JPS59220291A - Production of titanium-clad steel plate - Google Patents
Production of titanium-clad steel plateInfo
- Publication number
- JPS59220291A JPS59220291A JP9679683A JP9679683A JPS59220291A JP S59220291 A JPS59220291 A JP S59220291A JP 9679683 A JP9679683 A JP 9679683A JP 9679683 A JP9679683 A JP 9679683A JP S59220291 A JPS59220291 A JP S59220291A
- Authority
- JP
- Japan
- Prior art keywords
- rolling
- plate
- clad steel
- titanium
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K20/00—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
- B23K20/22—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded
- B23K20/227—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded with ferrous layer
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Pressure Welding/Diffusion-Bonding (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は圧延法によるチタンクラッド鋼板の製造法に関
するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a titanium clad steel plate by a rolling method.
チタンクラッド鋼板を圧焼法によって製造するとき、根
皮pが問題となる。すなわち、チタン板と母材鋼板を各
々1枚重ね合せて圧延すると、圧延温度が約600℃以
上では組立板はチタン板側の伸ひが大きく鋼板側へ反シ
、約300℃以下ではその逆方向に反シ、場合によって
は圧延継続が困難となる。このため第3図に示すように
、チタン板2を中央にして等厚の炭素鋼板1によって挾
み込む方法が考えられるが、第3図に示す如く中央のチ
タン板2間で圧延後に分Ntするために分離剤 を塗布
しておかなければならない。この分離剤としてはアルミ
ナ粉またはシリケート粉を有機バインダーを用いて塗布
することが考えられるか、圧延前の加熱によって¥3機
バインダーか炭素を含有するガスを発生し、これが接九
−シようとするチタン板面に付着し、接着面の性能を悪
化させている。また同時に分離剤が圧延前および繰シ返
し圧延中に接着しようとする空隙に進入し接篇をさ葦た
けている。さらに圧延を完了し、室温において端部を切
捨て、画板を分離面で分離すると、熱間圧延したクラツ
ド鋼板は鋼板側へ反り、冷間圧延したクラツド鋼板はチ
タン板側へ反9、この壕1製品とすることは難かしい。When manufacturing titanium clad steel sheets by the pressing method, root bark p becomes a problem. In other words, when a titanium plate and a base steel plate are stacked one on top of the other and rolled, when the rolling temperature is about 600°C or higher, the titanium plate side of the assembled plate will elongate greatly and reverse to the steel plate side, and if the rolling temperature is below about 300°C, the opposite will occur. In some cases, it becomes difficult to continue rolling. For this reason, as shown in Fig. 3, a method can be considered in which the titanium plate 2 is sandwiched between carbon steel plates 1 of equal thickness with the titanium plate 2 in the center. A separating agent must be applied to prevent this. As this separating agent, it is possible to apply alumina powder or silicate powder with an organic binder, or by heating before rolling, a binder or carbon-containing gas is generated, and this is likely to cause contact. It adheres to the surface of the titanium plate and deteriorates the performance of the adhesive surface. At the same time, the separating agent enters the voids where bonding is to be made before rolling and during repeated rolling to prevent welding. Further, when rolling is completed, the edges are cut off at room temperature, and the drawing plates are separated at the separation plane, the hot-rolled clad steel plate warps toward the steel plate, and the cold-rolled clad steel plate warps toward the titanium plate by 9 degrees and this trench 1. It is difficult to turn it into a product.
本発明は、接着性能が優れ、かつ反シのないチタンクラ
ッド鋼板の製造法を提供することを目的とする。An object of the present invention is to provide a method for manufacturing a titanium clad steel plate that has excellent adhesive performance and is free from cracks.
本発明の要旨とするところは下記のとおりである。The gist of the present invention is as follows.
(1)接尾−面と分離面を予定するチタンクラッド鋼素
材組立板の分離予冗面の一方あるいは両方に。(1) One or both of the separation redundant surfaces of the titanium clad steel material assembly plate that is intended to have a suffix surface and a separation surface.
合計40μ以上の酸化スケール層を形成せしめておき、
このチタンクラッド鋼素材組立板の圧延前の加熱温度を
400℃以上750℃以下とすること、圧延仕上温度を
300℃以上600℃以下とすること、および25%以
上の圧下率で少なくとも2回圧延することを%徴とする
チタンクラッド鋼板の製造法。Form an oxide scale layer with a total thickness of 40μ or more,
The heating temperature of this titanium clad steel material assembled plate before rolling shall be 400°C or more and 750°C or less, the finishing temperature of rolling shall be 300°C or more and 600°C or less, and rolling at least twice at a rolling reduction of 25% or more. A manufacturing method for titanium clad steel sheets that is characterized by
(2)接着面と分離面を予定するチタンクラッド鋼素材
組立板の分離予定面の一方あるいは両方に合計40μ以
上の酸化−スケール層を形成せしめておき、このチタン
クラッド鋼素材組立板の圧延前の加熱温度を400℃以
上750℃以下とすること、圧延仕上温度を300℃以
上゛600℃以下とすること、および25チ以上の圧下
率で少なくとも2回圧延すること、かくして圧延された
チタンクラッド鋼素材組立板を550℃以上750℃以
下の温度で熱処理したのち、該組立板の端部を切落し、
分離予定面において分離することを特徴とするチタンク
ラッド鋼板の製造法。(2) Form an oxide-scale layer of 40μ or more in total on one or both of the separation surfaces of the titanium clad steel material assembled plate, which are intended to be the adhesive surface and the separation surface, and before rolling this titanium clad steel material assembled plate. The heating temperature is 400°C or more and 750°C or less, the finishing temperature of rolling is 300°C or more and 600°C or less, and the rolled titanium cladding is rolled at least twice at a rolling reduction of 25 inches or more. After heat-treating the steel material assembly plate at a temperature of 550°C or more and 750°C or less, cutting off the end of the assembly plate,
A method for producing a titanium clad steel sheet, which is characterized by separating on a planned separation plane.
(3) 接%面と分離面を予定するチタンクラッド@
素材組立板の分離予定面の一方あるいは両方に合計40
μ以上の酸化スケール層を形成せしめておき、このチタ
ンクラ、ド鋼素拐組立板の圧延前の加熱温度を400℃
以上750℃以下とすること、圧延仕上温度を300℃
以上600℃以下とすること、および25チ以上の圧下
率で少ムくとも2回圧延すること、かくして圧延さfし
たチタンクラッド鋼素材組立板を550℃以上750℃
以下の温度で熱処理したのち、該組立板の端部を切落し
、分離予定面において分離して得られたチタンクラッド
鋼板を400℃以下の温度で20%以下の圧下率で圧延
を行なうことを特徴とするチタンクラッド鋼板の製造法
。(3) Titanium cladding for contact and separation surfaces @
A total of 40 on one or both of the surfaces to be separated on the material assembly board.
An oxide scale layer of μ or more is formed, and the heating temperature of the titanium cracked steel plate is set to 400°C before rolling.
Above 750℃ or less, rolling finishing temperature 300℃
above and below 600°C, and rolling at least twice at a reduction rate of 25 inches or above, and the thus rolled titanium clad steel material assembled plate is heated at above 550°C and 750°C.
After heat treatment at the following temperature, the ends of the assembled plates are cut off and the titanium clad steel plates obtained by separating at the separation plane are rolled at a temperature of 400°C or less and a rolling reduction of 20% or less. Characteristic manufacturing method for titanium clad steel sheets.
本発明の詳細な説明する。The present invention will be described in detail.
第1図〜第3図は本発明の出発素材であるチタンクラッ
ド鋼素拐組立板の実施帖緑を示すもので、図において1
は母材鋼板、2はチタン板、3は接着面、4は微小孔、
5は捨材、6il継拐、7は分離面である。図に示すよ
うに接着面3と分離面7を手足するチタンクラッド鋼素
材組立板において、相接する分離予定面の片方あるいは
両方に合計40 /1以上の酸化スケール層を形成せし
めておくこと、圧IA前の加熱温度を・400℃以上7
50℃以下とすること、出処仕上温度′fc300℃以
上600℃以下とすることおよび25%以上の圧下率で
少なくとも2回圧延することを%徴とする。Figures 1 to 3 show a working sheet of a titanium clad steel fabric assembly plate, which is the starting material of the present invention.
is the base steel plate, 2 is the titanium plate, 3 is the adhesive surface, 4 is the microhole,
5 is the waste material, 6il is the scrap material, and 7 is the separation surface. As shown in the figure, in a titanium clad steel material assembly plate having an adhesion surface 3 and a separation surface 7, an oxide scale layer with a total ratio of 40/1 or more is formed on one or both of the adjoining separation surfaces, Heating temperature before pressure IA: 400℃ or higher7
The temperature is 50°C or less, the starting and finishing temperature 'fc is 300°C or more and 600°C or less, and rolling is performed at least twice at a rolling reduction of 25% or more.
分離面の一方が鋼板であるとき、この酸化スケールはA
f」工程の熱間圧延によって生成したスケールで拭く、
分離面の一方〃・チタン板であるときは750℃以下5
00℃以上で生うる接着性の良い緻密なスク°〜ルが好
ましい。When one of the separation surfaces is a steel plate, this oxide scale is A
wiping with the scale generated by hot rolling in step ``f'';
One side of the separation surface: 750℃ or less if it is a titanium plate 5
A dense screen with good adhesiveness that can grow at temperatures above 00°C is preferred.
酸化スケールの厚さは画板を分離するには合計40 t
t以上あれは良いが、200μ以上の厚さのスクールは
スケールが脱落しやすくなシ、好ましくない。鉄あるい
はチタンの酸化スケールは前述のアルミナ粉やシリケー
ト粉の様にイ■儀バイングーで塗布する必要はなく、そ
れ自体へ分離予定面に強固に付着しているのでOiJ記
問題は生じない。The total thickness of the oxide scale is 40 t to separate the drawing plates.
A thickness of t or more is good, but a school with a thickness of 200μ or more is undesirable because the scale tends to fall off. Iron or titanium oxide scale does not need to be coated with an ink coating like the alumina powder or silicate powder mentioned above, and since it is firmly attached to the surface to be separated, the problem does not occur.
また鉄やチタンの酸化スケールが接着手足間隙へ侵入し
た場合にはこれらが圧延によって粉砕され、無害となり
、均一に分布ずれは鋼板からチタン板への鉄と炭素の拡
散を防ぐ役目を果すことになる。In addition, if iron or titanium oxide scale enters the gap between the bonded limbs, it will be crushed by rolling and become harmless, and the uniform distribution will serve to prevent the diffusion of iron and carbon from the steel plate to the titanium plate. Become.
加熱の上限温度750℃は鋼あるいは接着部からチタン
側への鉄および炭素の拡散が認められない限界であり、
下限温度400℃は圧延仕上温度300℃を得ることに
よる限界である。300℃禾満の圧延仕上温度では一般
の熱同圧延ロールによる圧延の場合ロールを疵つけ好ま
しくない。最も需袋の予想されるチタンクラッド鋼板(
チタン板力JI8H4600,1111+、 鋼&カJ
ISG 3103・2裡ムいし6f!Iiのチタンクラ
ッド鋼板)では、圧延仕上温度が300℃以上600℃
以下で変形抵抗がほぼ等しく19、圧延反f)を生じに
くくなることから圧延仕上温度として最適である。The upper limit heating temperature of 750°C is the limit at which diffusion of iron and carbon from the steel or bonded part to the titanium side is not observed.
The lower limit temperature of 400°C is the limit obtained by obtaining a finishing rolling temperature of 300°C. A finishing rolling temperature of 300° C. is not preferable because rolling with a general hot-rolling roll causes scratches on the roll. Titanium clad steel sheet, which is expected to have the highest demand (
Titanium plate strength JI8H4600, 1111+, Steel & Ka J
ISG 3103 2nd arm 6f! For titanium clad steel sheets (Ii), the rolling finishing temperature is 300°C or higher and 600°C.
Below, the deformation resistance is almost equal to 19, and rolling deformation (f) is less likely to occur, so this is the optimum rolling finishing temperature.
ここで25%以上の圧下率で少なくとも2回圧延するの
は接湘を完全ならしめるためであシ、最初の圧延では接
着は不十分であるが、未接着面が活性化されており、次
の25%以上の大きな圧下で圧着されるからである。The purpose of rolling at least twice at a reduction rate of 25% or more is to ensure complete adhesion.Although the adhesion is insufficient in the first rolling, the unbonded surface is activated, and the next This is because the bonding is carried out under a large pressure of 25% or more.
圧延完了した組立板は見掛正反シがなくても、端部を切
捨てチタンクラッド鋼板として取シ出すと、残留応力が
解放されて反シを生するのが普通である。これを防止す
るためには550℃以上750℃以下の温度で応力除去
焼鈍を行なったのち組立板の端部を切落し、分離予定面
で分離することが望ましい。しかしながらこの場合にも
冷却過程において鋼板(111+とチタン板側の熱収縮
負が異なυ、再び微小な反シを生ずることになる。この
時の反りの方向は熱膨張−係数の大きい端側である。Even if the rolled assembled plate does not have an apparent straight warp, when the ends are cut off and the plate is taken out as a titanium clad steel sheet, the residual stress is released and the warp usually occurs. In order to prevent this, it is desirable to perform stress relief annealing at a temperature of 550° C. or higher and 750° C. or lower, then cut off the ends of the assembled plates and separate them at the intended separation plane. However, in this case as well, due to the different negative thermal contraction υ of the steel plate (111+) and the titanium plate during the cooling process, a small warpage will occur again.The direction of warpage at this time is on the end side with a larger coefficient of thermal expansion. be.
これを矯正するには400℃以下の温度で圧延すれは良
く、この温度範囲で変形抵抗がチタンより小さい端側か
伸ひ、反りが解消されるとともに、板厚精度が向上でき
る。この時の圧下率は20%以下で十分である。このあ
とさらに冷間圧延奮進め、あるいは再ひ550℃以上7
50℃以下で焼鈍したのち温間圧延あるいは冷間圧延を
続けることができる。To correct this, it is possible to roll the material at a temperature of 400° C. or lower, and within this temperature range, the edge side has a lower deformation resistance than titanium, and the warpage is eliminated and the thickness accuracy can be improved. At this time, a rolling reduction ratio of 20% or less is sufficient. After this, further cold rolling is carried out, or re-rolling is carried out at 550℃ or more.7
After annealing at 50° C. or lower, warm rolling or cold rolling can be continued.
本発明を実施例について説明する。The present invention will be described with reference to examples.
表1はチタン板の化学成分を示し、JIS )I460
01種相当品である。表2Vi母材鋼板と捨材鋼板の化
学成分を示し、JIS G 31032種相当品である
。Table 1 shows the chemical composition of titanium plate, JIS) I460
This product is equivalent to type 01. Table 2Vi shows the chemical composition of base material steel plate and waste steel plate, and is equivalent to JIS G 31032 type.
表3は実験条件と圧延後の接層判定結果である。Table 3 shows the experimental conditions and the contact evaluation results after rolling.
接着の判定基準はJfS G 0601 およびG 3
603に従い、せん断強さ14 kgi/rnm2以上
を良とした。板組合わせは第2図の例を示したが、第1
図、第3図の場合についても試験結果は同じであった。Adhesion criteria are JfS G 0601 and G 3
603, a shear strength of 14 kgi/rnm2 or more was considered good. The example of plate combination shown in Figure 2 is shown in Figure 1.
The test results were the same for the cases shown in Figures 3 and 3.
試験時の組立板の寸法は厚さ28.51+Im 、幅1
00關、長さ200111111であシ、所定温度に加
熱後/辷たちに圧延し、1パス目の圧下率r+1J15
%、25チ、50%のいずれかである。このあと空冷す
るかあるいはただちに2パス目の圧下率r2k15%。The dimensions of the assembled board during the test were thickness 28.51+Im, width 1
00 mm, length 200111111, after heating to specified temperature/rolling, first pass rolling reduction r+1J15
%, 25%, or 50%. After this, either air cool or immediately apply the second pass rolling reduction r2k15%.
25%、50チのいづれかを加えたのち空冷した。After adding either 25% or 50 g, it was air cooled.
表3は川下率が25%の場合で加熱温度が750℃の場
合について示した。反υは室温まで冷却後端部を切断除
去し、クラツド板の長さ100111mに対する反シ量
を配で表示した。反シは圧延仕上温度か600℃以下の
場合に小さくなっている。また冷延により反りは小さく
なっているが、これは反シが小さくなった時点で圧延を
中止したためである。2パス圧延後には例19例32例
4が接着良であり、これらは鋼板のチタン面との合わせ
面の脱炭層深さが20μ以上でかつ酸化スケールの厚さ
が10μ以下、あるいはチタン面の鋼板との合わせ面の
酸化スケールの厚さが10 /J以下、あるいは両合わ
せ面の酸化スケールの合計厚さが10μ以下の場合であ
る。Table 3 shows the case where the downstream rate was 25% and the heating temperature was 750°C. After cooling to room temperature, the end portion was cut off and removed, and the amount of shear for the length of the clad plate, 100111 m, was expressed as a scale. The cracking becomes smaller when the finishing temperature of rolling is 600°C or lower. Also, the warpage was reduced by cold rolling, but this was because rolling was stopped when the warp became small. After two-pass rolling, Examples 19, 32, and 4 had good adhesion, and these had a decarburized layer depth of 20μ or more on the mating surface with the titanium surface of the steel plate and a thickness of oxide scale of 10μ or less, or This is the case when the thickness of the oxide scale on the mating surface with the steel plate is 10 /J or less, or the total thickness of the oxide scale on both mating surfaces is 10 μ or less.
なおチタン板の酸化スケール厚さは両面とも同じであシ
、チタン板と接する捨材鋼板スケール厚さはいづれも約
40 pで、圧延後に端部を切捨てることによって捨板
を容易に分離でき、た。なお表3の例はJIS G 3
1032 aを母材として用いた場合であるが、JIS
G 3柚〜6種についても傾向は同じである。Note that the oxide scale thickness of the titanium plate is the same on both sides, and the scale thickness of the waste steel plate in contact with the titanium plate is about 40 p, and the waste plate can be easily separated by cutting off the ends after rolling. ,Ta. The example in Table 3 is JIS G 3
This is the case when 1032a is used as the base material, but according to JIS
The tendency is the same for G 3 to 6 types.
本発明の適用材料はJIS G 3603 (198
0ン9表2に適用材料として示しである合わせ材および
母材相当品を含むものである。The applicable material of the present invention is JIS G 3603 (198
This includes the laminated materials and base material equivalents shown as applicable materials in Table 2.
以上述べた如く本発明によれは接尾性能が優れ、かつ反
シのない優れたチタンクラッド鋼板を得ることができる
ので、産業上稗益するところが極めて大である。As described above, the present invention can provide an excellent titanium clad steel plate with excellent adhesion performance and no cracks, and therefore has great industrial benefits.
(JIS H46001種 相当品) (JIS G 31032種 相当品)(JIS H46001 class equivalent product) (JIS G 31032 type equivalent product)
第1図〜第3図はいずれも本発明を実施する際のチタン
クララP鋼素材組立板の縦断面図である。
1・・・母材銅板、2・・・チタン板、3・・・接方4
面、4・・・微小孔、5・・・捨材、6・・・継拐、7
・・・分離面。
拠 / 図
芹 2 目
範 3 目1 to 3 are longitudinal cross-sectional views of a titanium Clara P steel material assembled plate when carrying out the present invention. 1...Base material copper plate, 2...Titanium plate, 3...Tangulation 4
Surface, 4... Microhole, 5... Waste material, 6... Succession, 7
... Separation surface. Basis/Illustration 2 Criteria 3
Claims (3)
材組立板の分離予定面の一方あるいは両方に合計40μ
以上の酸化スケール層全形成せしめておき、このチタン
クラッド鋼素材組立板の圧延前の加熱温度を400℃以
上750℃以下とすること、圧延仕上温度を300℃以
上600℃以下とすること、および25%以上の圧下率
で少なくとも2回圧延することを特徴とするチタンクラ
ッド鋼板の製造法。(1) A total of 40μ on one or both of the surfaces to be separated of the titanium clad steel material assembly plate, which are intended to be the bonding surface and the separation surface.
The above oxide scale layer is completely formed, and the heating temperature before rolling of this titanium clad steel material assembled plate is set at 400°C or more and 750°C or less, and the rolling finishing temperature is set at 300°C or more and 600°C or less, and A method for producing a titanium clad steel sheet, comprising rolling at least twice at a rolling reduction of 25% or more.
鋼素材組立板の分離予定面の一方あるいは両方に合計4
0μ以上の酸化スクール層を・形成せしめておき、この
チタンクラッド鋼素材組立板の圧延前の加熱温[−14
00℃以上750℃以下とするとと、圧延仕上温度を3
00℃以上600℃以下とすること、および25%以上
の圧下率で少なくとも2回圧延すること、かくして圧延
されたチタンクラッド鋼素材組立板を550℃以上75
0℃以下の温度で熱処理したのち、該組立板の端部を切
落し、分離予定面において分離することを%徴とするチ
タンクラッド鋼板の製造法。(2) Bonding thread...a total of 4 on one or both of the separation planned surfaces of the titanium clad steel material assembly plate that is planned to be the separation surface with i.
An oxidized school layer of 0μ or more is formed, and the heating temperature [-14
If the temperature is 00°C or more and 750°C or less, the finishing temperature of rolling is 3
00°C or more and 600°C or less, and rolling at least twice at a reduction rate of 25% or more, and the thus rolled titanium clad steel material assembled plate is heated to a temperature of 550°C or more and 75%.
A method for producing a titanium clad steel plate, which comprises heat treating at a temperature of 0° C. or lower, cutting off the ends of the assembled plate, and separating the plate at the intended separation plane.
組立板の分離予定面の一方あるいは両方に合計40μ以
上の酸化スケールrt!iヲ形成せしめておき、このチ
タンクラッド鋼素材組立板の圧延前の加熱温度金400
℃以上750℃以下とすること、圧延仕上温度を300
℃以上600℃以下とすること、および2596以上の
圧下率で少なくとも2回圧延すること、かくして圧延さ
れたチタンクラッド鋼素材組立板を550℃以上750
℃以1の温度で熱処理したのち、該組立板の端部を切落
し、分離予定面において分離して得られたチタンクラツ
ド鋼板を400℃以下の温度で20%以下の圧下率で圧
延全行なうことを特徴とするチタンクラッド鋼板の製造
法。(3) Oxidation scale rt with a total of 40 μ or more on one or both of the surfaces to be separated of the titanium clad steel material assembly plate that are intended to be the bonding surface and the separation surface! The heating temperature of this titanium clad steel material assembled plate before rolling is 400℃.
℃ or more and 750℃ or less, and the rolling finishing temperature is 300℃.
℃ or more and 600℃ or less, and rolling at least twice at a rolling reduction of 2596 or more, and the thus rolled titanium clad steel material assembled plate is heated to a temperature of 550℃ or more and 750℃ or more.
After heat treatment at a temperature of 1°C or lower, the ends of the assembled plates are cut off, and the titanium clad steel plates obtained by separating on the separation plane are fully rolled at a temperature of 400°C or lower with a reduction rate of 20% or less. A method for manufacturing titanium clad steel sheets characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9679683A JPS59220291A (en) | 1983-05-31 | 1983-05-31 | Production of titanium-clad steel plate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9679683A JPS59220291A (en) | 1983-05-31 | 1983-05-31 | Production of titanium-clad steel plate |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59220291A true JPS59220291A (en) | 1984-12-11 |
Family
ID=14174586
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9679683A Pending JPS59220291A (en) | 1983-05-31 | 1983-05-31 | Production of titanium-clad steel plate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59220291A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04266490A (en) * | 1991-02-21 | 1992-09-22 | Nippon Stainless Steel Co Ltd | Production of cu/stainless steel clad material |
-
1983
- 1983-05-31 JP JP9679683A patent/JPS59220291A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04266490A (en) * | 1991-02-21 | 1992-09-22 | Nippon Stainless Steel Co Ltd | Production of cu/stainless steel clad material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4202709A (en) | Method for manufacturing aluminum or aluminum alloy clad steel sheet or strip | |
JP4256018B2 (en) | Aluminum / stainless steel clad material and manufacturing method thereof | |
JP2525055B2 (en) | Composite material and manufacturing method thereof | |
EP1365910B1 (en) | Method of manufacturing metallic composite material | |
US3068564A (en) | Method of producing laminated metal strip | |
JP3742340B2 (en) | Method for producing aluminum composite material | |
JPS59220291A (en) | Production of titanium-clad steel plate | |
JP3168930B2 (en) | Method for producing copper-stainless steel clad plate | |
KR20210030640A (en) | Rolling method of titanium sheet | |
JPS6142498A (en) | Production of aluminum-stainless steel clad plate for forming | |
US3019513A (en) | Method of manufacture | |
JP2663736B2 (en) | Manufacturing method of extra thick steel plate | |
JP2724515B2 (en) | Manufacturing method of titanium clad steel sheet with excellent bonding strength | |
JP3168836B2 (en) | Manufacturing method of stainless steel and aluminum clad material | |
JPS63140782A (en) | Production of multi-layered clad plate | |
US4936504A (en) | Process for producing a clad plate | |
JPS58179582A (en) | Production of aluminum coated steel plate | |
JPH01266981A (en) | Manufacture of composite material consisting of aluminum or aluminum alloy and stainless steel | |
JPH0347604A (en) | Production of alpha type titanium alloy sheet | |
JPS6376706A (en) | Production of thin sheet made of alpha+beta type alloy titanium | |
JPS5935664A (en) | Production of hot-rolled alpha+beta type titanium alloy sheet having excellent suitability to cold rolling | |
AU2002242712B2 (en) | Method of manufacturing metallic composite material | |
JPS5887274A (en) | Production of ceramic coated steel plate | |
JPH03204185A (en) | Manufacture of aluminum clad steel plate | |
JP3075823B2 (en) | Manufacturing method of aluminum laminated steel sheet |