JPS59219468A - Aluminum sliding member and its manufacture - Google Patents

Aluminum sliding member and its manufacture

Info

Publication number
JPS59219468A
JPS59219468A JP9058583A JP9058583A JPS59219468A JP S59219468 A JPS59219468 A JP S59219468A JP 9058583 A JP9058583 A JP 9058583A JP 9058583 A JP9058583 A JP 9058583A JP S59219468 A JPS59219468 A JP S59219468A
Authority
JP
Japan
Prior art keywords
aluminum
silicon
alloy
sliding member
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9058583A
Other languages
Japanese (ja)
Other versions
JPS6324072B2 (en
Inventor
Masafumi Nakazawa
中沢 理文
Yoichi Shimizu
洋一 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TPR Co Ltd
Original Assignee
Teikoku Piston Ring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teikoku Piston Ring Co Ltd filed Critical Teikoku Piston Ring Co Ltd
Priority to JP9058583A priority Critical patent/JPS59219468A/en
Publication of JPS59219468A publication Critical patent/JPS59219468A/en
Publication of JPS6324072B2 publication Critical patent/JPS6324072B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • C23C24/103Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • C23C26/02Coating not provided for in groups C23C2/00 - C23C24/00 applying molten material to the substrate

Abstract

PURPOSE:To obtain an Al sliding member provided with wear resistance only at the necessary part by coating the surface of an Al substrate with fine powder of metallic Si, an Al-Si alloy or the like and by melting the powder layer and the surface of the substrate to form a high-Si hypereutectic Al alloy. CONSTITUTION:The surface of an Al or Al alloy substrate is coated with fine powder of metallic Si, an Al-Si alloy or an Al-Si mixture having <= 100mesh. The coated surface is irradiated with laser beams, electron beams or plasma arc having high density energy to melt the powder layer and the surface of the substrate by rapid heating, and a high-Si hypereutectic Al alloy contg. proeutectic Si dispersed finely in only the surface layer is formed by the melting. By this method an Al sliding member having superior wear resistance over the surface of the substrate is obtd.

Description

【発明の詳細な説明】 本発明は、アルミニウム又はアルミニウム合金の表面処
理に関するもので、高密度エネルギー源を用いて基材表
面に優れた耐摩耗性を有する初晶シリコン粒子を分散さ
せた高シリコン過共晶アルミニウム合金層を、形成した
アルミニウム製摺動部材及びその製造方法に係るもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to surface treatment of aluminum or aluminum alloy, in which a high-density energy source is used to disperse primary silicon particles having excellent wear resistance on the surface of the base material. The present invention relates to an aluminum sliding member formed with a hypereutectic aluminum alloy layer and a method for manufacturing the same.

アルミニウム又はアルミニウム合金は鉄系材料に対し、
比重が低い、熱伝導性がよい、融点が低く作業性がよい
、機械加工性がよいなどの利点を持っている反面、摺動
部材として使用する場合には、鉄系材料と較べ耐摩耗性
耐スカッフィング性に劣るという欠点をもっているため
、摺動部材として用いられる分野への適用が限られる。
Aluminum or aluminum alloy is a ferrous material,
Although it has advantages such as low specific gravity, good thermal conductivity, low melting point, good workability, and good machinability, when used as a sliding member, it has better wear resistance than iron-based materials. Since it has the disadvantage of poor scuffing resistance, its application to the field of use as a sliding member is limited.

また、耐摩耗性を付与した鋳造アルミニウム合金として
、初晶シリコンを微細に分散させた高シリコン過共晶ア
ルミニウム合金があり、これはアルミニウム合金中、熱
膨張係数が最小で且つ耐摩耗性に優れた材料であるため
、燃背改善の見地から、軽量化を目的に、耐摩耗性を要
求される自動車部品のピストン、クランクケース、シリ
ンダ、シリンダライナ、シリンダブロック等に従来の鉄
系材料に代えて用いられているが、持込による高シリコ
ン過共晶アルミニウム合金は初晶シリコンの偏析による
応力不均一・、切削性の悪化、更には鋳造欠陥が出やす
い、初晶ミ7・リヨン粒子を微細化するだめの改良処理
か必要である等、他のアルミニウム合金に比し、製造か
著しく困難であるので、種々の優れた特性を自するにも
拘らず適用範囲が限られているのが現状である。
In addition, as a cast aluminum alloy with wear resistance, there is a high-silicon hypereutectic aluminum alloy with finely dispersed primary silicon, which has the lowest coefficient of thermal expansion among aluminum alloys and has excellent wear resistance. From the standpoint of improving fuel back, it can be used in place of conventional iron-based materials for the pistons, crankcases, cylinders, cylinder liners, cylinder blocks, etc. of automobile parts that require wear resistance, for the purpose of weight reduction. However, the high-silicon hypereutectic aluminum alloy produced by the import process is prone to stress unevenness due to the segregation of primary silicon, deterioration of machinability, and even casting defects, as well as primary crystal Mi7 and Lyon particles. It is extremely difficult to manufacture compared to other aluminum alloys, such as requiring improved processing to make it finer, so its range of application is limited despite its various excellent properties. This is the current situation.

本発明考等は以上の様なアルミニウム又はアルミニウム
合金の特性に着1」L、、製造容易な一般的アルミニウ
ム又はアルミニウム合金の耐摩耗性を要求される部分の
みを、高シリコン過共晶アルミニウム合金とした摺動部
祠の製造を試みノこのである。
Based on the characteristics of aluminum or aluminum alloys as described above, the present invention is based on the characteristics of aluminum or aluminum alloys as described above. Only the parts that require wear resistance of general aluminum or aluminum alloys, which are easy to manufacture, are made from high-silicon hypereutectic aluminum alloys. This is an attempt to manufacture a sliding part shrine.

以下に本発明の摺動部月とその製造方法を詳しく説明す
る。
The sliding part of the present invention and its manufacturing method will be explained in detail below.

まず、表面を研摩したアルミニウム又はアルミニウム合
金の基材表面に高シリコン過共晶アルミニウム合金層を
形成するための被覆材料を、粉末状又はペースト状の形
態で被覆する。被覆材は基材のシリコン含有量に応じて
、メタリックシリコン粉又はアルミとラムとシリコンの
合金粉又はアルミニウムとシリコン混合粉が使用される
。被覆材の粒度及び被覆層の厚さは、加熱源の容量と形
成すべき合金層の厚さにより決められる。被覆材の粒度
ば微細な程良く、100メツシユより粗い場合には基材
との合金化が困難となるため100メソシユ以下の微細
な粒度とする。被覆層の厚さは一般に0.1mm乃至2
mmが適当である。基材表面に高シリコン過共晶アルミ
ニウム合金層を形成するための熱源としては、基材全体
を加熱せずに表面層のみ急速加熱し、溶融合金化を図る
ことができ基材への急速冷却により初晶シリコン粒子の
微細化を図れる様な、高密度エネルギーを有するレーザ
ビーム、電子ビーム及びプラスマアークが適当である。
First, a coating material for forming a high-silicon hypereutectic aluminum alloy layer is coated in powder or paste form on the surface of an aluminum or aluminum alloy base material whose surface has been polished. Depending on the silicon content of the base material, a metallic silicon powder, an alloy powder of aluminum, ram, and silicon, or a mixed powder of aluminum and silicon is used as the coating material. The particle size of the coating material and the thickness of the coating layer are determined by the capacity of the heating source and the thickness of the alloy layer to be formed. The finer the grain size of the coating material, the better; if it is coarser than 100 mesh, it will be difficult to alloy with the base material, so the grain size should be as fine as 100 mesh or less. The thickness of the coating layer is generally 0.1 mm to 2 mm.
mm is appropriate. As a heat source for forming a high-silicon hypereutectic aluminum alloy layer on the surface of the base material, it is possible to rapidly heat only the surface layer without heating the entire base material, and to achieve molten alloying, and rapid cooling of the base material. Laser beams, electron beams, and plasma arcs having high density energy are suitable so that primary silicon particles can be made finer.

これら熱源による照射の際、該表面層への気泡の巻き込
み防止のため不活性ガス雰囲気中又は真空中で行なうこ
とが好ましく、例えば窒素ガス、アルゴンガスが使用さ
れる。以上の処理により基材表面に形成された合金層は
高シリコン過共晶アルミニウム合金と同様に硬い初晶シ
リコンを分散した組織となる上、基材への熱伝導が早い
ため急速冷却となり、初晶シリコンの微細化及びマトリ
ックスの微細化も図ることができ、硬さが上昇し、耐摩
耗性の向上が図れる。
When irradiating with these heat sources, it is preferable to carry out the irradiation in an inert gas atmosphere or vacuum in order to prevent bubbles from being entrained in the surface layer, and for example, nitrogen gas or argon gas is used. The alloy layer formed on the surface of the base material through the above treatment has a structure in which hard primary silicon is dispersed, similar to a high-silicon hypereutectic aluminum alloy, and the heat conduction to the base material is rapid, resulting in rapid cooling. It is also possible to make the crystalline silicon finer and the matrix finer, thereby increasing hardness and improving wear resistance.

以上の様に滲発明は熱源の照射によっても何らその基材
の特性を失うことはないため、表面層の優れた耐摩耗性
と基材としてのアルミニウム又はアルミニウム合金の特
性を併わせ持つ優れたアルミニウム製摺動部材を得るこ
とができた。
As described above, the bleed invention does not lose any of its base material properties even when irradiated with a heat source, so it is an excellent material that has both the excellent wear resistance of the surface layer and the properties of aluminum or aluminum alloy as a base material. An aluminum sliding member could be obtained.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

実施例 表面を#240エメリー紙で研摩したAC4B合金を基
材とし、被覆材として250メソシユ以下のメタリック
シリコン粉末を使用した。
EXAMPLE An AC4B alloy whose surface was polished with #240 emery paper was used as a base material, and metallic silicon powder of 250 mesos or less was used as a coating material.

被覆層厚さは1.0 mmとした。熱源としてcoよレ
ーザを用いてN、ガス雰囲気中、レーザ出力1.2 k
n、ビーム径3mmφ及び走査速度50 mm/min
の条件で処理を施した。その結果得られた高シリコン過
共晶アルミニウム合金層は、第1図の金属顕微鏡写真に
示すように0.15 mmの厚さで形成されていた。
The coating layer thickness was 1.0 mm. Using a co-laser as a heat source, in a N gas atmosphere, laser output 1.2 k
n, beam diameter 3 mmφ and scanning speed 50 mm/min
The treatment was carried out under the following conditions. The resulting silicon-rich hypereutectic aluminum alloy layer had a thickness of 0.15 mm, as shown in the metallurgical micrograph of FIG.

摩耗試験は第2図に示す如き往復動摩耗試験機を使用し
た。相手材として先端をバレル形状とした硬質クロムメ
ッキピン(blを用いた。ピン(b)及び本発明による
アルミニウム製摺動部材のキ板試験片falは共に研摩
加工により約1μRZの仕上げあらさとしたものである
。荷重は10kgf、速度毎分600サイクル、摩擦距
離3000m及び潤滑は油圧軸受油を用いて行なった。
A reciprocating abrasion tester as shown in FIG. 2 was used for the abrasion test. A hard chrome-plated pin (BL) with a barrel-shaped tip was used as the mating material. Both the pin (b) and the key plate test piece fal of the aluminum sliding member according to the present invention were polished to a finish roughness of approximately 1 μRZ. The load was 10 kgf, the speed was 600 cycles per minute, the friction distance was 3000 m, and lubrication was performed using hydraulic bearing oil.

摩耗量ばあらさ計によりその回置で求めた。比較材とし
て過共晶A6と17%Stの合金、本発明の基材である
AC4B及びFC25相当鋳鉄月を供試した。試験結果
は第3図に示す如く、本発明による摺動部材は過共晶A
β−17もsi^ 合金を上進る摩耗特性を示しており、試験片ta+自身
及び相手ピン(blは摩耗も少ないことが明らかである
The amount of wear was determined by rotation using a roughness meter. As comparison materials, alloys of hypereutectic A6 and 17% St, and cast iron equivalents to AC4B and FC25, which are the base materials of the present invention, were used. As shown in FIG. 3, the test results show that the sliding member according to the present invention has hypereutectic A.
β-17 also shows wear characteristics superior to the si^ alloy, and it is clear that the test piece ta+ itself and the mating pin (bl) have less wear.

以上の様に本発明によれば、アルミニウム又はアルミニ
ウム合金を摺動部材として使用するに際し、部材全体を
製造困難な高シリコン過共晶アルミニウム合金とする必
要はなく、耐摩耗性を要求される摺動部分のみに、容易
に該合金層を形成することが可能である。基材は製造容
易なアルミニウム又はアルミニウムと合金或はFRMを
混合して鋳造したアルミニウム、アルミ、ニウム合金を
用いればよく、経済的に極めて有利であり、広範囲の分
野への適用が期待できる。
As described above, according to the present invention, when aluminum or an aluminum alloy is used as a sliding member, it is not necessary to make the entire member a high-silicon hypereutectic aluminum alloy, which is difficult to manufacture. It is possible to easily form the alloy layer only on the moving parts. The base material may be aluminum, aluminum, or a nickel alloy cast by mixing aluminum, aluminum, alloy, or FRM, which is easy to manufacture, and is extremely economically advantageous, and can be expected to be applied to a wide range of fields.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によって得られた高シリコン過共晶アル
ミニウム合金層の金属顕微鏡写真。 第2図は往復動摩耗試験機の概略図。 第3図は実施例の摩耗試験結果を示す。 a・・・試験片  b・・・相手ピン  C・・・荷重
装置代理人 弁理士 祐用尉−外1名 第1図 第2図 甲 第3図 賞“
FIG. 1 is a metallurgical micrograph of a high-silicon hypereutectic aluminum alloy layer obtained by the present invention. Figure 2 is a schematic diagram of a reciprocating wear tester. FIG. 3 shows the abrasion test results of the example. a...Test piece b...Mating pin C...Loading device agent Patent attorney Yuyoto - 1 other person Figure 1 Figure 2 Figure A Figure 3 Award

Claims (2)

【特許請求の範囲】[Claims] (1)  アルミニウム又はアルミニウム合金基材の表
面のみに初晶シリコンを微細に分散させた高シリコン過
共晶アルミニウム合金層を形成したアルミニウム製摺動
部材。
(1) An aluminum sliding member in which a high-silicon hypereutectic aluminum alloy layer with finely dispersed primary silicon is formed only on the surface of an aluminum or aluminum alloy base material.
(2)  アルミニウム又はアルミニウム合金基材の表
面に100メソシユ以下の微細な粒度のメタリックシリ
コン粉又はアルミニウムとシリコンの合金粉又はアルミ
ニウムと、メタリックシリコンの混合粉を被覆し、該被
覆層に、高密度エネルギーを持つ熱源のレーザビーム、
電子ビーム、プラズマアーク等を照射して被mtAと基
材表面のみを溶融させることにより基材表面と前記被覆
材のシリコンとを合金化せしめ表面層のみ、初晶シリコ
ンを微細に分散させた高シリコン過共晶アルミニウム合
金にすることを特徴とするアルミニウム製摺動部材の製
造方法。
(2) The surface of the aluminum or aluminum alloy base material is coated with metallic silicon powder with a fine particle size of 100 mesos or less, aluminum and silicon alloy powder, or mixed powder of aluminum and metallic silicon, and the coating layer is coated with a high-density Laser beam of heat source with energy,
By irradiating electron beam, plasma arc, etc. to melt only the mtA and the surface of the base material, the surface of the base material and the silicon of the coating material are alloyed, and only the surface layer is made of a high-quality material with finely dispersed primary silicon. A method for manufacturing an aluminum sliding member, characterized in that it is made of a silicon hypereutectic aluminum alloy.
JP9058583A 1983-05-25 1983-05-25 Aluminum sliding member and its manufacture Granted JPS59219468A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9058583A JPS59219468A (en) 1983-05-25 1983-05-25 Aluminum sliding member and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9058583A JPS59219468A (en) 1983-05-25 1983-05-25 Aluminum sliding member and its manufacture

Publications (2)

Publication Number Publication Date
JPS59219468A true JPS59219468A (en) 1984-12-10
JPS6324072B2 JPS6324072B2 (en) 1988-05-19

Family

ID=14002520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9058583A Granted JPS59219468A (en) 1983-05-25 1983-05-25 Aluminum sliding member and its manufacture

Country Status (1)

Country Link
JP (1) JPS59219468A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0212938A2 (en) * 1985-08-13 1987-03-04 Toyota Jidosha Kabushiki Kaisha Method for forming alloy layer upon aluminum alloy substrate by irradiating with a CO2 laser, on substrate surface, alloy powder containing substance for alloying and bismuth
JPH024981A (en) * 1988-06-23 1990-01-09 Ishikawajima Harima Heavy Ind Co Ltd Ceramic coating method
EP0834599A1 (en) * 1996-09-26 1998-04-08 Günter Hackerodt Process for coating inner sliding surfaces of cylinders, especially aluminium surfaces
EP0837152A1 (en) * 1996-10-18 1998-04-22 Bayerische Motoren Werke Aktiengesellschaft, Patentabteilung AJ-3 Process for coating an aluminium alloy device of an internal combustion engine with silicon
EP0896073A1 (en) * 1997-08-01 1999-02-10 Daimler-Benz Aktiengesellschaft Coating for cylinder friction surface part of a piston engine
EP0899354A1 (en) * 1997-08-01 1999-03-03 Daimler-Benz Aktiengesellschaft Hyper-eutectic al-si alloy coating respectively an al-si composite
JP2003525355A (en) * 2000-02-28 2003-08-26 ファーアーベー アルミニウム アクチェンゲゼルシャフト Cylindrical, partially cylindrical or hollow cylindrical structural members with alloyed surfaces

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0212938A2 (en) * 1985-08-13 1987-03-04 Toyota Jidosha Kabushiki Kaisha Method for forming alloy layer upon aluminum alloy substrate by irradiating with a CO2 laser, on substrate surface, alloy powder containing substance for alloying and bismuth
US4746540A (en) * 1985-08-13 1988-05-24 Toyota Jidosha Kabushiki Kaisha Method for forming alloy layer upon aluminum alloy substrate by irradiating with a CO2 laser, on substrate surface, alloy powder containing substance for alloying and silicon or bismuth
JPH024981A (en) * 1988-06-23 1990-01-09 Ishikawajima Harima Heavy Ind Co Ltd Ceramic coating method
EP0834599A1 (en) * 1996-09-26 1998-04-08 Günter Hackerodt Process for coating inner sliding surfaces of cylinders, especially aluminium surfaces
EP0837152A1 (en) * 1996-10-18 1998-04-22 Bayerische Motoren Werke Aktiengesellschaft, Patentabteilung AJ-3 Process for coating an aluminium alloy device of an internal combustion engine with silicon
EP0896073A1 (en) * 1997-08-01 1999-02-10 Daimler-Benz Aktiengesellschaft Coating for cylinder friction surface part of a piston engine
EP0899354A1 (en) * 1997-08-01 1999-03-03 Daimler-Benz Aktiengesellschaft Hyper-eutectic al-si alloy coating respectively an al-si composite
JP2003525355A (en) * 2000-02-28 2003-08-26 ファーアーベー アルミニウム アクチェンゲゼルシャフト Cylindrical, partially cylindrical or hollow cylindrical structural members with alloyed surfaces

Also Published As

Publication number Publication date
JPS6324072B2 (en) 1988-05-19

Similar Documents

Publication Publication Date Title
JP3049605B2 (en) Wear-resistant aluminum-silicon alloy coating and method for producing the same
US3606359A (en) Tungsten carbide coated piston rings
US3896244A (en) Method of producing plasma sprayed titanium carbide tool steel coatings
EP0511318A1 (en) Plasma spraying of rapidly solidified aluminum base alloys.
US3779720A (en) Plasma sprayed titanium carbide tool steel coating
JPS59219468A (en) Aluminum sliding member and its manufacture
Li et al. Preparation, interfacial regulation and strengthening of Mg/Al bimetal fabricated by compound casting: a review
Subhi et al. Microstructural investigation and wear characteristics of Al-Si-Ti cast alloys
JPH0118981B2 (en)
US3947269A (en) Boron-hardened tungsten facing alloy
JPH0625386B2 (en) Method for producing aluminum alloy powder and sintered body thereof
JP2004525267A (en) Method for forming a high strength wear resistant composite layer
Ghosh et al. Formation of a wear resistant surface on Al by laser aided in-situ synthesis of MoSi2
Daver et al. Aluminium P/M parts-materials, production and properties
JP3128041B2 (en) Cylinder block and its manufacturing method
JPH0352531B2 (en)
US3809546A (en) Method of making a hard alloy matrix containing a tungsten-boron phase
JP2002309333A (en) Aluminum alloy, aluminum alloy for plain bearing and plain bearing
JPH0128826B2 (en)
JP4247882B2 (en) Abrasion resistant spray coating
JP3386689B2 (en) Sliding member
JP2790807B2 (en) Composite piston
JP3409621B2 (en) Manufacturing method of Al-based composite member
Xu et al. Laser surface alloying of silicon into aluminum casting alloys
Staia et al. Tungsten laser alloying of A356 Al alloy-tribological performance and characterisation