JPS59220672A - Gas cooled reactor - Google Patents

Gas cooled reactor

Info

Publication number
JPS59220672A
JPS59220672A JP58095329A JP9532983A JPS59220672A JP S59220672 A JPS59220672 A JP S59220672A JP 58095329 A JP58095329 A JP 58095329A JP 9532983 A JP9532983 A JP 9532983A JP S59220672 A JPS59220672 A JP S59220672A
Authority
JP
Japan
Prior art keywords
block
plenum
blocks
core structure
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58095329A
Other languages
Japanese (ja)
Other versions
JPH025277B2 (en
Inventor
矢部 行雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Manufacturing Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP58095329A priority Critical patent/JPS59220672A/en
Publication of JPS59220672A publication Critical patent/JPS59220672A/en
Publication of JPH025277B2 publication Critical patent/JPH025277B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Glass Compositions (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 この発明はガス冷却形原子炉の炉心構造、特に燃料文ブ
ロックの積層コラムを下方から担持する高温プレナムブ
ロックの構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to the core structure of a gas-cooled nuclear reactor, and particularly to the structure of a high-temperature plenum block that supports stacked columns of fuel blocks from below.

各種ブロックの積層体で構成される頭記ガス冷却形原子
炉の炉心では、炉内温度分布の不平衡などが原因で燃料
ブロックのコラムを担持している高温プレナムブロック
の相互間に段差が生じた場合にも、この段差が燃料ブロ
ック等のコラムに干渉してコラムの姿勢を乱すことのな
いような炉心構造であることが望まれる。
In the core of the gas-cooled nuclear reactor mentioned above, which is composed of a stack of various blocks, differences in level occur between the high-temperature plenum blocks that support the columns of fuel blocks due to imbalances in the temperature distribution inside the reactor. Even in such a case, it is desired that the core structure is such that the step does not interfere with columns such as fuel blocks and disturb the posture of the columns.

〔従来技術とその問題点〕[Prior art and its problems]

まず第1図ないし第3図によシ、ガス冷却形原子炉の一
種である高温ガス炉の従来構、義を示す。
First, Figures 1 to 3 show the conventional structure and meaning of a high-temperature gas reactor, which is a type of gas-cooled nuclear reactor.

図において1はそれぞれ正六角形のブロックとしてなる
1個の制御ブロック2およびこの制御ブロックを取シ囲
む6個の標準燃料ブロック3を上下中数段の高窟に積み
上げ、さらに可動反射体8を組み合わせてコラムを構成
した単位炉心構造体、・lは前記単位炉心構造体lの集
合体を下方から担持するように炉心の下部;に並置され
た各単位炉心構造体1に対応する正六角形状の高温プレ
ナムブロック、5唸炉床断熱ブロツク、6は炉床断熱ブ
ロック5と高温プレナムブロック4との間に画成された
高温プレナム部、7は高温プレナム部に連通して配管さ
れた冷却ガス出口バイブ、9は前記組立体の周囲を取シ
囲む固定反射体、IOは炉心の全重量を支えるダイヤグ
リッド、11は高温プレナムブロック4の相互間のガス
シール部材である0なお図は主要部品のみを示し、炉心
の周囲を包囲するコアバレル、炉心拘束機構、および炉
圧力容器などは省略して褐かれてない。上記の構成にお
いて、冷却ガスは周知のように炉心の上方よシ燃料フロ
ックの中のチャ/ネルへ流れ込み、ここで高温に昇温し
た後に高温プレナムプロ、り4のガス流路穴12を流下
して高温プレナム部6に集められ、ここから出口バイブ
7を通じて炉外へ流出する。
In the figure, reference numeral 1 indicates one control block 2, each of which is a regular hexagonal block, and six standard fuel blocks 3 surrounding this control block, which are piled up in several levels in the upper and lower middle levels, and are further combined with a movable reflector 8. A unit core structure 1 constitutes a column, ・l is a regular hexagonal shape corresponding to each unit core structure 1 juxtaposed at the lower part of the core so as to support the assembly of unit core structures 1 from below; A high-temperature plenum block, 5 a hearth insulation block, 6 a high-temperature plenum section defined between the hearth insulation block 5 and the high-temperature plenum block 4, and 7 a cooling gas outlet piped in communication with the high-temperature plenum section. 9 is a fixed reflector that surrounds the assembly; IO is a diagonal grid that supports the entire weight of the core; 11 is a gas sealing member between high-temperature plenum blocks 4; only the main parts are shown in the figure. The core barrel surrounding the reactor core, core restraint mechanism, reactor pressure vessel, etc. are omitted and are not shown in brown. In the above configuration, as is well known, the cooling gas flows upward into the reactor core into channels/channels in the fuel flock, where it is heated to a high temperature and then flows down through the gas passage hole 12 of the hot plenum head 4. It is collected in the high-temperature plenum section 6, from where it flows out of the furnace through the outlet vibe 7.

ところで、図示のように制御ブロック2.燃料ブロック
3および可動反射体9等の積層コラムで構成された単位
炉心構造体1は、各構造体ごとにこれと対応する高温プ
レナムブロック4上面にダウェルピンを介して支持され
ている。図示の符号13は前記ダウェルピンのピン穴を
示す。この場合に第3図から理解されるように、1個の
高温プレナムブロック4には、当該プレナムブロックに
対応する1単位の単位炉心構造体、つま多制御ブロック
2と6個の標準燃料ブロック3およびこれに組み合わせ
た可動反射体8の各コラムの合計分が担持されている。
By the way, as shown in the figure, control block 2. A unit core structure 1 composed of stacked columns such as a fuel block 3 and a movable reflector 9 is supported by dowel pins on the upper surface of a high temperature plenum block 4 corresponding to each structure. The illustrated reference numeral 13 indicates a pin hole of the dowel pin. In this case, as understood from FIG. 3, one high-temperature plenum block 4 includes one unit core structure corresponding to the plenum block, a block control block 2, and six standard fuel blocks 3. The total amount of each column of the movable reflector 8 combined therewith is supported.

しかして合計7個の正六角形のプロ、りを組合わせてな
る単位炉心構造体1の平面形状は図示のようにその外周
が凹凸である星形となシ、その周縁一部は符号Pで示す
ように正六角形の高温プレナムブロック4の領域からは
み出て側方へ張シ出し、隣接する高温プレナムブロック
の領域内に入シ込んでそのプレナムブロックの上面にま
たがるようになる。第6図(イ)、(ロ)はこの従来構
造による炉心構成ブロックの積層状態を示す。すなわち
、第6図(イ)のように隣接し合う高温プレナムブロッ
ク4の上面レベルが正しく一致して同一平面に並んでい
れば、各単位炉心構造体ユの突出部分Pが隣接高温プレ
ナムブロックの上面にまたがって接触していても何等支
障はない。これに対し、第6図(ロ)のように炉の運転
時における炉内温度分布の不平衡などが原因で隣接ブロ
ックの間に段差Hが生じると、隣接ブロックにまたがる
可動反射体8の突出部分Pが上方へ押し上げられ、その
ブロック姿勢が傾むいてコラムのブロック姿勢に乱れが
生じる。この結果として局部的に積層ブロック間に隙間
が生じ、その部分のソール性が低下して冷却ガスのバイ
パス流が発生するなどの不具合を招く。
As shown in the figure, the planar shape of the unit core structure 1, which is made up of a combination of seven regular hexagonal plates, is a star shape with an uneven outer periphery, and part of its periphery is designated by the symbol P. As shown, it protrudes from the area of the regular hexagonal high-temperature plenum block 4 and extends to the side, enters the area of the adjacent high-temperature plenum block, and comes to straddle the upper surface of that plenum block. FIGS. 6(a) and 6(b) show the stacked state of core constituent blocks according to this conventional structure. In other words, if the upper surface levels of adjacent high-temperature plenum blocks 4 correctly match and are lined up on the same plane as shown in FIG. There is no problem even if they are in contact with each other across the top surface. On the other hand, if a step H occurs between adjacent blocks due to an unbalanced temperature distribution in the furnace during operation of the furnace, as shown in FIG. The portion P is pushed upward and its blocking attitude is tilted, causing disturbance in the blocking attitude of the column. As a result, gaps are created locally between the laminated blocks, resulting in problems such as a decrease in sole properties in those areas and the occurrence of bypass flow of cooling gas.

〔発明の目的〕[Purpose of the invention]

この発明は上記の点にかんがみなされたものであシ、従
来構造の欠点を除去し、隣接し合う高温プレナムブロッ
ク間に段差が生じても、その段差が単位炉心構造体のコ
ラムに干渉することなく、ブロックの積層姿勢を乱さな
いようにした炉心構造を提供することを目的とする。
This invention has been made in consideration of the above points, and eliminates the drawbacks of the conventional structure, and eliminates the problem that even if a step occurs between adjacent high-temperature plenum blocks, the step does not interfere with the column of the unit core structure. The purpose of the present invention is to provide a core structure that does not disturb the stacked position of the blocks.

〔発明の要点〕[Key points of the invention]

上記目的を達成するために、この発明は各高温プレナム
ブロックのブロック領域からはみ出て隣接する高温ブレ
ナムプロ、りの領域内へまたがるように張シ出す単位炉
心構造体の突出部分に対向して、隣接高温グノナムプロ
、りの上部周縁部に前記突出部分とほぼ同じ形状の切欠
凹所を形成し。
In order to achieve the above object, the present invention is directed to the projecting portion of the unit core structure that protrudes from the block area of each high-temperature plenum block and extends into the area of the adjacent high-temperature plenum block. A notch recess having approximately the same shape as the protruding portion is formed at the upper peripheral edge of the high-temperature gnome protrusion.

との切欠凹所を逃げとして高温プレナムプロ、り間に段
差が生じた場合の高温プレナムブロックと単位炉心構造
体の構成ブロックとの干渉を避け、炉心構成ブロックの
積層姿勢の乱れを未然に防止するようにしたものである
The high-temperature plenum block uses the notch recess as an escape to avoid interference between the high-temperature plenum block and the constituent blocks of the unit core structure in the event of a step between the high-temperature plenum block and the unit core structure block, thereby preventing disturbances in the stacked posture of the core constituent blocks. It was designed to do so.

〔発明の実施例〕[Embodiments of the invention]

第4図および第5図はこの発明の実施例の構成を示すも
のであシ、高温プレナムブロック4の上部周縁部の一部
には平面形状が三角形の切欠き凹所14が形成されてい
る。この切欠凹所14は、隣接する高温プレナムブロッ
クの領域からはみ出して張シ出す単位炉心構造体1の突
出部分Pと対向する箇所に合致するように形成されてお
シ、かつその切欠き凹所14の深さ寸法りは炉の運転条
件から想定される高温ブレナムプロ、り間の段差Hの量
を若干上まわる寸法に定めである。なお正六角形の高温
プレナムブロックは、各プロ、りごとにその各頂辺に1
箇所ずつ合計6箇所に切欠凹所14が形成されている。
4 and 5 show the structure of an embodiment of the present invention, in which a cutout recess 14 having a triangular planar shape is formed in a part of the upper peripheral edge of the high temperature plenum block 4. . This notch recess 14 is formed so as to coincide with a location facing the protruding portion P of the unit core structure 1 that protrudes from the area of the adjacent high-temperature plenum block. The depth dimension of No. 14 is determined to be slightly larger than the amount of step H between the high-temperature Blenheim grooves, which is assumed based on the operating conditions of the furnace. In addition, the regular hexagonal high-temperature plenum block has one on each top side for each plate.
Notch recesses 14 are formed at six locations in total.

上記の構成によυ、第7図(イ)の隣接高温プレナムブ
ロック間のレベル差なしの状態から、第7図(ロ)のよ
うに高温プレナムブロック間に段差Hが生じても、前記
の切欠凹所14が逃げとして有効に働き、突出部分Pと
隣接する高温プレナムブロック4との干渉が生じない。
With the above configuration, υ, even if a level difference H occurs between the high temperature plenum blocks as shown in Figure 7 (b) from the state of no level difference between adjacent high temperature plenum blocks as shown in Figure 7 (a), the above-mentioned The cutout recess 14 effectively functions as a relief, and no interference occurs between the protruding portion P and the adjacent high temperature plenum block 4.

したがって各高温プレナムブロック4に対応してその上
面に担持されている単位炉心構造体1の構成ブロックに
姿勢の乱れが生じるおそれがなく、安定したコラム姿勢
が維持されることになる。
Therefore, there is no fear that the constituent blocks of the unit core structure 1 supported on the upper surface of each high-temperature plenum block 4 will be disturbed in their posture, and a stable column posture will be maintained.

〔発明の効果〕〔Effect of the invention〕

上述のようにこの発明によれば、高温プレナムブロック
の上部周縁部に突出部分とほぼ同じ形状の切欠凹所を形
成し、との切欠凹所を逃げとして隣接高温プレナムブロ
ック上に担持されている単位炉心構造体の突出部分との
干渉を避けるようにしたことにより、高温ブロック間に
段差が生じてもこの段差によって炉心構成ブロックの積
層姿勢が乱されることがなくなり、炉心機能の安定維持
を図ることができる。
As described above, according to the present invention, a notch recess having approximately the same shape as the protruding portion is formed at the upper peripheral edge of the high temperature plenum block, and the recess is supported on the adjacent high temperature plenum block using the notch recess as a relief. By avoiding interference with the protruding parts of the unit core structure, even if there is a step between the high-temperature blocks, this step will not disturb the stacking posture of the core constituent blocks, allowing stable core function to be maintained. can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来における高温ガス炉の炉心構造を示す部分
的な縦断面図、第2図は第1図における1個の高温プレ
ナムブロックの平面図、第3図は第1図の炉心構造の一
部切欠横断平面図、第4図および第5図はこの発明の実
施例の構造を示す部分平面図および斜視図、第6図(イ
)、(ロ)および第7図(イ)、(ロ)はそれぞれ従来
およびこの発明の実施例による高温ブレナムプロ、り間
の並置状態変化に対する単位炉心構造体の積層姿勢を示
した説明図でちる。 1 単位炉心構造体、2・・制御ブロック、3・・・標
準燃料ブロック、4・・・高温プレナムブロック、8・
・・可動反射体、14・・切欠凹所、P・−突出部、H
高温プレナムブロック間の段差。
Figure 1 is a partial vertical cross-sectional view showing the core structure of a conventional high-temperature gas reactor, Figure 2 is a plan view of one high-temperature plenum block in Figure 1, and Figure 3 is the core structure of Figure 1. A partially cutaway cross-sectional plan view, FIGS. 4 and 5 are a partial plan view and a perspective view showing the structure of an embodiment of the present invention, and FIGS. B) is an explanatory diagram showing the stacking posture of the unit core structures with respect to changes in the state of juxtaposition between high-temperature Blenheim reactors and reactors according to the conventional method and the embodiment of the present invention, respectively. 1 Unit core structure, 2... Control block, 3... Standard fuel block, 4... High temperature plenum block, 8...
・・Movable reflector, 14・・Notch recess, P・−Protrusion, H
Steps between hot plenum blocks.

Claims (1)

【特許請求の範囲】[Claims] 1)制御ブロックおよびこれを取シ囲む複数個の標準燃
料ブロックを上下に積層しさらに可動反射体を組み合わ
せて単位炉心構造体となし、かつこれらの炉心単位構造
体の集合体を各単位炉心構造体と個々に対応して炉心の
下部に並置された正多角形状の高温ブレナムプロ、り上
に積み重ねて担持したガス冷却形原子炉において、各高
温プレナムブロックについてそのブロック領域からはみ
出て隣接する高温プレナムブロックの領域内へ張り出す
単位炉心構造体の突出部分に対向して、隣接高温プレナ
ムブロックの上部周縁部に前記突出部分とほぼ同じ形状
の切欠き凹所を形成したことを特徴とするガス冷却形原
子炉。
1) A control block and a plurality of standard fuel blocks surrounding it are stacked vertically, and a movable reflector is further combined to form a unit core structure, and the assembly of these core unit structures is formed into a unit core structure. In a gas-cooled nuclear reactor in which hot plenum blocks of regular polygonal shape are juxtaposed at the bottom of the reactor core and individually corresponding to the core, each hot plenum block has an adjacent hot plenum that protrudes from its block area. Gas cooling characterized in that a notch recess having approximately the same shape as the protruding part is formed in the upper peripheral edge of the adjacent high temperature plenum block, facing the protruding part of the unit core structure extending into the area of the block. shaped nuclear reactor.
JP58095329A 1983-05-30 1983-05-30 Gas cooled reactor Granted JPS59220672A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58095329A JPS59220672A (en) 1983-05-30 1983-05-30 Gas cooled reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58095329A JPS59220672A (en) 1983-05-30 1983-05-30 Gas cooled reactor

Publications (2)

Publication Number Publication Date
JPS59220672A true JPS59220672A (en) 1984-12-12
JPH025277B2 JPH025277B2 (en) 1990-02-01

Family

ID=14134679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58095329A Granted JPS59220672A (en) 1983-05-30 1983-05-30 Gas cooled reactor

Country Status (1)

Country Link
JP (1) JPS59220672A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0264175U (en) * 1988-11-02 1990-05-14
JPH0412275U (en) * 1990-05-22 1992-01-31

Also Published As

Publication number Publication date
JPH025277B2 (en) 1990-02-01

Similar Documents

Publication Publication Date Title
US3379619A (en) Fuel assembly for nuclear reactors
US3157582A (en) Nuclear reactor moderator structures
RU2562617C2 (en) Neutron reflector block, nuclear reactor side reflector and nuclear reactor
US3361639A (en) Nuclear reactor grid structure
US6205196B1 (en) Boiling water type nuclear reactor core and operation method thereof
EP0795177B1 (en) Control of coolant flow in a nuclear reactor
EP0563694B1 (en) Low pressure drop spacer for nuclear fuel assemblies
US5375154A (en) Reduced pressure drop spacer for boiling water reactor fuel bundles
EP0528621B1 (en) Hydride resistant spacer formed from interlocking strips for a nuclear fuel assembly of a boiling water reactor
CA1074463A (en) Nuclear core baffling apparatus
JPS59220672A (en) Gas cooled reactor
SE9602453L (en) A nuclear fuel assembly
US4923670A (en) Roof reflector for a nuclear reactor
US4879089A (en) Liquid metal cooled nuclear reactors
EP0514048A1 (en) Nuclear reactor fuel bundle with minimized flow induced vibration and rod bow
JPS63120292A (en) Fuel aggregate
US4655998A (en) Liquid metal cooled nuclear rector constructions
Mills Paper 5: Cooling of the Dungeness B Agr Pressure Dome
JPS60249090A (en) Regulating body of flow rate of core refrigerant for nuclearreactor
JPS63295988A (en) Fuel assembly
JPS6291894A (en) Nuclear reactor
JPH0225193Y2 (en)
Perrett et al. Nuclear reactor
JPH09222488A (en) Asymmetry fuel assembly for boiling water reactor
JPH05164867A (en) Fuel assembly