JPS59220644A - Large scale continuous displacement chromatography method improved in separation characteristic - Google Patents

Large scale continuous displacement chromatography method improved in separation characteristic

Info

Publication number
JPS59220644A
JPS59220644A JP58094116A JP9411683A JPS59220644A JP S59220644 A JPS59220644 A JP S59220644A JP 58094116 A JP58094116 A JP 58094116A JP 9411683 A JP9411683 A JP 9411683A JP S59220644 A JPS59220644 A JP S59220644A
Authority
JP
Japan
Prior art keywords
liquid
ion exchange
column
exchange tower
branch pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58094116A
Other languages
Japanese (ja)
Inventor
Yukio Fujine
藤根 幸雄
Keiichiro Saito
斉藤 恵一朗
Yoshiyuki Shiba
柴 是行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute filed Critical Japan Atomic Energy Research Institute
Priority to JP58094116A priority Critical patent/JPS59220644A/en
Publication of JPS59220644A publication Critical patent/JPS59220644A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/50Conditioning of the sorbent material or stationary liquid
    • G01N30/56Packing methods or coating methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/42Selective adsorption, e.g. chromatography characterised by the development mode, e.g. by displacement or by elution
    • B01D15/422Displacement mode
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/38Flow patterns
    • G01N30/40Flow patterns using back flushing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/60Construction of the column
    • G01N30/6004Construction of the column end pieces
    • G01N30/6017Fluid distributors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

PURPOSE:To enhance separation capacity, by suppressing liquid mixing to a minimum degree by using a high performance liquid separating apparatus for aiming to uniformly disperse a liquid toward the radius direction in a large scale ion exchange tower. CONSTITUTION:In an ion exchange tower constituting the circuit for continuous displacement chromatogaphy, because a flowing condition is not always made constant and a packing layer repeats swelling and shrinkage at a cycle such that a lithium adsorbing zone undergoes one cycle of the circuit, the liquid sump part in the upper part of a resin layer can not be eliminated. The liquid mixing in the axial direction of the liquid sump part in the upper part of the resin layer receives large influece by the structure of the dispersing device attached to the upper part of the ion exchange tower. As the structural example of the liquid dispersing device, there is a perforated plate laminating system wherein three perforated plates are superposed to successively disperse a liquid to the raidus direction thereof or a branch pipe system for dispersing the liquid to the radius direction from the center thereof by utilizing perforated pipes. In the branch pipe system, the number of orifices are reduced to inject the liquid from each orifice provided to the leading end of each branch pipe as a jet stream which is, in turn, impinged to the lid of the ion exchange tower to be converted to a narrow stream and the reverse stirring of the liquid is created in the liquid sump by said narrow stream to increase the dispersibility of the liqud to the radius direction.

Description

【発明の詳細な説明】 本発明は分離性能を改良した大型連続置換クロマトグラ
フィ法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a large scale continuous displacement chromatography process with improved separation performance.

詳しくは、本発明は置換クロマトグラフィ[よるリチウ
ム同位体分離に赴いて、連続置換クロマトグラフィ装置
を構成する各大型イオン交換塔内で半径方向に均一に液
を分散させる目的の高性能とによって装置全体の分離性
能を向上させる連続置換クロマトグラフィの方法に関す
るものである。
Specifically, the present invention is directed to lithium isotope separation using displacement chromatography, and the purpose of dispersing the liquid uniformly in the radial direction in each large ion exchange column constituting a continuous displacement chromatography device is to achieve high efficiency, thereby improving the efficiency of the entire device. The present invention relates to a continuous displacement chromatography method that improves separation performance.

置換クロマトグラフィVrCJ:るリチウム同位体分離
に複数本のイオン交換樹脂充填塔を配管で連続したサー
キット方式あるいはメリーゴーランド方式と呼ぶ装@f
よって連続的に行われ得る。リチウム吸着帯にこの装置
内で置換剤に押されてその長さ全変化させずにイオン交
換塔内を移動し、塔下端から溶出して次の塔と連結する
配管全通り次の塔の上部から流入して再度イオン交換樹
脂層に吸着されて塔内を移動し、再び塔下端から浴出さ
れてその次の塔へ流入するという過程を繰り返す。
Substitution chromatography VrCJ: A system called the circuit system or merry-go-round system in which multiple ion-exchange resin-packed columns are connected via piping for lithium isotope separation.
Therefore, it can be performed continuously. The lithium adsorption zone is pushed by the displacing agent in this device and moves through the ion exchange column without changing its length, elutes from the bottom end of the column, and connects to the next column all the way to the top of the next column. The process of flowing in from the column, being adsorbed again by the ion exchange resin layer, moving inside the column, being bathed out again from the bottom of the column, and flowing into the next column is repeated.

イオン交換樹脂を利用するリチウム同位体分離法は、天
然に安定に存在する2つのリチウム同位体6Liと7L
i間でイオン交換樹脂への吸着力に差があるのを利用す
る方法である。リチウム吸着帯がイオン交換樹脂層内を
移動する際に同位体分離が行われ、塔内の軸方向に同位
体濃度分布が形成されるが溶出したリチウム溶液が次の
塔へ移動する部においてり、11方向液混合が起こり分
を准効呆が減殺される。l理論段あ/こりのリチウム同
位体分離係数は1,003程度と小さい7bめ、分離を
効率よく行うためには液混合による分離効果の損失全最
小限にすることが必要不可欠となる。置換クロマトグラ
フィf/iLJ:るリチウム同位体分離の処理量を増す
ためには、イオン交換塔の直径を太くする方法fとられ
るが、交換塔内全流通させる液に比較的小流量であり、
」もを連結する配管内の液混合を最小限にするために配
管に細いものが使用される。
Lithium isotope separation method using ion-exchange resin uses two naturally stable lithium isotopes, 6Li and 7L.
This method takes advantage of the fact that there is a difference in the adsorption power to ion exchange resins among i. Isotope separation occurs when the lithium adsorption zone moves within the ion exchange resin layer, and an isotope concentration distribution is formed in the axial direction within the column. , 11-way liquid mixing occurs and the effectiveness is reduced. The lithium isotope separation coefficient of the theoretical plate A/R is 7b, which is as small as about 1,003, and in order to perform separation efficiently, it is essential to minimize the loss of separation effect due to liquid mixing. In order to increase the throughput of lithium isotope separation using displacement chromatography f/iLJ, a method of increasing the diameter of the ion exchange column is used, but the flow rate is relatively small for the entire liquid flowing through the exchange column.
Thin pipes are used to minimize liquid mixing in the pipes that connect the pipes.

従って、細い配管力・ら太いイオン交換塔へ流入するリ
チウム溶液は基軸方向の液混合を最小限にするために塔
内半径方向に均一に分散させ、捷た太いイオン交換塔の
下端から利い配管へリチウム溶液全溶出させる除にも基
軸方向の液混合を最小限にするように塔半径方向に均一
に集液する必要がある。
Therefore, the lithium solution flowing into the thin and thick ion exchange tower is uniformly dispersed in the radial direction inside the column to minimize liquid mixing in the cardinal direction, and the lithium solution is distributed from the bottom of the thick ion exchange column by the thin pipe. In order to completely elute the helithium solution, it is necessary to collect the liquid uniformly in the radial direction of the column so as to minimize liquid mixing in the cardinal direction.

従来、リチウム同位体全連続M D%クロマトグラフィ
で分瀦する試みば、直径2cTηφ程度の小口径カラム
で実施されており、塔内半径方向への液の均一分散につ
いてに特別の注意は払われていない。
Conventionally, attempts to separate lithium isotopes using fully continuous MD% chromatography have been carried out using small columns with a diameter of about 2 cTηφ, and no special attention has been paid to uniform dispersion of the liquid in the radial direction of the column. do not have.

これら小口径の塔内の液分散のためには塔上部にテフロ
ン粉末全成形したフィルターが利用されている。
To disperse the liquid in these small-diameter columns, a filter made entirely of Teflon powder is used in the upper part of the column.

また、大型のイオン交換樹脂塔は大流量処理の純水製造
装置、各種の有用成分回収装置等に使用されているが、
塔上部における半径方向の均−液分散器についても、不
発明が対象とする連続置換クロマトグラフィ用サーキッ
ト全構成するイオン交換塔の場合はどに性能上重要な位
W−を占め゛るものでにないために分散性能の検討は厳
折に行われていない。
In addition, large ion exchange resin towers are used in high-flow water purification equipment, various useful component recovery equipment, etc.
Regarding the radial liquid dispersion device in the upper part of the column, in the case of an ion exchange column that constitutes the entire circuit for continuous displacement chromatography, which is the object of the present invention, how important is W- in terms of performance? Because of this, dispersion performance has not been carefully studied.

リチウム同位体を工業的に連続置換クロマトグラフィで
分1ii(Pする場合、サーキットヲ構成するイオン交
換塔の直径150crnφ前後になるものと予想される
。現時点′まT:にリチウム同位体分離の実績がある2
cmφのイオン交換塔で構成されるサーキットの分離性
能を維持したままで工業的規模の”分離を行うためには
連続置換クロマトグラフィのサーキット内で発生する軸
方向の液混合全最小限に抑える必要がある。本発明は、
大型イオン交換塔上部における半径方向の液分散を良く
シ、軸方向の液混合全最小限にして、上記の目標を達成
して高性能の大型連続置換クロマトグラフィによるリチ
ウム同位体分離全可能とするものである。
If lithium isotopes are industrially separated by continuous displacement chromatography, it is expected that the diameter of the ion exchange tower that makes up the circuit will be around 150 crnφ. There are 2
In order to perform industrial-scale separation while maintaining the separation performance of a circuit consisting of a cmφ ion exchange column, it is necessary to minimize the total axial liquid mixing that occurs within the continuous displacement chromatography circuit. Yes.The present invention has
A system that achieves the above goals by improving radial liquid dispersion in the upper part of a large ion exchange column and minimizing axial liquid mixing, making it possible to completely separate lithium isotopes by high-performance large-scale continuous displacement chromatography. It is.

リチウム同位体分離を行うための連続置換クロマトグラ
フィ用サーキットに第1図に示すように複数のクロマト
グラフィ用カラムから構成されて訃り各カラム上下に取
りイ」けた自動制御弁全中央の制御装(謎で切換えるこ
とによってリチウム吸着帯が移動した後の置換剤で満た
されたカラムを再生し、再使用できるようにしてあり、
リチウム吸漸螢全長距離移動することができるようにな
っている。リチウム吸着帯は、複数本のカラムKまたが
って存在し、寸たカラムからカラムへと移動する。大型
置換クロマトグラフィ用イオン交換塔は・ヒリえは第2
図のような構造をしており細い配管力1ら入る液に塔上
部の液分散器で半径方向に均一に分散され、イオン交換
樹脂充填塔内全均一に流下し、塔下部の艮液訂において
均一(・て祭められて配管へ出て行く。一般には、この
間にさまざまの軸方向の液混合を受ける。
As shown in Figure 1, a continuous displacement chromatography circuit for separating lithium isotopes consists of multiple chromatography columns, with automatic control valves installed above and below each column. After the lithium adsorption zone has moved, the column filled with the displacing agent is regenerated and can be reused.
Lithium-absorbing fireflies can travel long distances. The lithium adsorption zone exists across a plurality of columns K and moves from column to column. The ion exchange column for large-scale displacement chromatography is the second one.
The structure is as shown in the figure, and the liquid entering the thin pipe is uniformly dispersed in the radial direction by the liquid distributor at the top of the column, flows uniformly throughout the ion exchange resin-packed column, and is distributed to the bottom of the column. The liquid is uniformly distributed in the pipe before exiting to the piping. During this time, it generally undergoes various axial liquid mixing.

不発明は、対象とするリチウム同位体分離の場合のよう
に100μm程度の粒径を持つ微細なイオン交換樹脂を
充填したイオン交換塔では、これらの液混合のうちイオ
ン交換樹脂充填層上部の液だまり部における液混合が最
も大きく分離性能に影響を及ぼしていることを見出した
結果、考案されたものである。上記樹脂層上部液だまり
部に、できるだけ無くして運転することが望ましいが、
連続置換クロマトグラフィ用サーキットを構成するイオ
ン交換塔の場合は、常に一定の流通条件ではなくリチウ
ム吸着帯がサーキットを1サイクルするのを周期として
充填層の膨潤、収縮を繰り返すため樹脂層上部液だまり
部を無くすることができない。この樹脂層上部液だまり
部の軸方向液混合は、イオン交換塔上部に取り伺ける液
分散器の構造によって大きく影響を受ける。液分散器の
構造例としては第3図に示すように3枚の多孔板を重ね
て順次半径方向に分散させる多孔板積層方式(F I)
−P 10 ) 、孔をあけた細管ケ利用して中心より
半径方向へ液分散させる枝管方式(1) D −H88
、PI)−H20,PD−1−I8 )等がある。
The inventive point is that in an ion exchange tower filled with fine ion exchange resin having a particle size of about 100 μm, as in the case of the target lithium isotope separation, the liquid above the ion exchange resin packed bed out of the liquid mixture is It was devised as a result of the discovery that liquid mixing in the pool area has the greatest effect on separation performance. It is desirable to operate without as much as possible in the liquid pool above the resin layer.
In the case of an ion exchange column that constitutes a circuit for continuous displacement chromatography, the flow conditions are not always constant, but because the packed bed repeatedly swells and contracts every cycle of the lithium adsorption zone through the circuit, the liquid pool above the resin layer is cannot be eliminated. The axial liquid mixing in the liquid pool above the resin layer is greatly influenced by the structure of the liquid disperser that can be accessed at the top of the ion exchange column. As shown in Figure 3, an example of the structure of a liquid disperser is the perforated plate stacking method (FI) in which three perforated plates are stacked and dispersed in the radial direction.
-P 10) Branch pipe method that uses perforated thin tubes to disperse liquid in the radial direction from the center (1) D -H88
, PI)-H20, PD-1-I8), etc.

初詣層上部の液だまり部を′Cきるだけ小さくするため
には枝管方式よりも多孔板積層方式の万が工いハ取り旬
けが簡単であるという観点7)>らは枝V方式の方がよ
い。枝管方式の場合は、孔数ケシくするよりも適当に少
なくし枝管先端の径孔から液をジェット流として噴出さ
せ、樹脂層表[i1]に直接あてずにイオン交換塔の孟
にあてて狭くした液だまり部内で逆に液の撹乱全発生さ
せることにより半径方向への分散性を増すことが可能で
ある。
In order to make the liquid pool at the top of the hatsumode layer as small as possible, the perforated plate lamination method is easier to remove than the branch pipe method. Good. In the case of the branch pipe method, the number of holes is appropriately reduced rather than the number of holes, and the liquid is jetted out as a jet stream from the diameter hole at the tip of the branch pipe, and the liquid is not applied directly to the resin layer surface [i1] but directly to the surface of the ion exchange tower. On the other hand, it is possible to increase the dispersibility in the radial direction by causing complete disturbance of the liquid within the narrowed liquid pool.

〔実施例1〕 第1図の連続置換クロマトグラフィ用ザ
ーキントに2cmφのガラスカラムで構成し、強酸註陽
イオン父換樹脂ダイアイオンS K 116(平均粒径
100μIn )全充填する。イオン交換樹脂金2 N
塩酸でH型にして純水でよく洗浄したところに酢酸リチ
ウム水溶液(C!H30ooLi )で7mのリチウム
吸着帯を形成し、これを酢酸ナトリウム(CI(,0o
oNa )で置換してザーキント内を吸着帯を190 
m移動させた後、リチウム吸着帯全溶出させて溶出液を
分析したところ第4図に示−j濃度分布が得られた。
[Example 1] A 2 cm φ glass column was constructed in a Zerkind for continuous displacement chromatography as shown in FIG. 1, and the column was completely filled with a strongly acidic cationic father-containing resin Diaion S K 116 (average particle size 100 μIn). Ion exchange resin gold 2N
After making the H-form with hydrochloric acid and thoroughly washing with pure water, a 7 m lithium adsorption zone was formed with an aqueous lithium acetate solution (C!
oNa) to make the adsorption zone in Zarkint 190
When the lithium adsorption zone was completely eluted and the eluate was analyzed, the -j concentration distribution shown in FIG. 4 was obtained.

〔実施例2〕 第2図に示す塔径50cmφ長さ1mの
大型イオン交換塔に強酸性陽イオン交換樹脂グイ、アイ
、tン5K116(平均粒径200 ltm ) を充
填する。十分量の2N塩酸で樹脂−i H型にし、純水
でよく洗浄しておく。別に0.8 mat/L水酸化リ
チウム(LiOIi)と0.2 mob/l水酸化ナト
リウム(NaOH)の混合溶液を流して破過させて破過
曲線を測定ツーる。液分散器として第3図のP D −
H2’ Oを取りつけたときの破過曲線を第5図に示す
。第5図V?−ハ同様の流通条件で塔径2 cnrφの
小口径ガラスカラム全使つに実験で得た破過曲線も示し
である。
[Example 2] A large ion exchange column with a column diameter of 50 cm and a length of 1 m shown in FIG. 2 is filled with a strongly acidic cation exchange resin Gui, Ai, Tong 5K116 (average particle size 200 ltm). Make the resin-i H type with a sufficient amount of 2N hydrochloric acid and wash thoroughly with pure water. Separately, a mixed solution of 0.8 mat/L lithium hydroxide (LiOIi) and 0.2 mob/L sodium hydroxide (NaOH) was passed through the tube and the breakthrough curve was measured. As a liquid disperser, PD- in Fig. 3 is used.
FIG. 5 shows the breakthrough curve when H2' O was attached. Figure 5 V? The breakthrough curve obtained in an experiment using a small-diameter glass column with a column diameter of 2 cnrφ under the same flow conditions is also shown.

イオン交換塔の分離性能を示すリチウム濃度分布の傾き
Vf:、 50 cnrφの大型イオン交換塔の場合と
2(:rnφの小口径ガラスカラムの場合でほぼ等しい
結果が得られている。
The slope of the lithium concentration distribution, which indicates the separation performance of the ion exchange column, is Vf:. Almost the same results are obtained in the case of a large ion exchange column with a diameter of 50 cnrφ and in the case of a small diameter glass column with a diameter of 2(:rnφ).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は連続置換クロマトグラフィ用す−キントを示し
、 1は工業水貯槽、、2は活性炭塔、3は純水製造装置、
4はリチウム浴液貯槽、5は塩酸罰整槽、6は2N塩酸
貯槽、7は置換剤調整槽、8は置換剤貯槽、9は純水貯
槽、10はプランジャーポンプ、11は中火側[有]装
置、12は廃液貯槽、13は廃液中和槽、14は温度制
叫jユニントである。 爾2図は50Cn+φ犬型イオン交換塔を示し、1は液
分散器、2は集液器、3はイオン交換樹脂層、4は液だ
丑り部である。 第3図に液分散器?示し1 1は多孔板積層方式(Ii” D −P 10 )、2
に枝管方式(PD−1488)、3は枝管方式(pD−
1−i 20 )、4げ枝管方式(PD−H8)である
。 第4図に、リチウム同位体濃度分布、全示すグラフで、
横軸はリチウム吸N帯の長さく→、左縦軸OAK ”L
jモル分率、右縦軸(L’:1 ’L1モル分率全示し
、カーブは天然同位体モル分率0.9258 C”Li
 )を示す。 第5図は、破過曲線の比較を示すグラフで、横特許出願
人 日本原子力研究所 箪2ノ図 13 尾2m L3図 1         2       3      
 4#4 図 手、 続 ?IIi  正 ;Q’   (自発)6゜
昭和58年9月12日 信l許庁長官 若 杉 和 夫 殿 1、 事件の表示 昭和58年特許願第094目G号 2、 発明の名称 分a11性能を改良した大型連続置換 クロマトグラフィ法 3、 補正をずろ考 事Mとの関係 特許出願へ 住所 東京都千代田区内諧町二丁目2番2号名称 (4
09)ロ本原子力研究所 4、代理人■104 住所 東京都中央区銀座8丁目15番IO刊f)217
Fダイヤハイツ410月 補正の内容 (1)明細書の第7頁18行目のrcH,CooLij
を’CH3COOLi」に訂正する。 (2)同第7頁末行のrcH3CooNaJをrcIち
COON a Jに訂正する。 (3)同第8頁8行目のY別に0.8」を「別に0.2
ノに訂正する。 (4)同第8頁9行目の「と0.2」をrと0.8」に
訂正する。 (5)同第9頁7行目と8行目の間に 「AはH!LO,BはHC/!、CはCH3COON 
a 。 DはC)(sC00L、 i 、EはCHCOOT−(
、Fは35%I C6、Gは48%N a OHJを挿
入する。 (6)同第9頁18行目の「カーブ」を「j京液Jに8
1正する。 (7)同第9頁19行目の「示す」を 「のものを使用した」に訂正する。 (8)図面第1図を別♀]Lのとおり訂正する。
Figure 1 shows a system for continuous displacement chromatography, in which 1 is an industrial water storage tank, 2 is an activated carbon column, 3 is a pure water production device,
4 is a lithium bath liquid storage tank, 5 is a hydrochloric acid punishment tank, 6 is a 2N hydrochloric acid storage tank, 7 is a replacement agent adjustment tank, 8 is a replacement agent storage tank, 9 is a pure water storage tank, 10 is a plunger pump, 11 is a medium heat side 12 is a waste liquid storage tank, 13 is a waste liquid neutralization tank, and 14 is a temperature control unit. Figure 2 shows a 50Cn+φ dog-shaped ion exchange tower, where 1 is a liquid disperser, 2 is a liquid collector, 3 is an ion exchange resin layer, and 4 is a liquid droplet. Liquid disperser in Figure 3? Indication 1 1 is a perforated plate lamination method (Ii”D-P 10 ), 2
3 is a branch pipe method (PD-1488), 3 is a branch pipe method (pD-
1-i 20 ), a four-branch pipe system (PD-H8). Figure 4 is a graph showing the lithium isotope concentration distribution,
The horizontal axis is the length of the lithium-N absorption band →, and the left vertical axis is OAK ”L
j mole fraction, right vertical axis (L': 1 'L1 mole fraction all shown, curve is natural isotope mole fraction 0.9258 C"Li
) is shown. Figure 5 is a graph showing a comparison of breakthrough curves.
4#4 Illustration, continuation? IIi Correct; Q' (Spontaneous) 6゜September 12, 1980 Kazuo Wakasugi, Commissioner of the Office of the Secretary of State for Information and Communications 1, Indication of the case 1982 Patent Application No. 094 G No. 2, Title of the invention a11 Performance Large-scale continuous displacement chromatography method improved on 3, and its relationship with the amendments to the study M Go to patent application Address 2-2-2 Uchihamachi, Chiyoda-ku, Tokyo Name (4)
09) Romoto Atomic Energy Research Institute 4, Agent ■104 Address 8-15, Ginza, Chuo-ku, Tokyo Published by IOf)217
F Diamond Heights 4 October amendment details (1) rcH, CooLij on page 7, line 18 of the specification
is corrected to 'CH3COOLi'. (2) Correct rcH3CooNaJ on the last line of page 7 to rcICOON aJ. (3) On page 8, line 8, 0.8 for each Y is changed to 0.2 for each Y.
Correct to ノ. (4) Correct "and 0.2" on page 8, line 9 of the same page to "r and 0.8." (5) Between the 7th and 8th lines of page 9, “A is H!LO, B is HC/!, C is CH3COON
a. D is C) (sC00L, i, E is CHCOOT-(
, F inserts 35% I C6, G inserts 48% Na OHJ. (6) “Curve” on page 9, line 18 of the same page is changed to “J Kyoto J ni 8
1 Correct. (7) On page 9, line 19, "indicate" is corrected to "used something." (8) Correct the drawing Figure 1 as shown in separate ♀L.

Claims (1)

【特許請求の範囲】[Claims] 置換クロマトグラフィによるリチウム同位体分離VCお
いて、小粒径イオン交換樹脂全充填した大型のイオン交
換塔の上部に塔上部配管工り流入する液体を高性能液分
散装置を使用して塔内半径方向に均一に分散させて液混
合を最小限に抑えることから成る分離性能を改良した大
型連続置換クロマトグラフィ法。
In VC for lithium isotope separation using displacement chromatography, liquid flowing into the upper part of a large ion exchange tower completely filled with small particle size ion exchange resin is dispersed in the radial direction inside the tower using a high performance liquid dispersion device. A large-scale continuous displacement chromatography method with improved separation performance that consists of homogeneous dispersion and minimal liquid mixing.
JP58094116A 1983-05-30 1983-05-30 Large scale continuous displacement chromatography method improved in separation characteristic Pending JPS59220644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58094116A JPS59220644A (en) 1983-05-30 1983-05-30 Large scale continuous displacement chromatography method improved in separation characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58094116A JPS59220644A (en) 1983-05-30 1983-05-30 Large scale continuous displacement chromatography method improved in separation characteristic

Publications (1)

Publication Number Publication Date
JPS59220644A true JPS59220644A (en) 1984-12-12

Family

ID=14101458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58094116A Pending JPS59220644A (en) 1983-05-30 1983-05-30 Large scale continuous displacement chromatography method improved in separation characteristic

Country Status (1)

Country Link
JP (1) JPS59220644A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011090563A3 (en) * 2010-01-21 2011-11-24 3M Innovative Properties Company Ion-exchange filter cartridge

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4843994A (en) * 1971-10-01 1973-06-25

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4843994A (en) * 1971-10-01 1973-06-25

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011090563A3 (en) * 2010-01-21 2011-11-24 3M Innovative Properties Company Ion-exchange filter cartridge

Similar Documents

Publication Publication Date Title
US3953569A (en) Concentration of uranium 235 in mixtures with uranium 238 using ion exchange resins
US4379751A (en) Method for the chromatographic separation of soluble components in feed solution
US4450082A (en) Method for obtaining uniform stream in adsorption column
CA1114530A (en) Isotope separation
DE3126052A1 (en) METHOD AND DEVICE FOR PURIFYING A GAS CONTAINING SULFUR HYDROGEN AND CARBON DIOXIDE
JP2670154B2 (en) Separation and purification system of rare earth with reverse osmosis membrane separation process
JPH07299304A (en) Method and device for continuous separation of boron isotope
JPS6186931A (en) Separation of gadolinium isotope
JPS59220644A (en) Large scale continuous displacement chromatography method improved in separation characteristic
US3926807A (en) Device for the continuous treatment of liquid streams
JPS585691B2 (en) Multistage exchange reaction tower
CS235513B2 (en) Method of fructose separation from glucose
KR100196041B1 (en) Chromatographic separation of zirconium isotopes with reduced waste liquor
DE3540634A1 (en) METHOD FOR SEPARATING COMPONENTS OF A FLUID MIXTURE BY SORPTION
US4336140A (en) Water purification process
KR0181515B1 (en) Chromatographic separation of zirconium isotopes
JP4278211B2 (en) Pre-coating method for pre-coating filtration desalination equipment
JP2740780B2 (en) Simulated moving bed equipment
DE102017213886A1 (en) Method and device for enrichment or depletion of at least one hydrogen isotope in a gas stream
CS212333B2 (en) Method of continuous production of dian
CN204211485U (en) Hydrogen peroxide production system
CN208302795U (en) A kind of flat bed as ion-exchange unit
US4395386A (en) Apparatus for isotope exchange reaction
EP0002342B1 (en) Water purification process
JPH02131188A (en) Removal process for suspended impurities by mixed bed type filter desalting device