JPS59220625A - Method and apparatus for measuring transmission characteristic of optical fiber during production - Google Patents

Method and apparatus for measuring transmission characteristic of optical fiber during production

Info

Publication number
JPS59220625A
JPS59220625A JP9517983A JP9517983A JPS59220625A JP S59220625 A JPS59220625 A JP S59220625A JP 9517983 A JP9517983 A JP 9517983A JP 9517983 A JP9517983 A JP 9517983A JP S59220625 A JPS59220625 A JP S59220625A
Authority
JP
Japan
Prior art keywords
optical fiber
light
measuring
measurement
excitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9517983A
Other languages
Japanese (ja)
Inventor
Hisashi Murata
久 村田
Makoto Sumita
真 住田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP9517983A priority Critical patent/JPS59220625A/en
Publication of JPS59220625A publication Critical patent/JPS59220625A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/37Testing of optical devices, constituted by fibre optics or optical waveguides in which light is projected perpendicularly to the axis of the fibre or waveguide for monitoring a section thereof

Abstract

PURPOSE:To measure transmission characteristic of an optical fiber accurately in a non-destructive and continuous manner by irradiating a strong light from the side of an optical fiber after drawn from a matrix rod to excite a measuring light therein so that a propagated light is measured at the winding end thereof. CONSTITUTION:A demodulated output light of a light source 31 driven in modulation with a controlling signal generator 37 irradiates a bare fiber 1a from the side thereof. A Rayleigh scattered light with the wavelength the same as that lambda of the irradiation light is excited within the optical fiber 1a. The scatter angle of the Rayleigh scattered light covers the every bearing but the portion thereof only within the propagation angle propagates along the length thereof. The portion of the measuring scattered light propagating to the winding end thereof is connected direct to the end of an optical fiber 1 and received with a photoelectric converter 33 fixed on a winding drum 7. The electrical signal wave converted is introduced to a receiver 35 through a rotary connector 34 and processed with a signal analyzer 36. Thus, in the production and drawing process, the light transmission characteristic can be inspected and measured accurately online in a non-destructive and continuous manner.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、長尺の通信用光ファイバの光損失や周波数特
性などの光伝送特性を、光ファイバの製造工程の実行中
に検査測定する方法に関するものである。
[Detailed Description of the Invention] [Technical Field to Which the Invention Pertains] The present invention is a method for inspecting and measuring optical transmission characteristics such as optical loss and frequency characteristics of a long communication optical fiber during the optical fiber manufacturing process. It is about the method.

〔従来技術の説明〕[Description of prior art]

光ファイバの光伝送特性としては、光損失特性とベース
バンド周波数特性が重要であり、これにより、光ファイ
バの品質が最終的に評価される。
As optical transmission characteristics of an optical fiber, optical loss characteristics and baseband frequency characteristics are important, and the quality of the optical fiber is ultimately evaluated based on these characteristics.

この光伝送特性を測定する方法は、従来第1図のように
、光ファイバ1に励振用ファイバ11を接続し、光源1
2より測定光信号を送出し、この光ファイバを伝搬した
光信号を光検出器15で検出し、受信器16で受信する
系を用いている。光源12および受信器16は制御用発
振器17により制御される。最も一般に光損失を得るカ
ットパンク法では、光ファイバ1の受端で伝搬光量を測
定した後に、送端側の0点でファイバを切断し、光量を
測定し比較する。これは精度は良いが破壊法であり、1
つのデータを得る毎に、励振用光ファイバ11と被測定
用光ファイバ1との接続を要し、かつ、切断するという
煩雑な作業を必要とする。
Conventionally, as shown in FIG. 1, the method of measuring this optical transmission characteristic is to connect an excitation fiber 11 to an optical fiber 1,
A system is used in which a measuring optical signal is sent out from the optical fiber 2, the optical signal propagated through the optical fiber is detected by the photodetector 15, and is received by the receiver 16. The light source 12 and receiver 16 are controlled by a control oscillator 17. In the cut-puncture method, which is most commonly used to obtain optical loss, the amount of propagated light is measured at the receiving end of the optical fiber 1, and then the fiber is cut at the zero point on the sending end side, and the amounts of light are measured and compared. Although this method has good accuracy, it is a destructive method, and 1
Each time one piece of data is obtained, it is necessary to connect and disconnect the excitation optical fiber 11 and the optical fiber 1 to be measured, which is a complicated work.

これと異なる方法として、光源12からレーザパルスを
送出し、光フアイバ1内で励起される後方散乱光を送端
側で受光し、ファイバ長に対する受光量の変化率から、
光損失を求めるバックスキャツタ法がある。これは非破
壊法である利点を有するが、送出パルスの反射波と後方
散乱波を分離するために、光方向性結合器を用いるなど
、高度な光回路技術を要するとともに、ファイバ長の2
倍の長さ分の損失を測定することになり、測定長が限定
される。
As a method different from this, a laser pulse is sent out from the light source 12, and the backscattered light excited in the optical fiber 1 is received at the sending end side, and from the rate of change of the amount of received light with respect to the fiber length,
There is a backscatter method to determine optical loss. Although this method has the advantage of being a non-destructive method, it requires advanced optical circuit technology such as using an optical directional coupler to separate the reflected wave and the backscattered wave of the transmitted pulse, and it also requires two fiber lengths.
The measurement length is limited because the loss is measured for twice the length.

これらの例のような従来の測定方法は、光ファイバを製
造するだめの線引工程とは全く別に行うものであり、測
定には多大の労力が必要とされるため、光ファイバの価
格を引き上げる要因となっている。
Conventional measurement methods such as these examples are performed completely separately from the drawing process that is used to manufacture optical fibers, and the measurements require a great deal of labor, which increases the price of optical fibers. This is a contributing factor.

従来から第2図に示すような線引工程において製造中に
光ファイバが正しく製造されているか否かを監視するた
めに、伝送特性を測定することが望まれている。しかし
、オンラインで測定する方法はいまだ実現されていない
。−案として、母材ロッド2が加熱炉3で白熱された状
態で発する光の伝搬成分を、巻き取りドラム7に巻き取
られた光ファイバの側面から検知し、ファイバ長の変化
に対する検出光の変化率を見る方法があげられている。
Conventionally, it has been desired to measure transmission characteristics in order to monitor whether or not an optical fiber is being manufactured correctly during manufacturing in a drawing process as shown in FIG. However, a method to measure it online has not yet been realized. - As a proposal, the propagation component of the light emitted when the base material rod 2 is heated in the heating furnace 3 is detected from the side of the optical fiber wound on the winding drum 7, and the detected light is A method of looking at the rate of change is given.

しかし、これでは伝搬光を所要の信号で変調することが
できないので、光ファイバの切断の有無を監視する程度
にしか利用できず、精度のよい伝送特性の測定を行い、
製造中の光ファイバの性能を評価することはできない。
However, this method cannot modulate the propagating light with the required signal, so it can only be used to monitor the presence or absence of breaks in the optical fiber.
It is not possible to evaluate the performance of optical fibers during manufacture.

〔発明の目的〕[Purpose of the invention]

本発明は、線引工程中の製造途中にある光ファイバの伝
送特性を、非破壊的に、かつ連続的に正確に測定する測
定方法および装置を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a measurement method and apparatus that nondestructively and continuously accurately measure the transmission characteristics of an optical fiber that is in the process of being manufactured during a drawing process.

〔発明の特徴〕[Features of the invention]

本発明は、母材ロッドから線引された後の光ファイバの
側方がら、強力な光を照射して光フアイバ内に測定光を
励起させ、その光ファイバの巻き取り端でその測定光が
伝搬した光を測定することを特徴とする。
The present invention irradiates strong light from the side of the optical fiber after it has been drawn from a base material rod to excite measurement light within the optical fiber, and the measurement light is emitted at the wound end of the optical fiber. It is characterized by measuring the propagated light.

上記測定光は照射した光のレーり散乱光を利用すること
ができる。また上記測定光は照射した光のラマン散乱光
を利用することができる。
As the measurement light, the Ray scattered light of the irradiated light can be used. Further, as the measurement light, Raman scattered light of the irradiated light can be used.

〔実施例による説明〕[Explanation based on examples]

第3図は本発明第一実施例方法および装置の構成図であ
る。母材ロッド2の端部は加熱炉3により加熱され、硬
化した部分が公知の手法により光ファイバに線引される
。この光ファイバ1は樹脂4の中を通過させてその表面
に保護用の樹脂層を成形させ、さらに樹脂硬化炉5を通
過させてこの樹脂層を硬化させる。この光ファイバ1は
、キャプスタン6の回転により制御されて巻き取りドラ
ム7に巻き取られる。
FIG. 3 is a block diagram of a method and apparatus according to a first embodiment of the present invention. The end of the base material rod 2 is heated in a heating furnace 3, and the hardened portion is drawn into an optical fiber by a known method. The optical fiber 1 is passed through a resin 4 to form a protective resin layer on its surface, and further passed through a resin curing furnace 5 to harden this resin layer. This optical fiber 1 is controlled by the rotation of the capstan 6 and is wound around a winding drum 7.

ここで本発明の特徴とするところは、強力な光源31(
この例では半導体レーザを用いた)の出力光を、線引さ
れた直後の樹脂層を形成する前の光ファイバ1aに照射
して、この光ファイバ1aの中に測定光を励起させるこ
とにある。また、巻き取りドラム7に巻き取られた光フ
ァイバ1の巻き取り端には、光電変換器33を接続して
、この巻き取り端に光ファイバ1から出射する光を電気
信号に変換するところにある。この電気信号は、巻き取
りドラム7の回転軸に設けられたロータリコネクタ34
を介して、受信器35に入力する。この受信器35の出
力は信号解析装置36に与えられる。上記光源31およ
び受信器35は、1個の制御用信号発生器37により制
御される。
Here, the feature of the present invention is that the powerful light source 31 (
In this example, the output light of a semiconductor laser (using a semiconductor laser) is irradiated onto the optical fiber 1a that has just been drawn and has not yet formed the resin layer, thereby exciting measurement light within the optical fiber 1a. . Further, a photoelectric converter 33 is connected to the winding end of the optical fiber 1 wound on the winding drum 7, and a photoelectric converter 33 is connected to the winding end to convert the light emitted from the optical fiber 1 into an electric signal. be. This electrical signal is transmitted to a rotary connector 34 provided on the rotating shaft of the winding drum 7.
The signal is input to the receiver 35 via the . The output of this receiver 35 is given to a signal analyzer 36. The light source 31 and receiver 35 are controlled by one control signal generator 37.

このように構成された系の動作を説明すると、制御用信
号発生器37により変調駆動された光源31の変調出力
光は、線引された直後の裸ファイバ1aにその側方から
照射する。これにより第4図に示すように、照射光の波
長λと同一の波長のレーリ散乱光が、光ファイバla内
に励起される。このラマン散乱光の散乱角度は全方位に
亘るが、光フアイバ内には伝搬角度内の成分のみが残っ
て、光フアイバ1内を長尺の方向に伝搬してゆく。従っ
て、照射光の光ファイバ1aへの入射角は任意に設定し
てよい。
To explain the operation of the system configured in this way, the modulated output light of the light source 31 modulated and driven by the control signal generator 37 is irradiated from the side to the bare fiber 1a immediately after being drawn. As a result, as shown in FIG. 4, Rayleigh scattered light having the same wavelength as the wavelength λ of the irradiated light is excited into the optical fiber la. Although the scattering angle of this Raman scattered light covers all directions, only the components within the propagation angle remain in the optical fiber and propagate in the long direction within the optical fiber 1. Therefore, the angle of incidence of the irradiation light onto the optical fiber 1a may be set arbitrarily.

ごの励振効率を高めるために、光ファイバ1aの周囲に
反射鏡を設置して、照射光を多数回光ファイバ1aに照
射する方法をとることも可能である。この測定用散乱光
が巻き取り端まで伝搬する成分を光電変換器33で受光
する。例えばAPDにより構成された光電変換器33は
小型軽量であるから、光ファイバ1の端部に直結し、巻
き取りドラム7に固定しておくことができる。電気信号
に変換された信号波はロークリコネクタ34を介して受
信器35に導き、それを信号解析装置36で処理するこ
とによって、光損失あるいはヘースノ\ンド周波数特性
を求める。
In order to increase the excitation efficiency, it is also possible to install a reflecting mirror around the optical fiber 1a and irradiate the optical fiber 1a with the irradiation light many times. A photoelectric converter 33 receives a component of this measurement scattered light that propagates to the winding end. For example, since the photoelectric converter 33 made of an APD is small and lightweight, it can be directly connected to the end of the optical fiber 1 and fixed to the winding drum 7. The signal wave converted into an electric signal is guided to a receiver 35 via a low-reflection connector 34, and is processed by a signal analyzer 36 to obtain optical loss or Haesnod frequency characteristics.

送信信号波形がパルスである場合には、受信信号と同様
な第5図のようなパルス波形を得ることができる。この
場合には、基底レベルは母材口・ノド2が加熱炉3内で
白熱された状態で発する光の伝搬成分で規定されるが、
これは信号パルスの測定タイムスロット内では一定レベ
ルであるので、信号発生器32の出力により受信器35
を同期して検波することにより、また、同期検波、フィ
ルタリング、バイアス法、アベレージング等の手法を用
いることにより分離識別できる。
When the transmitted signal waveform is a pulse, a pulse waveform similar to that of the received signal as shown in FIG. 5 can be obtained. In this case, the base level is defined by the propagation component of the light emitted when the base metal mouth/nod 2 is heated in the heating furnace 3.
Since this is a constant level within the measurement time slot of the signal pulse, the output of the signal generator 32 causes the receiver 35 to
Separation and identification can be performed by synchronously detecting the signals, or by using techniques such as synchronous detection, filtering, bias method, and averaging.

以上の系で、線引工程におけるファイバ長に対する光電
変換器33の受光レベル(dB表示)の変化を第6図に
示す。すなわち、製造に伴い光ファイバ1の長さが増大
すると受光レヘルは低下する。
FIG. 6 shows the change in the light reception level (in dB) of the photoelectric converter 33 with respect to the fiber length in the drawing process in the above system. That is, as the length of the optical fiber 1 increases with manufacturing, the light reception level decreases.

その変化率A/i!により、ファイバの任意の区間での
光損失を知ることができる。また、正弦波変調信号を用
い、各周波数成分について第6図の関係を適用すれば、
ヘースバンド周波数特性が測定できる。この光量は測定
光としてパルス光を用いるときには、その受光信号の波
形の変化として観測される。線引される光ファイバ長は
全長で数十kmに亘るが、パルス光によるアベレージン
グ微弱信号検知技術によって、光信号を測定可能な程度
に検出することができる。
The rate of change A/i! This allows us to know the optical loss in any section of the fiber. Furthermore, if a sinusoidal modulation signal is used and the relationship shown in Fig. 6 is applied to each frequency component,
Haasband frequency characteristics can be measured. When pulsed light is used as measurement light, this amount of light is observed as a change in the waveform of the received light signal. Although the total length of the optical fiber to be drawn is several tens of kilometers, the optical signal can be detected to a measurable extent by averaging weak signal detection technology using pulsed light.

次に、第7図により上記方法を発展させ、本発明第二の
実施例測定方法および装置を説明する。
Next, a second embodiment of the measuring method and apparatus of the present invention will be explained by developing the above method with reference to FIG.

この例は、光ファイバの使用波長域に合せ、波長の異な
る複数の光源31a〜31dを配置し、裸の光ファイバ
1aの側方より同時に照射する。これにより、光フアイ
バ1内にはλ1〜λ4の異なる波長のレーリ散乱光が励
起され伝搬する。巻き取り端において、分波器71によ
り各波長の光を分け、それぞれ別個の光電変換器33a
〜33dによってこれを検知する。この出力に得られる
電気信号を多チヤネルロークリコネクタ72を介して受
信器35に導き、信号解析装置36でデータ処理する。
In this example, a plurality of light sources 31a to 31d having different wavelengths are arranged in accordance with the wavelength range in which the optical fiber is used, and irradiate light simultaneously from the side of the bare optical fiber 1a. As a result, Rayleigh scattered light having different wavelengths of λ1 to λ4 is excited and propagated within the optical fiber 1. At the winding end, the light of each wavelength is separated by a demultiplexer 71, and each wavelength is separated into separate photoelectric converters 33a.
This is detected by ~33d. The electrical signal obtained as this output is guided to the receiver 35 via the multi-channel low-reconnector 72, and data processed by the signal analyzer 36.

この系では、各波長の信号について第6図で説明した関
係を適用すれば、第8図に示すような、光ファイハに特
有の光損失波長特性をオンラインで測定することができ
る。
In this system, by applying the relationship explained in FIG. 6 to the signals of each wavelength, it is possible to measure on-line the optical loss wavelength characteristic peculiar to the optical fiber as shown in FIG. 8.

裸の光ファイバの側方からの照射光によって、レーリ散
乱光を励起する方法は極めて簡単である。
The method of exciting the Rayleigh scattered light by irradiating light from the side of a bare optical fiber is extremely simple.

また、光ファイバ1aの側面の機械的精度は極めて高い
ので、励起レベルを高い安定度で維持することができる
。したがって、製造に伴う光ファイバ長の変化に対する
受信信号の変化を正確に捉えることができる。ファイバ
長の変化に対する信号の変化率から測定する方法は、従
来のようにファイバ長が固定される方法に比べて、非破
壊で測定精度を高く維持できる特長がある。
Furthermore, since the mechanical precision of the side surface of the optical fiber 1a is extremely high, the excitation level can be maintained with high stability. Therefore, changes in the received signal due to changes in the optical fiber length due to manufacturing can be accurately captured. The method of measuring from the rate of change in the signal with respect to the change in fiber length has the advantage of being non-destructive and maintaining high measurement accuracy compared to conventional methods in which the fiber length is fixed.

なお、上記の説明では測定光は裸フアイバ18部に照射
するとしているが、素線被覆が薄くしかもほぼ均一に施
されているような場合には、樹脂硬化炉5を通過した後
の適当な個所で、被覆の上から照射する方法をとること
も可能である。この場合にも受信系の構成とデータの処
理法等は上記説明と同様である。
In the above explanation, it is assumed that the measurement light is irradiated onto the bare fiber 18, but if the coating is thin and almost uniform, the measurement light may be applied to the bare fiber 18 after passing through the resin curing furnace 5. It is also possible to irradiate the area over the coating. In this case as well, the configuration of the receiving system, data processing method, etc. are the same as described above.

次に光源として、高出力の半導体レーザ等を用いると、
第9図に示すように、照射光の波長λ0と同一の波長の
レーり散乱光および、波長の異なる数種のラマン散乱光
がファイバIa内に励起されることは良く知られている
。特にファイバのコ  、ア内では、ゲルマニウム等の
ドープ元素により、特有の波長のラマン散乱光(ストー
クス線)が励起されやすい。散乱光の散乱角度は全方位
に亘るが、ファイバ内には伝搬角度内の成分のみが残っ
て、光フアイバ1内を長尺の方向に伝搬してゆく。
Next, if a high-power semiconductor laser or the like is used as a light source,
As shown in FIG. 9, it is well known that Ley scattered light having the same wavelength as the wavelength λ0 of the irradiated light and several types of Raman scattered light having different wavelengths are excited into the fiber Ia. In particular, Raman scattered light (Stokes lines) with a specific wavelength is likely to be excited by doping elements such as germanium in the core and a of the fiber. Although the scattering angle of the scattered light covers all directions, only the components within the propagation angle remain in the fiber and propagate in the long direction within the optical fiber 1.

したがって、照射光のファイバへの入射角は任意に設定
してよい。この励振効率を高めるために、ファイバの周
囲に反射鏡を設置して、照射光を多数回、ファイバに照
射するような方法をとることも可能である。この測定用
散乱光が巻き取り端まで伝搬する成分を第7図と同じ構
成の検出部によりまず分波器71で各ストークス線毎に
分光し、それぞれ別個の光電変換器33a〜33dにて
検知する第7図との違いは、励起用の光源31が1つで
よいことのみである。
Therefore, the angle of incidence of the irradiation light onto the fiber may be set arbitrarily. In order to increase this excitation efficiency, it is also possible to use a method in which a reflecting mirror is installed around the fiber and the fiber is irradiated with irradiation light many times. The component of this measurement scattered light propagating to the end of the winding is first separated by a demultiplexer 71 into each Stokes line by a detector having the same configuration as in FIG. 7, and then detected by separate photoelectric converters 33a to 33d. The only difference from FIG. 7 is that only one light source 31 for excitation is required.

以上の系で、各波長のストークス線について、線引工程
でのファイバ長に対する受光レベル(dB表示)の変化
を示すと、第6図のようになる。その変化率Δ/βによ
り、ファイバの任意の区間での光損失が測定できる。ま
た、正弦波変調信号を用い、各周波数成分について第6
図の関係を適用すれば、各波長でのベースバンド周波数
特性が測定できる。線引される光ファイバ長は全長で数
十kmに亘るが、これはアベレージングによる微弱信号
検知技術によって測定可能となる。この方法により、同
様に第8図に示すような光ファイバに特有の光損失波長
特性をオンラインで測定することができるようになる。
In the above system, the change in light reception level (in dB) with respect to the fiber length in the drawing process is shown in FIG. 6 for the Stokes lines of each wavelength. The optical loss in any section of the fiber can be measured by the rate of change Δ/β. Also, using a sine wave modulation signal, the sixth
By applying the relationship shown in the figure, the baseband frequency characteristics at each wavelength can be measured. The total length of the optical fiber to be drawn is several tens of kilometers, which can be measured using a weak signal detection technique using averaging. With this method, it becomes possible to measure on-line the optical loss wavelength characteristic peculiar to an optical fiber as shown in FIG. 8 as well.

この場合に、ストークス線λ′、λ″、λ″′がλ2、
λ3、λ4.工対応し、λ0がλ1に対応する。
In this case, the Stokes lines λ′, λ″, λ″′ are λ2,
λ3, λ4. λ0 corresponds to λ1.

次に上記方法を発展させた本発明第四の実施例を第10
図により説明する。光ファイバの使用波長域に合せ、大
幅に波長の異なる複数の光源31a〜31dを配置し、
裸の光ファイバ1aの側方より同時にこれらを照射する
。光ファイバ1aにはそれぞれの波長を基本とするラマ
ン散乱光が励起する。
Next, the fourth embodiment of the present invention, which is a development of the above method, will be described in the 10th embodiment.
This will be explained using figures. A plurality of light sources 31a to 31d with significantly different wavelengths are arranged according to the wavelength range of the optical fiber used,
These are simultaneously irradiated from the sides of the bare optical fiber 1a. Raman scattered light based on each wavelength is excited in the optical fiber 1a.

これにより、光フアイバ1内には広範な波長域に亘る多
数のストークス線を含む測定光が伝搬し、巻き取り端に
おいて、分波器71を用いて分光受信することによって
、広範な波長域に亘る光伝送特性を測定することができ
る。
As a result, measurement light including a large number of Stokes lines over a wide range of wavelengths is propagated within the optical fiber 1, and at the winding end, the splitter 71 is used to receive the measurement light in a wide range of wavelengths. It is possible to measure optical transmission characteristics across the range.

広波長域の分波器71が大形で、巻き取りドラム7に固
定できない場合には、第10図のように、光ファイバ端
を光学的に結合するロータリコネクタ4工にセットし、
分波器71を巻き取りドラム7から分離して設置するよ
うに構成することができる。
If the wide wavelength range demultiplexer 71 is too large to be fixed to the winding drum 7, as shown in FIG.
The duplexer 71 can be configured to be installed separately from the winding drum 7.

ファイバの側方からの照射光によって、測定用ラマン散
乱光を励起する方法は極めて簡易である。
The method of exciting Raman scattered light for measurement with light irradiated from the side of the fiber is extremely simple.

またファイバの側面の精度が極めて高いため、励起レベ
ルを高い安定度で維持することができる。
Furthermore, the extremely high precision of the fiber sidewalls allows the excitation level to be maintained with high stability.

したがって、ファイバ長の変化に対する受信信号の変化
を正確に捉えることができる。ファイバ長の変化に対す
る信号の変化率から測定する方法は、従来のようにファ
イバ長が固定される方法に比べて、非破壊的で測定精度
を維持できる特長がある。
Therefore, changes in the received signal due to changes in fiber length can be accurately captured. The method of measuring from the rate of change in the signal with respect to the change in fiber length has the advantage of being non-destructive and maintaining measurement accuracy, compared to conventional methods in which the fiber length is fixed.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、光ファイバの製
造線引工程の実行中に、オンラインで光伝送特性を非破
壊的にかつ連続的にしかも正確に検査測定することが可
能となる。従来大きな比重を占めていたファイバ伝送特
性の検査コストを大幅に低減することができる。また、
本発明の構成では訓精度を要求される部分はなく、簡易
であり、しかも広い波長域で同時に測定することができ
るなど、その応用発展が期待できる。本発明によれば、
ファイバの伝送特性に関する多種類の所要データを、線
引工程のみで全て測定できる可能性がある。このように
本発明は光ファイバの測定技術の簡易化、光ファイバの
低コスト化に多大の効果を有し、光通信の経済化に寄与
するものである。
As described above, according to the present invention, it is possible to nondestructively, continuously, and accurately inspect and measure optical transmission characteristics online during the production and drawing process of optical fibers. It is possible to significantly reduce the cost of inspecting fiber transmission characteristics, which has traditionally occupied a large portion of the cost. Also,
The configuration of the present invention does not require high training accuracy, is simple, and can be used to simultaneously measure a wide wavelength range, so it is expected to be used for further development. According to the invention,
It is possible to measure all of the various types of data required regarding the transmission characteristics of fibers only during the drawing process. As described above, the present invention has great effects in simplifying optical fiber measurement technology and reducing the cost of optical fibers, and contributes to economicalization of optical communications.

【図面の簡単な説明】[Brief explanation of drawings]

第F図は従来例のオフラインの光伝送測定構成図。 第2図は光フアイバ線引工程の説明図。 第3図は本発明第一実施例光伝送特性方法およびその装
置の構成図。 第4図は光ファイバの側方からの光照射によるレーり散
乱光励起を示す図。 第5図は受光波形の例を示す図。 第6図はファイバ長に対する受光レベルの変化率からの
測定を説明する図。 第7図は波長の異なる複数の光を用いる本発明第二実施
例方法および装置の構成図。 第8図は光損失波長特性を説明する図。 第9図は光フアイバ側方からの光照射によるラマン散乱
光励起を示す図。 第Xθ図は、波長の異なる複数の光源を用いる本発明の
第四実施例方法および装置お構成図。 1・・・光ファイバ、2・・・母材ロッド、3・・・加
熱炉、4・・・樹脂、5・・・樹脂硬化炉、6・・・キ
ヤプスタン、7・・・巻き取りドラム、11・・・励起
用ファイバ、12・・・光源、13・・・信号発生器、
15・・・光検出器、16・・・受信器、3I・・・光
源、33・・・光電変換器、34・・・ロークリコネク
タ、35・・・受信器、36・・・信号解析装置、37
・・・制御用信号発生器、41・・・光学的なロークリ
コネクタ、51・・・受信パルス、71・・・分波器、
72・・・多チヤネルロータリコネクタ。 飛 3 図 ら1 児4回    児6目 第 7 図 今 波長 兜 8 圓
FIG. F is a configuration diagram of a conventional off-line optical transmission measurement. FIG. 2 is an explanatory diagram of the optical fiber drawing process. FIG. 3 is a block diagram of the optical transmission characteristic method and apparatus according to the first embodiment of the present invention. FIG. 4 is a diagram showing Leh scattered light excitation due to light irradiation from the side of the optical fiber. FIG. 5 is a diagram showing an example of a received light waveform. FIG. 6 is a diagram illustrating measurement from the rate of change of the received light level with respect to the fiber length. FIG. 7 is a block diagram of a method and apparatus according to a second embodiment of the present invention, which uses a plurality of lights of different wavelengths. FIG. 8 is a diagram illustrating optical loss wavelength characteristics. FIG. 9 is a diagram showing Raman scattered light excitation due to light irradiation from the side of the optical fiber. FIG. DESCRIPTION OF SYMBOLS 1... Optical fiber, 2... Base material rod, 3... Heating furnace, 4... Resin, 5... Resin curing furnace, 6... Capstan, 7... Winding drum, 11... Excitation fiber, 12... Light source, 13... Signal generator,
15... Photodetector, 16... Receiver, 3I... Light source, 33... Photoelectric converter, 34... Low reconnector, 35... Receiver, 36... Signal analysis device, 37
... Control signal generator, 41... Optical low reconnector, 51... Reception pulse, 71... Duplexer,
72...Multi-channel rotary connector. Hi 3 Figures 1 Child 4 times Child 6th 7th Figure Now wavelength helmet 8 En

Claims (6)

【特許請求の範囲】[Claims] (1)母材ロンドの一端を加熱してこの母材ロンドから
光ファイバを線引し、線引された光ファイバを巻き取る
連続的な光ファイバの製造工程の実行中に行う光ファイ
バの伝送特性測定方法Gこおいて、線引後の光ファイバ
の側方から少なくとも1つの励起光を照射してその光フ
アイバ内に測定光を励起させる方法と、 前記測定光により前記光ファイバに励起されその光ファ
イバを伝搬した光をその光ファイバの巻き取り端で測定
する方法と を含む製造中の光ファイバの伝送特性測定方法。
(1) Optical fiber transmission performed during a continuous optical fiber manufacturing process in which one end of the base metal rond is heated, an optical fiber is drawn from the base metal rond, and the drawn optical fiber is wound. Characteristic measurement method G includes a method of irradiating at least one excitation light from the side of the optical fiber after drawing to excite measurement light into the optical fiber; A method for measuring transmission characteristics of an optical fiber during manufacture, comprising: measuring light propagated through the optical fiber at a wound end of the optical fiber.
(2)測定する方法には、製造中の光ファイバの長さの
増大に伴い、その光ファイバの巻き取り端に現れる光の
量または波形の変化率を観測する方法を含む特許請求の
範囲第(1)項に記載の製造中の光ファイバの伝送特性
測定方法。
(2) The measuring method includes a method of observing the amount of light appearing at the wound end of the optical fiber or the rate of change in the waveform as the length of the optical fiber increases during manufacture. The method for measuring transmission characteristics of an optical fiber under manufacture as described in (1).
(3)励起させる方法には、測定光としてレーり散乱光
を励起させる方法を含む特許請求の範囲第(1)項に記
載の製造中の光ファイバの伝送特性測定方法。
(3) A method for measuring transmission characteristics of an optical fiber under manufacture according to claim (1), wherein the excitation method includes a method of exciting Leh scattered light as the measurement light.
(4)励起させる方法には、波長の異なる複数の光源を
用いて複数の波長の測定光を励起させる方法を含み、 測定する方法には、この波長毎に分光して測定する方法
を含む特許請求の範囲第(3)項に記載の製造中の光フ
ァイバの伝送特性測定方法。
(4) The method of excitation includes a method of exciting measurement light of multiple wavelengths using multiple light sources with different wavelengths, and the method of measurement includes a method of performing spectroscopy for each wavelength. A method for measuring transmission characteristics of an optical fiber during manufacture according to claim (3).
(5)励起させる方法には、高出力の励起用の光源を用
いて波長の異なる数種のストークス線を励起させる方法
を含み、 測定する方法には、このスト−クス線毎に分光して測定
する方法を含む特許請求の範囲第(1)項に記載の製造
中の光ファイバの伝送特性測定方法。
(5) The excitation method includes a method of exciting several types of Stokes lines with different wavelengths using a high-power excitation light source, and the measurement method includes spectroscopy of each Stokes line. A method for measuring transmission characteristics of an optical fiber under manufacture according to claim (1), including a method for measuring.
(6)母材ロンドから線引された後の光ファイバの側方
からその光フアイバ内に測定光を励起させる手段と、 前記母材ロッドから連続的に線引され巻き取られた光フ
アイバ内に前記測定光により励起されこの光フアイバ内
を伝搬してその光ファイバの巻き取り端に現れる光を測
定する手段と を備えた製造中の光ファイバの伝送特性測定装置。
(6) means for exciting measurement light into the optical fiber from the side of the optical fiber after being drawn from the base material rod; and within the optical fiber that has been continuously drawn and wound from the base material rod. and means for measuring light excited by the measurement light, propagating within the optical fiber, and appearing at the wound end of the optical fiber.
JP9517983A 1983-05-30 1983-05-30 Method and apparatus for measuring transmission characteristic of optical fiber during production Pending JPS59220625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9517983A JPS59220625A (en) 1983-05-30 1983-05-30 Method and apparatus for measuring transmission characteristic of optical fiber during production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9517983A JPS59220625A (en) 1983-05-30 1983-05-30 Method and apparatus for measuring transmission characteristic of optical fiber during production

Publications (1)

Publication Number Publication Date
JPS59220625A true JPS59220625A (en) 1984-12-12

Family

ID=14130517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9517983A Pending JPS59220625A (en) 1983-05-30 1983-05-30 Method and apparatus for measuring transmission characteristic of optical fiber during production

Country Status (1)

Country Link
JP (1) JPS59220625A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102645320A (en) * 2012-04-12 2012-08-22 中国科学院西安光学精密机械研究所 Plastic optical fiber transmission loss nondestructive detection method
CN102661850A (en) * 2012-04-12 2012-09-12 中国科学院西安光学精密机械研究所 Non-destructive testing device for transmission loss of plastic optical fibre

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102645320A (en) * 2012-04-12 2012-08-22 中国科学院西安光学精密机械研究所 Plastic optical fiber transmission loss nondestructive detection method
CN102661850A (en) * 2012-04-12 2012-09-12 中国科学院西安光学精密机械研究所 Non-destructive testing device for transmission loss of plastic optical fibre

Similar Documents

Publication Publication Date Title
US3879128A (en) Method and apparatus for measuring the refractive index and diameter of optical fibers
JP3735650B2 (en) Surface inspection device
KR950014852A (en) Apparatus, Systems, and Methods for Real-Time Wafer Temperature Measurement Based on Light Scattering
JPH0364812B2 (en)
EA035577B1 (en) Reflectometric vibration measurement system and relative method for monitoring multiphase flows
KR20150067486A (en) Wavelength-selectable Coating Thickness Measurement Apparatus
JP4853255B2 (en) Gas analyzer
JPS59220625A (en) Method and apparatus for measuring transmission characteristic of optical fiber during production
Bogachkov Improved algorithms for determining the strain of optical fibers using Brillouin reflectometers
JPS59220626A (en) Method and apparatus for measuring transmission characteristic of optical fiber during production
Bogachkov Improved data processing algorithms in Brillouin reflectometers for determining the strain of optical fibers
JP3257197B2 (en) Method and apparatus for evaluating single mode optical fiber characteristics
EP0113453B1 (en) Method of measuring the cut-off wavelength of the first higher order mode in optical fibres
JPS6071936A (en) Method and device for measuring circular double refraction
JPH08338770A (en) Measuring apparatus
US7352450B2 (en) Determination of polarization dependent properties
JPH04134250A (en) Method and device for measuring mixing ratio of object to be measured
KR20160122319A (en) Fiber optic botda sensor using multiple light sources and method for sensing thereof
JP2669883B2 (en) Optical fiber backscattered light measuring device
JPH0549174B2 (en)
JPS6147534A (en) Method and apparatus for measuring light loss characteristic of optical fiber
JPS63113333A (en) Method and apparatus for measuring core eccentricity
CN115825009A (en) Liquid refractive index measuring device based on chaotic Brillouin dynamic grating
JPH0526771A (en) Method and apparatus for evaluating optical line
JP2746488B2 (en) Optical waveguide loss measurement method