手段と、前記電気音響変換素子の共振周波数とほ
ぼ等し1周波数を有する発振器と、前記電気音響変換素
子によって得られた信号と前記発振器出力との間で位相
検波を行なう手段と、この検波出方にたたみ込み処理を
施す手段、およびその結果を表示あるいは記録する手段
を備え、前記たたみ込みに使用される信号は、前記検波
出力を所定の規則に従って一旦加算合成されることを特
徴とする超音波ホログラフィ装置。An electroacoustic transducer consisting of one or more electroacoustic transducers, means for mechanically moving or electronically switching the electroacoustic transducers, and an oscillator having one frequency substantially equal to the resonant frequency of the electroacoustic transducer. , comprising means for performing phase detection between the signal obtained by the electroacoustic transducer and the output of the oscillator, means for performing convolution processing on the detected output, and means for displaying or recording the result, The ultrasonic holography apparatus is characterized in that the signal used for the convolution is once synthesized by adding the detected output according to a predetermined rule.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57130227A JPS5922076A (en) | 1982-07-28 | 1982-07-28 | Ultrasonic holography device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57130227A JPS5922076A (en) | 1982-07-28 | 1982-07-28 | Ultrasonic holography device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5922076A true JPS5922076A (en) | 1984-02-04 |
Family
ID=15029131
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57130227A Pending JPS5922076A (en) | 1982-07-28 | 1982-07-28 | Ultrasonic holography device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5922076A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03159561A (en) * | 1989-09-29 | 1991-07-09 | Siemens Ag | Switching regulator circuit device |
JPH04121465A (en) * | 1990-09-07 | 1992-04-22 | Sanwa Sangyo Kk | Rotary type gas compressor |
JP2017185085A (en) * | 2016-04-07 | 2017-10-12 | 株式会社日立製作所 | Ultrasound imaging apparatus and ultrasound transmission/reception method |
-
1982
- 1982-07-28 JP JP57130227A patent/JPS5922076A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03159561A (en) * | 1989-09-29 | 1991-07-09 | Siemens Ag | Switching regulator circuit device |
JPH04121465A (en) * | 1990-09-07 | 1992-04-22 | Sanwa Sangyo Kk | Rotary type gas compressor |
JP2017185085A (en) * | 2016-04-07 | 2017-10-12 | 株式会社日立製作所 | Ultrasound imaging apparatus and ultrasound transmission/reception method |
WO2017175834A1 (en) * | 2016-04-07 | 2017-10-12 | 株式会社日立製作所 | Ultrasonic image capturing device and ultrasonic wave transmitting and receiving method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Szabo | Diagnostic ultrasound imaging: inside out | |
TW531407B (en) | System and method for phase inversion ultrasonic imaging | |
Woo | A short history of the development of ultrasound in obstetrics and gynecology | |
EP0087318B1 (en) | Ultrasonic diagnostic apparatus | |
EP0008197A1 (en) | Method and apparatus for ultrasonic examination of objects | |
Goldstein et al. | Medical ultrasonic diagnostics | |
CA1201197A (en) | Variable focus transducer | |
JPS62123355A (en) | Method and device for scanning body | |
Fenster et al. | Ultrasound imaging and therapy | |
JPS6048736A (en) | Ultrasonic diagnostic apparatus | |
JPS5922076A (en) | Ultrasonic holography device | |
JPH0344771B2 (en) | ||
JPH0581141B2 (en) | ||
JPS6029140A (en) | Ultrasonic diagnostic apparatus | |
JP2003220059A (en) | Combined opening focusing method in ultrasonic photographic system | |
JPS6340974Y2 (en) | ||
Popp et al. | Ultrasonic diagnostic instruments | |
JPS58165831A (en) | Ultrasonic diagnostic apparatus | |
JP2672123B2 (en) | Ultrasonic microscope | |
JP2784788B2 (en) | Ultrasound diagnostic equipment | |
JPS59137040A (en) | Opening synthesis method ultrasonic diagnostic apparatus | |
JP2002301071A (en) | Ultrasonic imaging method and apparatus | |
Robinson et al. | The Imaging Properties Of Ultrasonic Pulse-Echo Visualisation Systems | |
JP2760558B2 (en) | Ultrasound diagnostic equipment | |
Karrer | Phased Array Acoustic Imaging Systems |