JPS5921964B2 - electrified fiber - Google Patents

electrified fiber

Info

Publication number
JPS5921964B2
JPS5921964B2 JP52042428A JP4242877A JPS5921964B2 JP S5921964 B2 JPS5921964 B2 JP S5921964B2 JP 52042428 A JP52042428 A JP 52042428A JP 4242877 A JP4242877 A JP 4242877A JP S5921964 B2 JPS5921964 B2 JP S5921964B2
Authority
JP
Japan
Prior art keywords
core
fiber
electret
sheath
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52042428A
Other languages
Japanese (ja)
Other versions
JPS53130320A (en
Inventor
信司 「まん」代
正男 梶巻
義博 中島
二郎 下「村」
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Duskin Franchise Co Ltd
Original Assignee
Duskin Franchise Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Duskin Franchise Co Ltd filed Critical Duskin Franchise Co Ltd
Priority to JP52042428A priority Critical patent/JPS5921964B2/en
Publication of JPS53130320A publication Critical patent/JPS53130320A/en
Publication of JPS5921964B2 publication Critical patent/JPS5921964B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は芯に鞘を被覆した繊維、即ち、芯鞘型複合糸を
コロナ放電法によりエレクトレット化したエレクトレッ
ト化繊維に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electret fiber obtained by converting a core-sheath-covered fiber, that is, a core-sheath type composite yarn, into an electret by a corona discharge method.

単一の繊維を接地電極に接触させて上方の針状電極から
コロナ放電しても、普通単一の繊維は折れ曲がっている
ために接地電極との接触部位が極めて少なく、その結果
接地電極からの補償電荷の注入生成が少ない。
Even if a single fiber is brought into contact with a ground electrode and a corona is discharged from the needle-like electrode above, the single fiber is usually bent, so there are very few contact points with the ground electrode, and as a result, the amount of energy from the ground electrode is small. Less injection and generation of compensation charge.

例えば、針状電極近辺の空気分子がコロナ放電によりイ
オン化し、電子が接地電極上の繊維表面に衝突して注入
される。
For example, air molecules near the needle electrode are ionized by corona discharge, and electrons are injected by colliding with the fiber surface on the ground electrode.

この注入電荷は繊維にとって過剰な電荷であるから、電
荷補償の原理(物体が電気的に中和化しようとする性質
)によって繊維裏面が正に帯電しなければならない。
Since this injected charge is an excess charge for the fiber, the back surface of the fiber must be positively charged due to the principle of charge compensation (the property of objects to try to neutralize electrically).

この正電荷は繊維裏面から接地電極を介して電子が逃げ
去ることによって生成されるが、現実には上述したよう
に接地電極との接触が不十分なため、補償電荷が十分に
生成しない。
This positive charge is generated by electrons escaping from the back surface of the fiber via the ground electrode, but in reality, as mentioned above, there is insufficient contact with the ground electrode, so a sufficient compensation charge is not generated.

そのために繊維がコロナ放電による注入電荷により次第
に負に帯電しはじめ、注入電子を反発して電荷注入が阻
害され、十分なエレクトレット化が達成できないという
欠点があった。
For this reason, the fibers gradually begin to become negatively charged due to the charge injected by corona discharge, repelling the injected electrons and inhibiting charge injection, resulting in a drawback that sufficient electretization cannot be achieved.

同時に、このようにして得られたエレクトレット化繊維
は単一繊維の上下両面に正負電荷が分極して形成されて
いるから、これらの電荷が繊維の円周面上に沿って吸引
し合い、時間経過とともに中和し易いという欠点があっ
た。
At the same time, since the electret fiber obtained in this way is formed by polarizing positive and negative charges on both the upper and lower surfaces of a single fiber, these charges attract each other along the circumferential surface of the fiber, and over time It has the disadvantage of being easily neutralized over time.

つまり、正負電荷は繊維内部を貫通して中和することは
有り得ないが、繊維の外周表面での再結合が生じ、エレ
クトレット電荷の減衰が起り易かった訳である。
In other words, although it is impossible for positive and negative charges to penetrate inside the fiber and be neutralized, recombination occurs on the outer circumferential surface of the fiber, and attenuation of the electret charge is likely to occur.

本発明者等は表面電荷量が多く、しかも荷電寿命の長い
繊維を得ようとして種々研究した結果、電気比抵抗を1
0−3〜1011Ωぼに調整した電気良導体、又は半導
体の物質を芯とし、これに電気絶縁性の高い、比抵抗が
1014Ωα以上、好ましくは1016Ωぼ以上の物質
、例えば無極性の高分子化合物の鞘を密接して被覆し、
コロナ放電法など適当なエレクトレット化方法でエレク
トレット化して、本発明のエレクトレット化繊維、換言
すれば繊維状エレクトレットを得たのである。
The present inventors conducted various research in an attempt to obtain fibers with a large amount of surface charge and a long charge life, and as a result, the electrical resistivity was reduced to 1
The core is a good electrical conductor or semiconductor material adjusted to 0-3 to 1011 Ω, and a material with high electrical insulation properties and a resistivity of 1014 Ω or more, preferably 1016 Ω or more, such as a non-polar polymer compound, is used as the core. closely covering the sheath;
The electret fibers of the present invention, in other words, the fibrous electrets, were obtained by electretization using a suitable electretization method such as a corona discharge method.

鞘を比抵抗の大きな絶縁体(例えば無極性高分子)、芯
を比抵抗の小さな半導体以上の導電体から構成すると、
エレクトレット電荷、即ち表面電荷量が著大で荷電寿命
を長期化することが可能となる。
When the sheath is made of an insulator with a high resistivity (e.g. non-polar polymer) and the core is made of a conductor with a low resistivity of a semiconductor or higher,
The electret charge, that is, the amount of surface charge is extremely large, making it possible to extend the charge life.

この理由は上述した単一繊維のエレクトレット化と比較
すれば明らかである。
The reason for this becomes clear when compared with the above-mentioned electret formation of a single fiber.

即ち、エレクトレット化するときに芯繊維を接地、ない
し外部と電気的導通状態においておけば、鞘繊維にコロ
ナ放電により負電荷が注入されはじめると、その負電荷
と同量の正電荷が導電体である芯繊維表面に無理なく生
成される。
In other words, if the core fiber is grounded or electrically connected to the outside during electret formation, when negative charge begins to be injected into the sheath fiber by corona discharge, the same amount of positive charge as the negative charge will be injected into the conductor. It is naturally generated on the surface of certain core fibers.

即ち、芯繊維から注入電子と同量の自由電子が導通して
いる接地電極へ逃げ、その結果芯繊維表面に正電荷が生
成される訳である。
That is, the same amount of free electrons as the injected electrons escape from the core fiber to the conducting ground electrode, and as a result, positive charges are generated on the surface of the core fiber.

したがって、コロナ放電中、鞘繊維表面にはエレクトレ
ット電荷が形成されるが、芯鞘繊維全体としては電気的
に中性であり、従来のように電荷注入を阻害することな
く十分なエレクトレット化、即ち表面電荷量を著大化す
ることが可能となる。
Therefore, during corona discharge, electret charges are formed on the surface of the sheath fiber, but the core-sheath fiber as a whole is electrically neutral, and sufficient electretization can be achieved without inhibiting charge injection as in the conventional case. It becomes possible to significantly increase the amount of surface charge.

又、完成したエレクトレット化芯鞘繊維においては、靴
外周面に負電荷、芯外周面に正電荷が形成されているた
め、両電荷が中和するためには絶縁体である鞘繊維内部
を貫通して再結合する以外になく、現実にはこのような
ことはほとんど起らない。
In addition, in the completed electret core-sheath fiber, negative charges are formed on the outer circumferential surface of the shoe and positive charges are formed on the outer circumferential surface of the core, so in order to neutralize both charges, it is necessary to penetrate the inside of the sheath fiber, which is an insulator. There is no other choice but to recombine them, and in reality, this rarely happens.

このことから荷電寿命が従来と比較して極めて長いこと
が容易に理解される。
From this, it is easily understood that the charge life is extremely long compared to the conventional one.

上記の説明では便宜上靴が負電荷、芯が正電荷としたが
、この逆であっても原理上同じである。
In the above explanation, for convenience, the shoe is assumed to be negatively charged and the core is positively charged, but the principle is the same even if the shoes are reversed.

しかして、これに使用する芯としては炭素や高分子化合
物に導電肚物質を混合したもの等があり、また鞘として
は無極性の高分子化合物、例えばポリエチレン、ポリプ
ロピレン、ポリ弗化ビニリデン、四弗化エチレン・エチ
レン共重合体等が適しているが、芯や鞘の断面形状は任
意であり、又芯の内部を中空にしてもよい。
The core used for this purpose is a mixture of carbon or a polymer compound with a conductive material, and the sheath is a non-polar polymer compound such as polyethylene, polypropylene, polyvinylidene fluoride, tetrafluoride, etc. Ethylene/ethylene copolymer and the like are suitable, but the cross-sectional shape of the core and sheath may be arbitrary, and the core may be hollow.

また、芯に鞘を密接して被覆する手段としては、芯及び
鞘の各材料を溶融し、これらの溶融物を紡糸口金から吐
出複合させて芯鞘型複合糸を作る方法や、糸となした芯
を溶融した鞘材の中に浸漬、又は通過させる方法等があ
り、ざらに芯鞘型複合糸をエレクトレット化する手段と
しては、従来公知の熱エレクトレツト法、エレクトロ・
エレクトレット法、ラジオ・エレクトレット法等があり
、これらを適当に使用することができる。
In addition, methods for closely covering the core with the sheath include a method of melting each material of the core and sheath, and discharging and compounding these melts from a spinneret to make a core-sheath type composite yarn, and a method of making a core-sheath type composite yarn. There are methods such as dipping or passing a core into a molten sheath material, and methods for converting a core-sheath type composite yarn into an electret include conventionally known thermal electret methods and electro-electret methods.
There are electret methods, radio electret methods, etc., and these can be used appropriately.

次に、本発明の実施例を述べる。Next, examples of the present invention will be described.

実施例 1 芯として直径50μで比抵抗2.3 X 10−2Ω鑞
の炭素繊維を、又、鞘材としては、比抵抗3.5×10
16Ω儂のアイソタクチック・ポリプロピレン(昭和油
化株式会社製、SH□ JL A L L OM E
R、FA310)を使用し、普通の紡糸押出機の先端に
被覆用クロスヘッド・ダイを取付け、このグイから溶融
ポリプロピレンを0.2mm厚のパイプ状にして押出す
と共に、その中心に炭素繊維を位置して押出すようにし
、溶融ポリプロピレンの出口温度が約230℃のとき、
紡糸速度100m/分で得られた芯鞘型複合糸1は、第
1図に拡大して示すように、直径50μの芯1aに対し
、鞘1bの外径は70μ、肉厚は10μである。
Example 1 A carbon fiber with a diameter of 50μ and a specific resistance of 2.3 x 10-2Ω was used as the core, and a specific resistance of 3.5 x 10 was used as the sheath material.
16 Ω Isotactic polypropylene (manufactured by Showa Yuka Co., Ltd., SH□ JL A L L O M E
A coating crosshead die is attached to the tip of an ordinary spinning extruder, and molten polypropylene is extruded into a 0.2 mm thick pipe from this die, and carbon fiber is placed in the center of the die. when the exit temperature of the molten polypropylene is about 230°C,
In the core-sheath type composite yarn 1 obtained at a spinning speed of 100 m/min, as shown in an enlarged view in FIG. 1, the core 1a has a diameter of 50 μm, and the outer diameter of the sheath 1b is 70 μm and the wall thickness is 10 μm. .

この複合糸1を、第2図のように、送出しローラ2を経
てコロナ電極部3の縦に放射状に配置し、かつ横に多数
列設した針状電極3aから2crIL離れた中心部を通
し、近似のファラデーゲージ4を経て引取りローラ5を
通過させ、エレクトレット化するが、コロナ電極部3は
6mの長さで、その中間を断熱壁6で仕切り、送りロー
ラ2側の部分を被って加熱部7を設けると共に、ファラ
デー・ゲージ4側の部分を被って冷却部8を設け、かつ
該電極部に電源9により一10KVの電圧を加えて、2
00m/分の速度で進行する複合糸1に1.8秒間コロ
ナ放電を行ない、エレクトレット化繊維1′の表面電荷
密度をファラデー・ゲージで測定して、7、5 X 1
0−’クーロン/dを得た。
As shown in FIG. 2, this composite yarn 1 is passed through a feeding roller 2, and passed through the center of the corona electrode section 3, which is 2crIL away from the needle-like electrodes 3a, which are arranged radially in the vertical direction and arranged in many horizontal rows. , passed through an approximate Faraday gauge 4 and a take-up roller 5 to become an electret. The corona electrode part 3 has a length of 6 m, and the middle is partitioned by a heat insulating wall 6, covering the part on the feed roller 2 side. A heating section 7 is provided, a cooling section 8 is provided covering the part on the Faraday gauge 4 side, and a voltage of -10 KV is applied to the electrode section from a power source 9.
A corona discharge was applied to the composite yarn 1 traveling at a speed of 00 m/min for 1.8 seconds, and the surface charge density of the electret fiber 1' was measured using a Faraday gauge.
0-' coulomb/d was obtained.

なお、エレクトレット化のとき、芯を接地して行なうこ
とができる。
In addition, when converting into an electret, the core can be grounded.

実施例 2 実施例1と同一の装置を使用し、芯材として粉末状低密
度ポリエチレン(ICU’、:f、ALKATHENE
68300 )に導電性ファーネス・カーボン(AK
ZO社、Ketjen biackEcを添加したも
のを、また鞘材としては、実施例1のポリプロピレンを
使用し、別々の紡糸押出機で溶融して紡糸ヘッドに送り
、1llffiのノズルから芯鞘型複合糸1として押出
すが、その出口温度は約230℃、紡糸速度100m/
分で、芯1aの直径は50μ、鞘1bの外径は70μ、
肉厚は10μである。
Example 2 Using the same equipment as in Example 1, powdered low-density polyethylene (ICU', :f, ALKATHENE) was used as the core material.
68300) and conductive furnace carbon (AK
The polypropylene of Example 1 was used as the sheath material, and the polypropylene of Example 1 was melted in a separate spinning extruder and sent to the spinning head. The exit temperature is approximately 230°C and the spinning speed is 100m/
The diameter of the core 1a is 50μ, the outer diameter of the sheath 1b is 70μ,
The wall thickness is 10μ.

そして、実施例1と同様にエレクトレットット化するが
、芯材においてファーネス・カーボンの添加量を変えて
得た結果は次の如くである。
Then, electrets were formed in the same manner as in Example 1, but the amount of furnace carbon added to the core material was changed, and the results obtained are as follows.

また比較例として、芯材に6−ナイロン(東し株式会社
、アミランCM1031)及び前記のポリプロピレンを
、鞘材に結晶性ポリエチレン(三井油化株式会社、Ne
o −Zex 45150 )をオ*使用し、実施例2
のように同時紡糸して、芯の直径が50μ、鞘の外径が
70μの芯鞘型複合糸を作り、これを実施例1のように
エレクトレット化した結果は次の通りであった。
As a comparative example, the core material was 6-nylon (Amiran CM1031, Toshi Co., Ltd.) and the above-mentioned polypropylene, and the sheath material was crystalline polyethylene (Mitsui Yuka Co., Ltd., Ne
Example 2
A core-sheath type composite yarn having a core diameter of 50 μm and a sheath outer diameter of 70 μm was prepared by simultaneous spinning as shown in the figure below, and this was made into an electret as in Example 1. The results were as follows.

これらの実施例及び比較例から、芯の比抵抗が10−4
〜1011Ωぼ、鞘の比抵抗が1014 、、Ωの以上
、好ましくは1016Ω儒以上である芯鞘型複合糸のエ
レクトレットが高い初期表面電荷密度を有することが判
る。
From these Examples and Comparative Examples, the specific resistance of the core is 10-4.
It can be seen that the core-sheath type composite yarn electret having a sheath resistivity of 10 14 Ω or more, preferably 10 16 Ω or more, has a high initial surface charge density.

なお、これらの実施例では、芯が固体の場合であるが、
芯を液体、例えば水、エチルアルコール、アセトン等と
し、これを例えば弗化エチレン・エチレン共重合体の中
空部の中空部に充填した後、その両端を閉じて芯鞘型複
合糸を作り、これをコロナ放電によりエレクトレット化
した処、6.0×10−9クーロン/−前後の高い初期
表面電荷密度が得られた。
Note that in these examples, the core is solid, but
The core is a liquid, such as water, ethyl alcohol, acetone, etc., which is filled into the hollow part of a fluorinated ethylene/ethylene copolymer, and then both ends are closed to create a core-sheath type composite yarn. When it was made into an electret by corona discharge, a high initial surface charge density of around 6.0 x 10-9 coulombs/- was obtained.

そして、これら実施例のエレクトレット化繊維は、芯1
aが対極となり、鞘1bの表面電荷量と同量で逆極性の
電荷を帯び、その間を高抵抗の鞘で隔てられているから
中和し難く、荷電寿命が著しく長いことを示している。
The electret fibers of these examples have a core 1
A is the opposite electrode, which is charged with the same amount and opposite polarity as the surface charge of the sheath 1b, and is separated by a high-resistance sheath, so it is difficult to neutralize and has a significantly long charge life.

次に、本発明のエレクトレット化繊維は上記のように初
期表面電荷密度が高く、かつ荷電寿命が長いので、これ
にてはたき、モツプ等の清掃用製品を製作、使用したと
ころ、すぐれた効果のあることを見出した。
Next, as mentioned above, the electret fiber of the present invention has a high initial surface charge density and a long charge life, so when cleaning products such as dusters and mops were manufactured and used, it showed excellent effects. I discovered something.

前記実施例2の試料第1番と同様に作られた芯直径10
0μ、靴外径140μのエレクトレット化繊維1′を第
4図で示すように、15.7cIrLに切り揃え、その
20本を束ねて試料10とし、これをその2倍量のダス
t−(JIS8種試験粉体)と共に、500m1のポリ
容器に入れて、この容器を30秒間震動させた後、試料
を取出して付着したダスト量を測定した処、次の結果を
得た。
Core diameter 10 made in the same manner as Sample No. 1 of Example 2
As shown in Fig. 4, electret fiber 1' with 0μ and shoe outer diameter 140μ is cut into 15.7 cIrL, 20 of them are bundled to form sample 10, and twice the amount of dust t-(JIS 8 The sample was placed in a 500 ml plastic container with the sample test powder) and the container was shaken for 30 seconds.The sample was taken out and the amount of attached dust was measured, and the following results were obtained.

ここに、試料番号1.2.3はコロナ電圧が一6KVの
場合、試料4.5コロナ電圧が一10KVの場合であり
、ダスト付着率は ダスト付着試料重量−試料初期重量 ×100 試料初期重量 である。
Here, sample number 1.2.3 is when the corona voltage is 16KV, sample 4.5 is when the corona voltage is 110KV, and the dust adhesion rate is the dust adhesion sample weight - sample initial weight x 100 sample initial weight It is.

イところが
、このエレクトレツl−化繊維1’ のエレクトレッ
ト化しない前の芯鞘型複合糸を前記と同様に15.7C
fILに切り揃え、その20本を束ねて、前記と同様に
試1験した結果は次の如くで、本発明製品のダスト付着
率が著しく高く、従って除塵効果のすぐれていることが
判る。
However, the core-sheath type composite yarn of this electret l-formed fiber 1' before being converted into electret was processed into a 15.7C fiber as described above.
The results of a single test conducted in the same manner as described above with 20 pieces cut into fIL and bundled together are as follows, and it can be seen that the dust adhesion rate of the product of the present invention is extremely high, and therefore, the dust removal effect is excellent.

しかも、本発明製品はダスト付着後、水中に入れて洗浄
すれば、表面電荷量が減少するので、付着したダストを
容易に除去し得るが、この製品を取出して乾燥すると、
次表のように表面電荷量が裡ぐ著しく回復するため、永
く除塵具として使用することができるし、また表面電荷
量が一定基準以下に減じたときは、再度エレクトレット
化して復旧できる等の特注を有している。
Moreover, if the product of the present invention is washed by putting it in water after dust has adhered to it, the amount of surface charge will be reduced, so the adhered dust can be easily removed, but if the product is taken out and dried,
As shown in the table below, the amount of surface charge gradually recovers, so it can be used as a dust removal tool for a long time, and when the amount of surface charge decreases below a certain standard, it can be restored by converting it to electret again. have.

、さらに、本発明のエレクトレット化繊維1′は、第5
図で示すように、枠11の内部に網状、不織布状、布
状等に張設して気体フィルタ12となし得る。
, Furthermore, the electret fiber 1' of the present invention has a fifth
As shown in the figure, the inside of the frame 11 is made of mesh, non-woven fabric, or cloth.
The gas filter 12 can be made by stretching it in a shape or the like.

即ち、表面電荷を有するエレクトレット化繊維1′ の
交差する間隙に気体、例えば空気を通せば、空気中の浮
遊塵はこの表面電荷により逆極性に荷電されて該繊維に
誘引吸着されるが、該繊維が半永久的に帯電しているか
ら、電圧を補給する電気設備を要しないし、機械的捕捉
でなく電気的捕捉なので、フィルタ構造が充填式でなく
、オープン式のため圧損失が小さく、またダスト・コン
トロール製品のように、フィルタの繊維表面に浮遊塵が
付着堆積したとき、水洗により一時的な表面電荷量の減
少で容易に除塵できると共に、水洗後乾燥すると表面電
荷量が回復するので反復使用することができ、さらに、
表面電荷量が一定基準以下になれば、再びエレクトレッ
ト化して新品同様に使用し得るのである。
That is, if a gas, for example air, is passed through the intersecting gap of the electret fibers 1' having surface charges, the airborne dust is charged to the opposite polarity due to the surface charges and is attracted and adsorbed to the fibers. Since the fibers are semi-permanently charged, there is no need for electrical equipment to supply voltage, and since the capture is electrical rather than mechanical, the filter structure is an open type rather than a filled type, resulting in low pressure loss. When floating dust adheres to and accumulates on the fiber surface of the filter, as with dust control products, washing with water temporarily reduces the amount of surface charge, making it easy to remove the dust, and drying after washing restores the amount of surface charge, so it can be repeated repeatedly. In addition, it can be used
If the amount of surface charge falls below a certain standard, it can be turned into an electret again and used like new.

第6図はエレクトレット化された芯鞘繊維の表面電荷密
度の経時変化(寿命)を示した片対数グラフで、縦軸は
表面電荷密度、横軸は経過日数である。
FIG. 6 is a semi-logarithmic graph showing the change over time (life span) of the surface charge density of the electret core-sheath fiber, where the vertical axis is the surface charge density and the horizontal axis is the number of days elapsed.

鞘繊維は全てポリプロピレンからなり、芯繊維物質とし
て銅線(実線)、四塩化炭素(点線)、ポリプロピレン
(一点鎖線)、空気即ち中空繊維(二点鎖線)、四フフ
化エチレン・エチレン七ノフィラメントの5種類のもの
からなる5本の芯鞘繊維について約30日間表面電荷密
度が測定された。
The sheath fibers are all made of polypropylene, and the core fiber materials are copper wire (solid line), carbon tetrachloride (dotted line), polypropylene (dotted chain line), air or hollow fiber (double chain line), and tetrafluorinated ethylene/ethylene heptafilament. The surface charge density was measured for about 30 days on five core-sheath fibers consisting of five types.

初期のエレクトレット化条件は室温下で10KV、60
秒間のコロナ放電である。
The initial electretization conditions were 10 KV and 60 volts at room temperature.
corona discharge for seconds.

図から明らかなように芯物質として比抵抗の小さな銅線
が最も帯電寿命の長いことがわかる。
As is clear from the figure, the copper wire with the lowest specific resistance as the core material has the longest charging life.

このことは同時に比抵抗の減少化に応じて寿命の長期化
を意味するが、剛性の大きな金属を芯物質さして使った
場合には繊維として加工しにくい。
At the same time, this means a longer service life as the specific resistance decreases, but if a highly rigid metal is used as the core material, it is difficult to process it into fibers.

したがって、本発明の目的から云って最も適切な芯物質
は炭素繊維または樹脂中に導電性粉末、例えば炭素粉末
を添加して導電計を付与した物質である。
Therefore, for the purposes of the present invention, the most suitable core material is a material in which conductive powder, such as carbon powder, is added to carbon fiber or resin to provide a conductivity meter.

なお、本発明のエレクトレット化繊維は、編織笠により
種々の物を作って利用することができる。
The electret fiber of the present invention can be used to make various products using knitted and woven hats.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は芯鞘型複合糸の一端を切断した拡大斜視図、第
2図はコロナ放電エレクトレット化装置の一部切断した
原理図、第3図は第2図のA−A線における断面図、第
4図は本発明エレクトレット化繊維の集束体の立面図、
また第5図は本発明気体フィルタの立面図、第6図は表
面電荷の経時変化を示す片対数グラフである。 1・・・・・・芯鞘型複合糸、1a・・・・・・該糸の
芯、1b・・・・・・該糸の鞘、1′・・・・・・エレ
クトレット化繊維′、3・・・・・・コロナ電極部、3
a・・・・・・針状電極、4・・・・・・ファラデー・
ゲージ、10・・・・・・エレクトレット化繊維束、1
2・・・・・・気体フィルタ。
Figure 1 is an enlarged perspective view with one end of the core-sheath composite yarn cut away, Figure 2 is a partially cutaway principle diagram of the corona discharge electretization device, and Figure 3 is a cross-sectional view taken along line A-A in Figure 2. , FIG. 4 is an elevational view of a bundle of electret fibers of the present invention,
FIG. 5 is an elevational view of the gas filter of the present invention, and FIG. 6 is a semi-logarithmic graph showing changes in surface charge over time. 1... core-sheath type composite yarn, 1a... core of the thread, 1b... sheath of the thread, 1'... electretized fiber', 3...Corona electrode part, 3
a...acicular electrode, 4...Faraday
Gauge, 10...Electret fiber bundle, 1
2... Gas filter.

Claims (1)

【特許請求の範囲】 1 炭素繊維または、導電性粉末を樹脂中に添加したも
ので、夫々電気比抵抗を10−3〜1010−11Ω儂
に調整した芯と、この芯を被覆する樹脂で形成された1
014Ω儂以上の鞘から成る芯鞘複合繊維をコロナ放電
法によりエレクトレット化したことを特徴とする清掃用
エレクトレット化繊維。 2、特許請求の範囲1に記載せる清掃用エレクトレット
化繊維を平面格子状に編織成したことを特徴とする清掃
用エレクトレット化繊維。
[Claims] 1. A core made of carbon fiber or conductive powder added to a resin, each having an electrical resistivity adjusted to 10-3 to 10-11 Ω, and a resin covering this core. done1
An electret fiber for cleaning, characterized in that a core-sheath composite fiber consisting of a sheath of 0.14Ω or more is made into an electret by a corona discharge method. 2. An electret fiber for cleaning, characterized in that the electret fiber for cleaning according to claim 1 is woven into a planar lattice shape.
JP52042428A 1977-04-13 1977-04-13 electrified fiber Expired JPS5921964B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52042428A JPS5921964B2 (en) 1977-04-13 1977-04-13 electrified fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52042428A JPS5921964B2 (en) 1977-04-13 1977-04-13 electrified fiber

Publications (2)

Publication Number Publication Date
JPS53130320A JPS53130320A (en) 1978-11-14
JPS5921964B2 true JPS5921964B2 (en) 1984-05-23

Family

ID=12635781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52042428A Expired JPS5921964B2 (en) 1977-04-13 1977-04-13 electrified fiber

Country Status (1)

Country Link
JP (1) JPS5921964B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6110860U (en) * 1984-06-23 1986-01-22 久四郎 中山 signature stamp

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06104952B2 (en) * 1988-05-24 1994-12-21 東レ株式会社 Electret fiber and manufacturing method thereof
AT503675B1 (en) * 2006-05-15 2008-09-15 Lenzing Plastics Gmbh CHEMICALLY RESISTANT AND FORM-RESISTANT MONOFILAMENTS, A METHOD FOR THE PRODUCTION THEREOF, AND THEIR USE
WO2021193957A1 (en) * 2020-03-26 2021-09-30 株式会社村田製作所 Composite fiber

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5136812A (en) * 1974-09-24 1976-03-27 Fujitsu Ltd JIDOSHUTSURYOKUCHOSEIHOSHIKI

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5136812A (en) * 1974-09-24 1976-03-27 Fujitsu Ltd JIDOSHUTSURYOKUCHOSEIHOSHIKI

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6110860U (en) * 1984-06-23 1986-01-22 久四郎 中山 signature stamp

Also Published As

Publication number Publication date
JPS53130320A (en) 1978-11-14

Similar Documents

Publication Publication Date Title
CA1050481A (en) Method for the manufacture of an electret fibrous filter
US5227172A (en) Charged collector apparatus for the production of meltblown electrets
CN1238591C (en) Method of making fibrous electret web using nonaqueous polar liquid
US4486365A (en) Process and apparatus for the preparation of electret filaments, textile fibers and similar articles
RU2672630C2 (en) Method for production of polymeric nanofibers and linear formation from polymeric nanofibers prepared by this method
US4473450A (en) Electrochemical method and apparatus
JPH0140141B2 (en)
JP6889072B2 (en) Compositions for molten electric field spinning, fibers and methods for producing them
US3565979A (en) Flash spinning
AU5675596A (en) Flexible ignition resistant biregional fiber, articles made from biregional fibers, and method of manufacture
CN109097842B (en) Preparation method of polymer electrostatic spinning receiving net curtain
JP7033233B2 (en) Method for manufacturing electric field spinning equipment and fiber sheet
JPS5921964B2 (en) electrified fiber
DE2618623C2 (en) Microporous separator
EP0369032B1 (en) Electret material and method of producing the same
EP0196416B1 (en) Battery separator
JPH01292116A (en) Electrically conductive fiber and production thereof
JP3176972B2 (en) Electret fiber aggregate
JP2001271219A (en) Semiconductive fiber and its use
JPH0670301B2 (en) Method for producing electret melt blown nonwoven fabric
JP6978269B2 (en) Manufacturing method of fiber and fiber sheet
JPS61211027A (en) Electret nonwoven fabric
JPH02197110A (en) Manufacture of electlet melt blow non-woven fabric
Kilic et al. and Behnam Pourdeyhimi3
WO2016099306A1 (en) A method for the manufacture of a flat filter material, flat filter material from polymer blends