JPS59220609A - Clearance measuring method during turbine operation - Google Patents

Clearance measuring method during turbine operation

Info

Publication number
JPS59220609A
JPS59220609A JP9410583A JP9410583A JPS59220609A JP S59220609 A JPS59220609 A JP S59220609A JP 9410583 A JP9410583 A JP 9410583A JP 9410583 A JP9410583 A JP 9410583A JP S59220609 A JPS59220609 A JP S59220609A
Authority
JP
Japan
Prior art keywords
clearance
gas
turbine
temp
turbine rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9410583A
Other languages
Japanese (ja)
Inventor
Yasuo Fujikawa
藤川 泰雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP9410583A priority Critical patent/JPS59220609A/en
Publication of JPS59220609A publication Critical patent/JPS59220609A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/16Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring distance of clearance between spaced objects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To make it possible to measure the clearance between a turbine rotor and a shroud wall surface during operation, by measuring a gas temp. in the vicinity of the shroud wall surface in the downstream side spaced apart from the outlet of the turbine rotor over a predetermined distance. CONSTITUTION:There is a clearance deltaT between the leading end of an axial flow type turbine rotor 6 and the shroud wall surface 7 near to said turbine rotor 6 and a stationary turbine nozzle 8 is provided in the upstream side of the turbine rotor 6. A temp. sensor 9 such as a thermocouple is provided to the shroud wall surface 7 to measure the gas temp. in the vicinity of the shroud wall surface 7. The gas passing the clearance deltaT between the leading end of the turbine rotor 6 and the shroud wall surface 7 is not expanded by a turbine and passed therethrough while the temp. thereof is almost held to an inlet temp. On the other hand, the gas passing the turbine rotor 6 is expanded by the turbine and the temp. of the gas after passing is lowered. The gas temp. after mixing is related to the flow amount G1 of the gas passing through the clearance deltaT. and the gas flow amount G1 is proportional to the size of the clearance deltaT. Therefore, when the gas temp. at the inlet of the turbine is constant, a clearance amount is calculated from the gas temp. after mixing.

Description

【発明の詳細な説明】 この発明は、ガスタービンエンジンのタービン運転中の
クリアランス測定方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring clearance during turbine operation of a gas turbine engine.

回転機械のクリアランスを測定する従来の測定方法して
は、例えば第1図に示すようなガスタービンのコールド
セクションにある圧縮機のインペラと固定壁間のクリア
ランス測定方法がある。
A conventional method for measuring the clearance of a rotating machine is, for example, a method for measuring the clearance between an impeller and a fixed wall of a compressor in the cold section of a gas turbine, as shown in FIG.

すなわち、高速軸1に固定された圧縮機インペラ2と固
定壁6とのクリアランスδCを測定するには、コイルを
内蔵したギャップセンサ4をインペラ出口部の固定壁3
に埋設し、そのギャップセンサ4は、ギャップδCの大
きさに応じてコイルのりアクタンスが変化するので、第
2図に示すように、オシレータおよびディモジュレータ
等からなる検出回路5に接続し、その発振周波数し;応
じた出力電圧■oを記録計等に記録して、第3図に示す
ような■。−δC線図によりクリアランスδCを求めて
いた。
That is, in order to measure the clearance δC between the compressor impeller 2 fixed to the high-speed shaft 1 and the fixed wall 6, the gap sensor 4 with a built-in coil is connected to the fixed wall 3 at the impeller outlet.
Since the coil actance of the gap sensor 4 changes depending on the size of the gap δC, the gap sensor 4 is connected to a detection circuit 5 consisting of an oscillator, a demodulator, etc., as shown in FIG. Record the corresponding output voltage (2) on a recorder, etc., as shown in Figure 3. The clearance δC was determined using the −δC diagram.

しかしながら、このような従来の回転機械のクリアラン
ス測定方法に使用されているギャップセンサ4の耐熱温
度は100℃以下であるのに対し、第1図に示すような
コールドセレクションにある圧縮機の場合でも、ギャッ
プセンサ4を装着したインペラ出口部では、圧力比が高
い場合、例えば圧力比5.0では空気温度がほぼ250
℃となり、図示していないが何等かの冷却装置を必要と
する。
However, while the heat resistance temperature of the gap sensor 4 used in the conventional clearance measurement method for rotating machinery is 100°C or less, even in the case of a compressor in cold selection as shown in Fig. 1. , at the impeller outlet where the gap sensor 4 is installed, when the pressure ratio is high, for example, when the pressure ratio is 5.0, the air temperature is approximately 250°C.
℃, and requires some kind of cooling device (not shown).

したがって、その冷却にもおのずから限界があリ、ター
ビンロータのようなホットセクションには到底使用する
ことはできず、タービン運転中のクリアランス測定はき
わめて困難であった。
Therefore, there is a limit to its cooling, and it cannot be used in a hot section such as a turbine rotor, making it extremely difficult to measure the clearance during turbine operation.

この発明は上記の点に鑑みてなされたもので、高温のタ
ービンロータ先端とこれに近接して設けられたシュラウ
ド壁面との間のクリアランスを、タービン運転中に計測
するクリアランス測定方法を提供することを目的とする
ものである。
The present invention has been made in view of the above points, and an object of the present invention is to provide a clearance measurement method for measuring the clearance between a high-temperature turbine rotor tip and a shroud wall surface provided in close proximity thereto during turbine operation. The purpose is to

そのため、この発明によるタービン運転中のクリアラン
ス測定方法は、軸流タイプのタービンロータの出口から
所定距離下流のシュラウド壁面近傍のガス温度が、ター
ビンロータ先端とシュラウド壁面とのクリアランスの大
きさに関連することに着目し、上記ガス温度を温度セン
サによって計測するようにしたものである。
Therefore, in the method for measuring clearance during turbine operation according to the present invention, the gas temperature near the shroud wall surface a predetermined distance downstream from the outlet of an axial flow type turbine rotor is related to the size of the clearance between the tip of the turbine rotor and the shroud wall surface. Taking this into consideration, the gas temperature is measured by a temperature sensor.

以下、添付図面の第4図乃至第6図を参照してこの発明
の詳細な説明する。
The present invention will now be described in detail with reference to FIGS. 4 to 6 of the accompanying drawings.

軸流タイプのタービンロータSの先端と、こ九し;近接
して設けられたシュラウド壁面7の間にはクリアランス
δTを有し、タービンロータ6の上流側には静止タービ
ンノズル8が設けられている。
There is a clearance δT between the tip of the axial flow type turbine rotor S and the shroud wall surface 7 provided closely, and a stationary turbine nozzle 8 is provided on the upstream side of the turbine rotor 6. There is.

このタービンロータ6の出口部の下流のシュラウド壁面
7に、熱電対等の温度センサ9を設けてシュラウド壁面
7の近傍のガス温度を測定し得るようにし、温度センサ
9のタービンロータ6の出口からの距離を、第5図に示
すようにクリアランスδTを通過したガスAとタービン
ロータ6を通過したガスBとが混合する点までの所定距
離りとする。
A temperature sensor 9 such as a thermocouple is provided on the shroud wall surface 7 downstream of the outlet of the turbine rotor 6 so that the gas temperature near the shroud wall surface 7 can be measured. The distance is a predetermined distance from the point where the gas A that has passed through the clearance δT and the gas B that has passed through the turbine rotor 6 mix, as shown in FIG.

この場合、タービンロータ6の先端とシュラウド壁面7
とのクリアランス6丁を通過するガスはタービンによっ
て膨張することはないので、その温度は入口温度に近い
まま通過するが、タービンロータ6を通過するガスはタ
ービンによって膨張するので、通過後のガスは温度が降
下する。
In this case, the tip of the turbine rotor 6 and the shroud wall surface 7
The gas passing through the clearance 6 between the turbine rotor 6 is not expanded by the turbine, so its temperature remains close to the inlet temperature. However, the gas passing through the turbine rotor 6 is expanded by the turbine, so the gas after passing is The temperature drops.

これらの2つのガスはタービンロータ6の出口を出た後
、所定の助走距離りを経て混合されるが混合後のガスの
温度は次式で表わされる。
After these two gases exit the outlet of the turbine rotor 6, they are mixed after a predetermined run-up distance, and the temperature of the gases after mixing is expressed by the following equation.

但し、Tm1x :混合後のガス温度 G1 :クリアランスを通過するガス流量G2:ロータ
通過後混合に寄与するガス流量T1 :タービン入口の
ガス温度 T2:ロータ出口のガス温度 CPI  :タービン入口のガスの比熱比CP2:ロー
タ出口のガスの比熱比 ここで通常Cp1”+Cpzであるので、上記(1)式
は次のように書き換えることができる。
However, Tm1x: Gas temperature after mixing G1: Gas flow rate passing through the clearance G2: Gas flow rate contributing to mixing after passing through the rotor T1: Gas temperature at the turbine inlet T2: Gas temperature at the rotor outlet CPI: Specific heat of the gas at the turbine inlet Ratio CP2: Specific heat ratio of gas at the rotor outlet Since it is usually Cp1''+Cpz, the above equation (1) can be rewritten as follows.

この(2)式から分かるように、混合後のガス温度はク
リアランスδTを通過するガス流量G1に関係し、また
クリアランスδTを通過するガス流量はクリアランスδ
Tの大きさに比例するので、タービン入口のガス温度が
一定の場合には、混合後のガス温度を計測することによ
りクリアランスの量を求めることができる。
As can be seen from equation (2), the gas temperature after mixing is related to the gas flow rate G1 passing through the clearance δT, and the gas flow rate passing through the clearance δT is related to the gas flow rate G1 passing through the clearance δT.
Since it is proportional to the magnitude of T, if the gas temperature at the turbine inlet is constant, the amount of clearance can be determined by measuring the gas temperature after mixing.

第6図はクリアランスδTと測定点での混合ガス温度T
 mixとの関係を示す線図であり、クリアランスδT
は混合後のガス温度Tm1xに比例することが判る。
Figure 6 shows the clearance δT and the mixed gas temperature T at the measurement point.
It is a diagram showing the relationship between the clearance δT and the mix.
It can be seen that is proportional to the gas temperature Tm1x after mixing.

以上述べたように、この発明によれば、タービンロータ
出口から所定距離下流のシュラウド壁面近傍のガス温度
を計測することにより、タービン運転中のクリアランス
を測定するようにしたので、従来の回転機械のクリアラ
ンス測定に必要とした耐熱温度の低いギャップセンサを
用いる必要がなく、これまで計測が困難であったホット
セクションであるタービンロータとシュラウド壁面との
クリアランスを運転中に容易に計測することができる。
As described above, according to the present invention, the clearance during turbine operation is measured by measuring the gas temperature near the shroud wall a predetermined distance downstream from the turbine rotor outlet. There is no need to use a gap sensor with a low heat resistance that was required for clearance measurement, and the clearance between the turbine rotor and the shroud wall surface, which is a hot section that has been difficult to measure, can be easily measured during operation.

それにより、タービンロータとシュラウド壁面とが接触
してタービンが破損する危険を未然に防止できると共に
、クリアランスを最適値に保つことにより、タービンの
性能を最高の状態に維持し得る優れた効果を有する。
As a result, it is possible to prevent the risk of damage to the turbine due to contact between the turbine rotor and the shroud wall, and by keeping the clearance at an optimal value, it has the excellent effect of maintaining the performance of the turbine at its best. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の回転機械のクリアランス測定装置の一
例を示す説明図、 第2図は、同じくその測定装置を示すブロック図、第3
図は、同しくその測定装置の出力電圧とクリアランスと
の関係を示す線図である。 第4図は、この発明によるタービン運転中のクリアラン
ス測定方法を実施するために温度センサを配設したガス
タービンエンジンのタービンロータ付近の断面図、 第5図は、この発明によるクリアランス測定原理の説明
図、 第6図は、タービンロータ出口から所定距離下流のシュ
ラウド壁面近傍のガス温度とクリアランスとの関係を示
す線図である。 6・・・タービンロータ  7・ シュラウド壁面近傍
例・温度センサ    D・・所定距離第1図 第2図 ら 第4図゛
FIG. 1 is an explanatory diagram showing an example of a conventional clearance measuring device for a rotating machine, FIG. 2 is a block diagram similarly showing the measuring device, and FIG.
The figure is a diagram showing the relationship between the output voltage and clearance of the measuring device. FIG. 4 is a cross-sectional view of the vicinity of the turbine rotor of a gas turbine engine in which a temperature sensor is installed to carry out the method of measuring clearance during turbine operation according to the present invention. FIG. 5 is an explanation of the principle of clearance measurement according to the present invention. FIG. 6 is a diagram showing the relationship between gas temperature and clearance near the shroud wall surface a predetermined distance downstream from the turbine rotor outlet. 6... Turbine rotor 7. Example near shroud wall surface/Temperature sensor D... Predetermined distance Fig. 1 Fig. 2 to Fig. 4

Claims (1)

【特許請求の範囲】[Claims] 1 ガスタービンエンジンの軸流型のタービンにおいて
、タービンロータ出口から所定距離下流のシュラウド壁
面近傍のガス温度を温度センサによって計測することに
より、タービン運転中のタービンロータ先端とこれに近
接して設けられたシュラウド壁面とのクリアランスを測
定するようにしたことを特徴とするタービン運転中のク
リアランス測定方法。
1. In an axial flow turbine of a gas turbine engine, by measuring the gas temperature near the shroud wall surface a predetermined distance downstream from the turbine rotor outlet using a temperature sensor, A method for measuring clearance during turbine operation, characterized in that the clearance between a shroud and a shroud wall is measured.
JP9410583A 1983-05-30 1983-05-30 Clearance measuring method during turbine operation Pending JPS59220609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9410583A JPS59220609A (en) 1983-05-30 1983-05-30 Clearance measuring method during turbine operation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9410583A JPS59220609A (en) 1983-05-30 1983-05-30 Clearance measuring method during turbine operation

Publications (1)

Publication Number Publication Date
JPS59220609A true JPS59220609A (en) 1984-12-12

Family

ID=14101155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9410583A Pending JPS59220609A (en) 1983-05-30 1983-05-30 Clearance measuring method during turbine operation

Country Status (1)

Country Link
JP (1) JPS59220609A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0330492A2 (en) * 1988-02-24 1989-08-30 General Electric Company Active clearance control
US7013718B2 (en) * 2003-04-28 2006-03-21 Watson Cogeneration Company Method for monitoring the performance of a turbine
JP2006292535A (en) * 2005-04-11 2006-10-26 Omron Corp Distance estimating device, abnormality detection device, temperature controller and heat treatment device
CN107576293A (en) * 2017-10-11 2018-01-12 中国航发南方工业有限公司 Cantilever fulcrum glitch detection frock and detection method
US11802257B2 (en) 2022-01-31 2023-10-31 Marathon Petroleum Company Lp Systems and methods for reducing rendered fats pour point
US11860069B2 (en) 2021-02-25 2024-01-02 Marathon Petroleum Company Lp Methods and assemblies for determining and using standardized spectral responses for calibration of spectroscopic analyzers
US11891581B2 (en) 2017-09-29 2024-02-06 Marathon Petroleum Company Lp Tower bottoms coke catching device
US11898109B2 (en) 2021-02-25 2024-02-13 Marathon Petroleum Company Lp Assemblies and methods for enhancing control of hydrotreating and fluid catalytic cracking (FCC) processes using spectroscopic analyzers
US11905468B2 (en) 2021-02-25 2024-02-20 Marathon Petroleum Company Lp Assemblies and methods for enhancing control of fluid catalytic cracking (FCC) processes using spectroscopic analyzers
US11905479B2 (en) 2020-02-19 2024-02-20 Marathon Petroleum Company Lp Low sulfur fuel oil blends for stability enhancement and associated methods
US11970664B2 (en) 2021-10-10 2024-04-30 Marathon Petroleum Company Lp Methods and systems for enhancing processing of hydrocarbons in a fluid catalytic cracking unit using a renewable additive
US11975316B2 (en) 2019-05-09 2024-05-07 Marathon Petroleum Company Lp Methods and reforming systems for re-dispersing platinum on reforming catalyst
US12000720B2 (en) 2018-09-10 2024-06-04 Marathon Petroleum Company Lp Product inventory monitoring
US12031094B2 (en) 2023-06-22 2024-07-09 Marathon Petroleum Company Lp Assemblies and methods for enhancing fluid catalytic cracking (FCC) processes during the FCC process using spectroscopic analyzers

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0330492A2 (en) * 1988-02-24 1989-08-30 General Electric Company Active clearance control
US7013718B2 (en) * 2003-04-28 2006-03-21 Watson Cogeneration Company Method for monitoring the performance of a turbine
JP2006292535A (en) * 2005-04-11 2006-10-26 Omron Corp Distance estimating device, abnormality detection device, temperature controller and heat treatment device
US11891581B2 (en) 2017-09-29 2024-02-06 Marathon Petroleum Company Lp Tower bottoms coke catching device
CN107576293B (en) * 2017-10-11 2020-02-07 中国航发南方工业有限公司 Cantilever fulcrum bounce detection tool and detection method
CN107576293A (en) * 2017-10-11 2018-01-12 中国航发南方工业有限公司 Cantilever fulcrum glitch detection frock and detection method
US12000720B2 (en) 2018-09-10 2024-06-04 Marathon Petroleum Company Lp Product inventory monitoring
US11975316B2 (en) 2019-05-09 2024-05-07 Marathon Petroleum Company Lp Methods and reforming systems for re-dispersing platinum on reforming catalyst
US11905479B2 (en) 2020-02-19 2024-02-20 Marathon Petroleum Company Lp Low sulfur fuel oil blends for stability enhancement and associated methods
US11920096B2 (en) 2020-02-19 2024-03-05 Marathon Petroleum Company Lp Low sulfur fuel oil blends for paraffinic resid stability and associated methods
US12031676B2 (en) 2020-03-24 2024-07-09 Marathon Petroleum Company Lp Insulation securement system and associated methods
US11860069B2 (en) 2021-02-25 2024-01-02 Marathon Petroleum Company Lp Methods and assemblies for determining and using standardized spectral responses for calibration of spectroscopic analyzers
US11885739B2 (en) 2021-02-25 2024-01-30 Marathon Petroleum Company Lp Methods and assemblies for determining and using standardized spectral responses for calibration of spectroscopic analyzers
US11898109B2 (en) 2021-02-25 2024-02-13 Marathon Petroleum Company Lp Assemblies and methods for enhancing control of hydrotreating and fluid catalytic cracking (FCC) processes using spectroscopic analyzers
US11905468B2 (en) 2021-02-25 2024-02-20 Marathon Petroleum Company Lp Assemblies and methods for enhancing control of fluid catalytic cracking (FCC) processes using spectroscopic analyzers
US11906423B2 (en) 2021-02-25 2024-02-20 Marathon Petroleum Company Lp Methods, assemblies, and controllers for determining and using standardized spectral responses for calibration of spectroscopic analyzers
US11921035B2 (en) 2021-02-25 2024-03-05 Marathon Petroleum Company Lp Methods and assemblies for determining and using standardized spectral responses for calibration of spectroscopic analyzers
US11970664B2 (en) 2021-10-10 2024-04-30 Marathon Petroleum Company Lp Methods and systems for enhancing processing of hydrocarbons in a fluid catalytic cracking unit using a renewable additive
US11802257B2 (en) 2022-01-31 2023-10-31 Marathon Petroleum Company Lp Systems and methods for reducing rendered fats pour point
US12031094B2 (en) 2023-06-22 2024-07-09 Marathon Petroleum Company Lp Assemblies and methods for enhancing fluid catalytic cracking (FCC) processes during the FCC process using spectroscopic analyzers

Similar Documents

Publication Publication Date Title
JPS59220609A (en) Clearance measuring method during turbine operation
Gazley Jr Heat-transfer characteristics of the rotational and axial flow between concentric cylinders
US4060979A (en) Stall warning detector for gas turbine engine
Waschka et al. Influence of high rotational speeds on the heat transfer and discharge coefficients in labyrinth seals
JPS61144540A (en) Temperature probe
US9476690B2 (en) Method for controlling the clearance at the tips of blades of a turbine rotor
Romagnoli et al. Comparison between the steady performance of double-entry and twin-entry turbocharger turbines
JPS6348006B2 (en)
Amro et al. An experimental investigation of the heat transfer in a ribbed triangular cooling channel
JPS58135916A (en) Thermal flow meter for internal combustion engine
Geis et al. Cooling air temperature reduction in a direct transfer preswirl system
JP2018072327A (en) Exhaust gas temperature sensing probe assembly
Dring et al. Measurement of turbine rotor blade flows
Owen et al. Convective heat transfer in a rotating cylindrical cavity
Waschka et al. Influence of high rotational speeds on the heat transfer and discharge coefficients in labyrinth seals
Nasir et al. Effect of tip and pressure side coolant injection on heat transfer distributions for a plane and recessed tip
JPH01176922A (en) Exhaust gas temperature detecting device for gas turbine
GB1327104A (en) Probe for diagnosing high temperature gases
JP4527257B2 (en) Method for estimating turbine inlet temperature of gas turbine engine
Eynon et al. A study of the flow characteristics in the inducer bleed slot of a centrifugal compressor
US2691890A (en) High-temperature elastic fluid temperature measuring system
US3597974A (en) Fluidic temperature sensor for gas turbine engines
Rohlik et al. Recent radial turbine research at the NASA Lewis research center
JPS5984115A (en) Device for measuring flow rate
Dielenschneider et al. Some guidelines for the experimental characterization of turbocharger compressors