JPS59220686A - Reactor operation method and nuclear fuel assembly - Google Patents

Reactor operation method and nuclear fuel assembly

Info

Publication number
JPS59220686A
JPS59220686A JP58096694A JP9669483A JPS59220686A JP S59220686 A JPS59220686 A JP S59220686A JP 58096694 A JP58096694 A JP 58096694A JP 9669483 A JP9669483 A JP 9669483A JP S59220686 A JPS59220686 A JP S59220686A
Authority
JP
Japan
Prior art keywords
water
fuel assembly
nuclear reactor
cooling water
rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58096694A
Other languages
Japanese (ja)
Inventor
志朗 中村
小沢 通裕
下重 孝則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58096694A priority Critical patent/JPS59220686A/en
Publication of JPS59220686A publication Critical patent/JPS59220686A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、原子炉、特に軽水冷却型原子炉の運転方法及
びこの運転に使用する原子炉用燃料集合体に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method of operating a nuclear reactor, particularly a light water-cooled nuclear reactor, and a fuel assembly for a nuclear reactor used in this operation.

〔発明の背景〕[Background of the invention]

第1図は沸騰水型原子炉用の従来の燃料集合体の全体構
成を示す説明図、第2図はその下部の要部切欠き断面図
で、1は燃料棒、2は水ロッド、3は下部タイプレイト
、4は燃料棒1部端栓、5は水ロツド下部端栓、6は水
ロッド2の冷却水流入口、7は水ロッド2の冷却水流出
口を示しておシ、燃料棒1及び水ロッド2はそれぞれ燃
料棒下部端栓4及び水ロツド下部端栓5を通して下部タ
イプレイト3に支持されている。
Figure 1 is an explanatory diagram showing the overall configuration of a conventional fuel assembly for boiling water reactors, and Figure 2 is a cutaway sectional view of the main parts of the lower part, where 1 is a fuel rod, 2 is a water rod, and 3 1 indicates the lower tie plate, 4 indicates the fuel rod 1 end plug, 5 indicates the lower end plug of the water rod, 6 indicates the cooling water inlet of the water rod 2, and 7 indicates the cooling water outlet of the water rod 2. and water rods 2 are supported on the lower tie plate 3 through fuel rod lower end plugs 4 and water rod lower end plugs 5, respectively.

この燃料集合体の水ロッド2の冷却水流入口6及び冷却
水流出ロアは、水ロツド2内に蒸気ボイドが発生しない
程度に冷却水が流入するような大きさの孔から構成され
ている。
The cooling water inlet 6 and the cooling water outflow lower of the water rod 2 of this fuel assembly are constructed of holes of a size such that the cooling water can flow in to an extent that no steam voids are generated within the water rod 2.

このような沸騰水型原子炉では、軸方向にボイド分布を
有するだめ、運転が進むに従って、炉心上部に比べ炉心
下部における中性子の熱化が進み、出力ピークの位置が
炉心下部に移動し歪んでくる。
Such boiling water reactors have void distribution in the axial direction, and as operation progresses, the neutrons in the lower core become more thermalized than in the upper core, causing the power peak position to shift to the lower core and become distorted. come.

まだ、炉心横断面でみると、バイパス部の減速材により
出力ピークは燃料周辺部にあるので、燃料健全性の確保
とプラント利用率向上の観点から、出力ピークをできる
だけ低下させ、線出力密度を低く抑える設計が講じられ
ている。
However, when looking at the cross section of the core, the output peak is located around the fuel due to the moderator in the bypass section, so from the perspective of ensuring fuel integrity and improving plant utilization, it is necessary to reduce the output peak as much as possible and increase the linear power density. Designs have been taken to keep it low.

これに対して、近年の燃料技術開発の結果、PCI (
燃料−被覆管作用)に対する対策の講じられたバリア燃
料等を用いることができるようになったため、これまで
のような出力分布の平坦化は特に必要がなくなり、線出
力密度については燃料の健全性が維持できる範囲内で上
昇させることができるため、PC’I対策の講じられた
炉心では新しい炉心設計が考えられている。
In contrast, as a result of recent fuel technology development, PCI (
It has become possible to use barrier fuels that have measures taken against (fuel-cladding effect), so there is no longer a need to flatten the power distribution, and linear power density is dependent on the health of the fuel. Since it is possible to raise the temperature within a range that can maintain the PC'I level, new core designs are being considered for cores in which PC'I countermeasures have been taken.

スペクトルシフト運転法もその一つで、この運転法では
、炉心内の蒸気ボイドの割合を増加させるか、あるいは
冷却水の割合を減少させることにより、中性子減速機能
を弱め、高エネルギー中性子束の割合を増し、所謂、中
性子のエネルギースペクトルを硬化させ、プルトニウム
の蓄積を増加させて燃料経済性の向上を図っている。
One of these is the spectral shift operation method, which weakens the neutron moderation function by increasing the proportion of steam voids in the core or decreasing the proportion of cooling water, and reduces the proportion of high-energy neutron flux. The goal is to harden the energy spectrum of neutrons, increase plutonium accumulation, and improve fuel economy.

また、加圧水型原子炉では、制御棒として中性子高吸収
材を含まず冷却水を排除するための水排除用制御棒を用
いている。そしてこの水排除用制御棒を、燃焼初期には
炉心に挿入して水対ウラン比を減少させ、スペクトルシ
フト効果によりプルトニウム生成量を高め、燃焼後半に
おいては炉心から引き抜いて水対ウラン比を増加させ、
反応度を高める運転法が考えられている。
Furthermore, in a pressurized water reactor, a water removal control rod that does not contain a high neutron absorption material and is used to remove cooling water is used as a control rod. These water removal control rods are inserted into the reactor core during the early stages of combustion to reduce the water-to-uranium ratio and increase the amount of plutonium produced through the spectral shift effect, and are withdrawn from the reactor core in the latter half of combustion to increase the water-to-uranium ratio. let me,
Operating methods that increase reactivity are being considered.

〔発明の目的〕[Purpose of the invention]

本発明は、軽水冷却型原子炉における中性子スペクトル
シフト効果を増大させ、これによって燃料経済性の向上
する原子炉の運転方法を提供することを目的とするもの
である。
An object of the present invention is to provide a method for operating a nuclear reactor that increases the neutron spectrum shift effect in a light water-cooled nuclear reactor and thereby improves fuel economy.

〔発明の概要〕[Summary of the invention]

本発明は炉心内の蒸気ボイドの割合を増加させ中性子ス
ペクトルシフトを利用する原子炉の運転方法において、
燃料の燃焼初期には燃料集合体中の水ロツド内の蒸気ボ
イドを充満させて中性子スペクトル硬化によりプルトニ
ウムの蓄積を増大させ、燃焼後期には前記水ロツド内に
冷却水を充満させて反応度を増加させることを第1の特
徴とし、内部を冷却水が通過可能な水ロッドを少なくと
も1個含む原子炉用燃料集合体において、前記水ロッド
が前記冷却水の流入量を調整して内部に発生する蒸気ボ
イド量の調整可能な流量調整部を有することを第2の特
徴とするものである。
The present invention provides a method of operating a nuclear reactor that increases the proportion of steam voids in the reactor core and utilizes a neutron spectrum shift.
In the early stage of fuel combustion, the steam voids in the water rods in the fuel assembly are filled to increase the accumulation of plutonium through neutron spectrum hardening, and in the late stage of combustion, the water rods are filled with cooling water to increase the reactivity. In a nuclear reactor fuel assembly including at least one water rod through which cooling water can pass, the water rod adjusts the inflow amount of the cooling water to generate water inside the fuel assembly. The second feature is that it has a flow rate adjustment section that can adjust the amount of steam voids.

例えば、沸騰水型原子炉では、原子炉運転中にボイドが
発生し、高いボイド率で運転された燃料集合体は低いボ
イド率で運転された燃料集合体よりも中性子スペクトル
が硬化するためプルトニウムの蓄積が多くなる。この効
果は高いボイド率での燃焼期間に比例して増大する。
For example, in a boiling water reactor, voids are generated during reactor operation, and fuel assemblies operated with high void ratios have a harder neutron spectrum than fuel assemblies operated with low void ratios, so plutonium Accumulation increases. This effect increases proportionally with the duration of combustion at high void fractions.

本発明はこの点に着目し、燃料集合体構成材の一つであ
る水ロツド内の蒸気ボイド率を制御することにより、燃
料の燃焼初期においてはボイド率を大きくすることによ
シプルトニウムの蓄積を増大させ、燃焼後期においては
ボイド率をゼロとし中性子減速材の増加させプルトニウ
ムの蓄積の効果と合まって反応度を増加させ、燃料燃焼
度増加が可能な燃料集合体を提供し、所期の目的とする
原子炉の運転方法を提供可能としだものである。
The present invention focuses on this point, and by controlling the steam void ratio in the water rod, which is one of the constituent materials of the fuel assembly, the void ratio is increased in the early stage of fuel combustion, thereby accumulating si-plutonium. In the late stage of combustion, the void fraction becomes zero, the neutron moderator increases, and together with the effect of plutonium accumulation, the reactivity increases, providing a fuel assembly that can increase the fuel burnup, and achieve the desired goal. It is possible to provide a method for operating a nuclear reactor for the purpose of

〔発明の実施例〕[Embodiments of the invention]

第3図は本発明の原子炉用燃料集合体の一実施例で用い
る水ロッドの要部切欠き断面を示す、この図で、8は水
ロツド本体部、9は下部端栓、10は下部端栓9に設け
である冷却水流路、11は小流路付きねじ、12は冷却
水流出口を示している。この水ロッドでは冷却水は小流
路付きねじ11の小流路より流入し水ロツド本体部8を
通り冷却水流出口12より流出する。そして冷却水は水
ロツド本体部8を通る間に加熱され蒸気ボイドを発生し
、冷却水の流入量が少ないとボイド率は犬きくなり、冷
却水の流入量を増加させるとボイド率は小さくなり、さ
らに冷却水流量を増加させるとボイド率をOとすること
も可能である。寸だ小流路付きねじ11の小流路を閉塞
すれば水ロツド本体部8の内部は水ボイドで充満し、ボ
イドの流出しだ分だけ冷却水流出口12よシ冷却水が流
入する。
FIG. 3 shows a cutaway cross section of the main parts of the water rod used in one embodiment of the nuclear reactor fuel assembly of the present invention. In this figure, 8 is the main body of the water rod, 9 is the lower end plug, and 10 is the lower part. A cooling water flow path provided in the end plug 9, 11 is a screw with a small flow path, and 12 is a cooling water outlet. In this water rod, cooling water flows in through the small passage of the screw 11 with a small passage, passes through the water rod main body 8, and flows out from the cooling water outlet 12. The cooling water is heated while passing through the water rod main body 8 and generates steam voids.If the amount of cooling water flowing in is small, the void ratio becomes small, and as the amount of cooling water flowing in is increased, the void ratio becomes smaller. It is also possible to make the void ratio O by further increasing the cooling water flow rate. If the small flow path of the screw 11 with a small flow path is closed, the inside of the water rod main body 8 is filled with water voids, and the amount of cooling water that flows out of the voids flows in through the cooling water outlet 12.

すなわち、この水ロッドは小流路付きねじ11をはめで
ある場合には冷却水流量が少なく、水ロツド本体部8内
のボイド率は大きくなり、逆に小流路付きねじ11をは
ずすと冷却水流量が増大しボイド率をOにすることが可
能である。
That is, when this water rod is fitted with the screw 11 with a small passage, the flow rate of cooling water is small and the void ratio inside the water rod main body 8 becomes large, and conversely, when the screw 11 with a small passage is removed, cooling It is possible to increase the water flow rate and reduce the void ratio to O.

第4図はこのような水ロッドを肩する原子炉用燃料集合
体を装荷した炉心の構成の一例を示すもので、この図を
用いてこの発明の原子炉の運転方法の一実施例を説明す
る。この炉心を構成する燃料集合体において、1は装荷
後のサイクル経過が1サイクル目(未満)の燃料集合体
、2,3及び4は同様に2.3.4サイクル目(未満)
の燃料集合体で、1及び2の燃料集合体中の水ロンドは
小流路付きねし“が取シつけてあり、3及び4の燃料集
合体中の水ロンドは小流路付きねじが取りはずしである
Figure 4 shows an example of the configuration of a reactor core loaded with reactor fuel assemblies that shoulder such water rods, and an embodiment of the method of operating a nuclear reactor according to the present invention will be explained using this diagram. do. Among the fuel assemblies that make up this core, 1 is the fuel assembly whose cycle has passed (less than) the first cycle after loading, and 2, 3, and 4 are similarly in the 2, 3, and 4th cycle (less than).
In this fuel assembly, the water ronds in fuel assemblies 1 and 2 are fitted with screws with small passages, and the water ronds in fuel assemblies 3 and 4 are fitted with screws with small passages. It has been removed.

このように構成されている炉心の無限増倍率を示したの
が第5図で、横軸にはサイクル数、縦軸には無限増倍率
がとっである。Aが実施例の場合、Bが水対ウラン比一
定で燃焼させた従来の運転方法の場合を示しており、直
線XYの左側では小流路付きねじの取りつけられている
水ロッド、右側では小流路付きねじの取りはずされてい
る水ロッドが用いられている。すなわち、燃料集合体の
反応度が大きい第1.第2サイクル目までは、小流路付
きねじにより冷却水流入量を制限し、水ロツド本体部に
蒸気ボイドを発生させてプルトニウムを蓄積させ、第3
サイクル目からは小流路付きねじを取りはずすことによ
シ、水ロツド本体部に冷却水を充満させ反応度をあげる
と同時に、1,2サイクル目におけるプルトニウム蓄積
の効果による反応度増加が得られるようになっている。
FIG. 5 shows the infinite multiplication factor of a core configured in this way, with the number of cycles plotted on the horizontal axis and the infinite multiplication factor plotted on the vertical axis. A is an example, and B is a conventional operation method in which the water to uranium ratio is constant.On the left side of the straight line A water rod with a threaded screw removed is used. That is, the first fuel assembly has a high reactivity. Up to the second cycle, the inflow of cooling water is restricted by a screw with a small passage, steam voids are generated in the water rod body, plutonium is accumulated, and plutonium is accumulated in the water rod body.
By removing the small flow passage screw from the 1st cycle, the water rod main body is filled with cooling water to increase the reactivity, and at the same time, the reactivity can be increased due to the effect of plutonium accumulation in the 1st and 2nd cycles. It looks like this.

以上の実施例では小流路付きのねじを用いたが小流路な
しのねじを用いてもよい。
In the above embodiments, a screw with a small passage was used, but a screw without a small passage may be used.

また、この水ロッドは加圧水型原子炉の燃料集合体にも
同様に用いて、同様の効果を得ることができる。
Further, this water rod can be similarly used in a fuel assembly of a pressurized water reactor to obtain the same effect.

この実施例によれば、軽水冷却型原子炉における中性子
スペクトルシフト効果を増大させることが可能であり、
これによって燃料集合体の取シ出し燃焼度を増加させ、
燃料経済性を向上させることができる。
According to this example, it is possible to increase the neutron spectrum shift effect in a light water-cooled nuclear reactor,
This increases the discharge burnup of the fuel assembly,
Fuel economy can be improved.

また、特別な充填材を用いて、中性子減速効果   □
を減少させるわけではないので、充填材の中性子吸収に
よる経済性低下及び充填材使用による廃棄物の増加を才
ねくことはない。
In addition, special fillers are used to reduce neutrons □
Therefore, there is no reduction in economic efficiency due to neutron absorption of the filler, and there is no increase in waste due to the use of the filler.

水ロンドの他の実施例としては、ねじを設けずにめくら
栓にするか又は小孔のみ設けておき、第   −3サイ
クル目で冷却水流入量を増加させるのには、ドリルで孔
をあけるか又は孔を大きくするように   −してもよ
い。
Other examples of water ronds include using a blind stopper without a screw, or providing only a small hole, and drilling a hole to increase the amount of cooling water inflow in the -3rd cycle. Alternatively, the pores may be made larger.

第6図(a)は水ロッドの他の実施例の要部切欠き断面
を示している。この図で、8は水ロツド本体部、13は
下部端栓;14は冷却水流入路、15は冷却水又は蒸気
の流出入口、17は第6図(b)にその外観を示すよう
な円筒状の仕切り板、17は仕切り板16に設けられて
いる冷却水又は蒸気ボイドの流出流入用の孔を示してい
る。
FIG. 6(a) shows a cutaway cross section of the main part of another embodiment of the water rod. In this figure, 8 is the main body of the water rod, 13 is the lower end plug; 14 is the cooling water inlet, 15 is the outlet for cooling water or steam, and 17 is a cylinder whose appearance is shown in FIG. 6(b). A shaped partition plate 17 indicates a hole provided in the partition plate 16 for the inflow and outflow of cooling water or steam voids.

このような構造の水ロッドは、燃料の燃焼初期には冷却
水流入路14の先端は閉塞されているので、冷却水又は
蒸気の流出入口15からの水ロツド本体部8内の蒸気流
出に応じた冷却水量がとの鋪出入口15から流入するが
、この水ロツド本体部8内には仕切り板16が設けられ
ているので、冷却水は水ロツド内壁にそって落下しなが
ら蒸発する。
In the water rod having such a structure, the tip of the cooling water inlet passage 14 is closed during the initial stage of fuel combustion, so that the water rod is closed in response to the steam flowing out of the water rod body 8 from the cooling water or steam outlet 15. The amount of cooling water flows in from the entrance/exit 15, but since a partition plate 16 is provided in the water rod main body 8, the cooling water evaporates while falling along the inner wall of the water rod.

そして燃料集合体燃焼後期においては、下部端全13の
先端部に孔をあけることにより冷却水流入路14から冷
却水を水ロツド内に充満させる。
In the latter stage of combustion of the fuel assembly, the water rod is filled with cooling water from the cooling water inlet passage 14 by making a hole at the tip of the lower end 13.

F部端枠の先端部をねじで閉塞しておくようにしてもよ
い。
The tip of the F section end frame may be closed with a screw.

この実施例では、水ロツド内のボイド率をさらに高くす
ることができ、スペクトルシフト効果が一層大きくなる
In this embodiment, the void fraction within the water rod can be further increased, resulting in an even greater spectral shift effect.

〔発明の効果〕〔Effect of the invention〕

本発明は、軽水冷却型原子炉における中性子スペクトル
シフト効果を増大させ、これによって燃料経済性の向上
する原子炉の運転方法を提供可能とするもので、産業上
の効果の犬なるものである。
The present invention increases the neutron spectrum shift effect in a light water-cooled nuclear reactor, thereby making it possible to provide a method of operating a nuclear reactor that improves fuel economy, and is an industrially effective dog.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は沸騰水型原子炉用の従来の燃料集合体の全体構
成を示す説明図、第2図は第1図の下部の要部切欠き断
面図、第3図は本発明の原子炉用燃料集合体の一実施例
の要部切欠き断面図、第4図は第3図の原子炉用燃料集
合体を装荷した炉心の構成の一例の説明図、第5図は第
4図の構成の炉心の効果を従来の構成の炉心の効果と比
較して示す特性線図、第6図(a)は第3図と同じく他
の実施例の要部切欠き断面図、第6図(b)は第6図(
a)の要部の外観図である。 8・・・水ロツド本体部、9・・・下部端栓、1o・・
・冷却水流路、11・・・小流路付きねじ、12・・・
冷却水流出口。 第10 第2図 竿3 圀 第4図
Fig. 1 is an explanatory diagram showing the overall configuration of a conventional fuel assembly for a boiling water reactor, Fig. 2 is a cutaway sectional view of the main part at the bottom of Fig. 1, and Fig. 3 is a nuclear reactor of the present invention. FIG. 4 is an explanatory diagram of an example of the configuration of a reactor core loaded with the fuel assembly for a nuclear reactor shown in FIG. 3, and FIG. FIG. 6(a) is a characteristic diagram showing the effect of the reactor core in comparison with the effect of the core in the conventional structure, and FIG. b) is shown in Figure 6 (
It is an external view of the main part of (a). 8...Water rod main body, 9...Lower end plug, 1o...
・Cooling water flow path, 11... Screw with small flow path, 12...
Cooling water outlet. 10 Figure 2 Rod 3 Figure 4

Claims (1)

【特許請求の範囲】 1、炉心内の蒸気ボイドの割合を増加させ中性子スペク
トルシフトを利用する原子炉の運転方法において、燃料
の燃焼初期には燃料集合体中の水ロツド内に蒸気ボイド
を充満させて中性子スペクトル硬化によシプルトニウム
の蓄積を増大させ、燃焼後期には前記水ロツド内に冷却
水を充満させて反応度を増加させることを特徴とする原
子炉の運転方法。 2、内部を冷却水が通過可能な水ロッドを少なくも1個
含む原子炉用燃料集合体において、前記水ロッドが前記
冷却水の流入量を調整して内部に発生する蒸気ボイド量
の調整可能な流量調整部を有することを特徴とする原子
炉用燃料集合体。 3、前記水ロッドが、燃料下部タイプレートの付近に前
記流量調整部を崩する水ロンドである特許請求の範囲第
2項記載の原子炉用燃料集合体。 4、前記流量調整部が、前記水ロツド下端の端栓部に設
けられた流路の大きさを調整する手段である特許請求の
範囲第2項又は第3項記載の原子炉用燃料集合体。 5、前記水ロッドが、上端部の冷却水流出入口部よシ冷
却水を前記水ロツド内壁面に沿って流通させる仕切り板
を有している特許請求の範囲第2項又は第3項又は第4
項記載の原子炉燃料集合体。
[Claims] 1. In a method of operating a nuclear reactor that increases the proportion of steam voids in the reactor core and utilizes neutron spectrum shifts, water rods in a fuel assembly are filled with steam voids during the initial stage of fuel combustion. A method for operating a nuclear reactor, characterized in that the accumulation of cyplutonium is increased by neutron spectral hardening, and the reactivity is increased by filling the water rod with cooling water in the late stage of combustion. 2. In a nuclear reactor fuel assembly including at least one water rod through which cooling water can pass, the water rod can adjust the amount of steam voids generated inside by adjusting the inflow amount of the cooling water. A fuel assembly for a nuclear reactor, characterized in that it has a flow rate adjustment section. 3. The fuel assembly for a nuclear reactor according to claim 2, wherein the water rod is a water rod that collapses the flow rate adjustment section near the fuel lower tie plate. 4. The fuel assembly for a nuclear reactor according to claim 2 or 3, wherein the flow rate adjustment section is a means for adjusting the size of a flow path provided in an end plug section at the lower end of the water rod. . 5. The water rod has a partition plate that allows the cooling water to flow from the cooling water inlet/outlet portion at the upper end along the inner wall surface of the water rod.
Nuclear reactor fuel assembly as described in Section.
JP58096694A 1983-05-30 1983-05-30 Reactor operation method and nuclear fuel assembly Pending JPS59220686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58096694A JPS59220686A (en) 1983-05-30 1983-05-30 Reactor operation method and nuclear fuel assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58096694A JPS59220686A (en) 1983-05-30 1983-05-30 Reactor operation method and nuclear fuel assembly

Publications (1)

Publication Number Publication Date
JPS59220686A true JPS59220686A (en) 1984-12-12

Family

ID=14171880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58096694A Pending JPS59220686A (en) 1983-05-30 1983-05-30 Reactor operation method and nuclear fuel assembly

Country Status (1)

Country Link
JP (1) JPS59220686A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988002176A1 (en) * 1986-09-17 1988-03-24 Hitachi, Ltd. Fuel assembly and reactor
US4777016A (en) * 1985-06-05 1988-10-11 Hitachi, Ltd. Fuel assembly
US5617456A (en) * 1988-01-14 1997-04-01 Hitachi, Ltd. Fuel assembly and nuclear reactor
US5640435A (en) * 1988-01-14 1997-06-17 Hitachi, Ltd. Fuel assembly and nuclear reactor
US5663993A (en) * 1995-10-12 1997-09-02 General Electric Company Water rod flow metering within the water rod lower end plug
EP0862186A1 (en) * 1997-02-28 1998-09-02 Siemens Power Corporation Nuclear fuel assembly with variable central water channel moderation
EP0862185A1 (en) * 1997-02-28 1998-09-02 Siemens Power Corporation Water channel flow control in a nuclear fuel assembly
US6278757B1 (en) * 1986-09-17 2001-08-21 Hitachi, Ltd Fuel assembly and nuclear reactor
US7215729B1 (en) * 1988-01-14 2007-05-08 Hitachi, Ltd. Fuel assembly and nuclear reactor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5232488A (en) * 1975-09-09 1977-03-11 Nippon Atom Ind Group Co Ltd Fuel assembly
JPS52101391A (en) * 1976-02-19 1977-08-25 Hitachi Ltd Nuclear reactor
JPS52139892A (en) * 1976-05-18 1977-11-22 Toshiba Corp Fuel assembly

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5232488A (en) * 1975-09-09 1977-03-11 Nippon Atom Ind Group Co Ltd Fuel assembly
JPS52101391A (en) * 1976-02-19 1977-08-25 Hitachi Ltd Nuclear reactor
JPS52139892A (en) * 1976-05-18 1977-11-22 Toshiba Corp Fuel assembly

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4777016A (en) * 1985-06-05 1988-10-11 Hitachi, Ltd. Fuel assembly
WO1988002176A1 (en) * 1986-09-17 1988-03-24 Hitachi, Ltd. Fuel assembly and reactor
US6278757B1 (en) * 1986-09-17 2001-08-21 Hitachi, Ltd Fuel assembly and nuclear reactor
US5617456A (en) * 1988-01-14 1997-04-01 Hitachi, Ltd. Fuel assembly and nuclear reactor
US5640435A (en) * 1988-01-14 1997-06-17 Hitachi, Ltd. Fuel assembly and nuclear reactor
US7215729B1 (en) * 1988-01-14 2007-05-08 Hitachi, Ltd. Fuel assembly and nuclear reactor
US5663993A (en) * 1995-10-12 1997-09-02 General Electric Company Water rod flow metering within the water rod lower end plug
EP0862186A1 (en) * 1997-02-28 1998-09-02 Siemens Power Corporation Nuclear fuel assembly with variable central water channel moderation
EP0862185A1 (en) * 1997-02-28 1998-09-02 Siemens Power Corporation Water channel flow control in a nuclear fuel assembly

Similar Documents

Publication Publication Date Title
DE68916570T3 (en) Boiling water reactor design with two-stage reduction in pressure drop.
US5089210A (en) Mox fuel assembly design
JPS59220686A (en) Reactor operation method and nuclear fuel assembly
KR102458389B1 (en) Doppler reactivity augmentation device
JPS58179391A (en) Fuel flux having enrichment devided axially
JP3160341B2 (en) Fuel assembly
JPH0452429B2 (en)
JPS61256282A (en) Fuel aggregate
JPS60177293A (en) Nuclear reactor
JP5502267B2 (en) Reactor operation method
JPS6186676A (en) Hollow control rod nuclear reactor
EP0329985B1 (en) Nuclear reactor operating method with extended life cycle
JPH07159565A (en) Pressure tube type atomic reactor
JPH03223696A (en) Fuel assembly
JPS6044637B2 (en) fuel assembly
JPH03215787A (en) Fuel assembly
Gündüz et al. The effect of soluble boron on the burnup at different enrichments and assemblies
JPH07159573A (en) Reactor core
JPH0833465B2 (en) Boiling water reactor and its operating method
FI80539C (en) FOERFARANDE FOER DRIFT AV EN MEDELST LAETTVATTEN MODERERAD OCH AVKYLD KAERNREAKTOR.
TW388886B (en) Nuclear fuel assembly with variable central water channel moderation
CN117877780A (en) Neutron unidirectional flow method for producing plutonium isotopes based on irradiation of ultrahigh-flux fast neutron reactor
JPS6353490A (en) Nuclear fuel aggregate
JPH06331766A (en) Fuel assembly
JPH04236393A (en) Fuel assembly