JPS59218904A - Device for measuring rotating accuracy of rotary shaft - Google Patents

Device for measuring rotating accuracy of rotary shaft

Info

Publication number
JPS59218904A
JPS59218904A JP9453083A JP9453083A JPS59218904A JP S59218904 A JPS59218904 A JP S59218904A JP 9453083 A JP9453083 A JP 9453083A JP 9453083 A JP9453083 A JP 9453083A JP S59218904 A JPS59218904 A JP S59218904A
Authority
JP
Japan
Prior art keywords
rotating shaft
rotation
accuracy
workpiece surface
laser interference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9453083A
Other languages
Japanese (ja)
Other versions
JPH0244362B2 (en
Inventor
Kimiyuki Mitsui
公之 三井
Yuichi Okazaki
祐一 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP9453083A priority Critical patent/JPH0244362B2/en
Publication of JPS59218904A publication Critical patent/JPS59218904A/en
Publication of JPH0244362B2 publication Critical patent/JPH0244362B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • G01B11/27Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes
    • G01B11/272Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes using photoelectric detection means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To appreciate the rotating accuracy of a rotary shaft of a machine tool or the like by providing plural laser interference measuring machine measuring the distance between a surface to be worked and a constant point other than the surface to be measured. CONSTITUTION:A metallic mirror surface 1 which is a surface to be worked is attached to the rotary shaht 2 of the machine tool. The mirror surface 1 is attached so that its rotating center approximately coincides with the rotary shaft 2. A laser interference measuring maching 3 is arranged in the direction of the rotating center position D of the mirror surface 1 and other laser interference measuring machines 4-6 are arranged in the directions of three points A, B, C on a virtual circle. Shape components are detected, distinguished and compensated from the output signals of these laser interference measuring machines, so that the rotating accuracy of the rotary shaft of the machine tool or the like can be correctly appriciated.

Description

【発明の詳細な説明】 この発明は工作機械等の回転軸の回転1rIljtaを
測定するための測定装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a measuring device for measuring rotation 1rIljta of a rotating shaft of a machine tool or the like.

近年の精密機械工業、精密光学工業の分野における要求
加工精度が高まるのに伴い、超精密工作機械の開発が盛
lυに試みられるようになってさた。
In recent years, as the required processing precision has increased in the fields of precision machinery and precision optics, attempts have been made to develop ultra-precision machine tools.

超精密工作機械による加工分野の一つに金属鏡がある。Metal mirrors are one of the fields of processing using ultra-precision machine tools.

従来、鏡は光学ガラスを胡麻し°C製イ′1していたの
であるが、精度、反射率、経年変化、製作」ス1〜等の
面から有利な金属鏡が専用の]二作機械による切削加工
により製作されるようになってき lこ。
Conventionally, mirrors were made of optical glass and made from °C, but metal mirrors, which are advantageous in terms of accuracy, reflectance, aging, and production speed, have been made using specialized machines. It began to be manufactured by cutting.

しかし、現在、我が1llf、1において加工し得る鏡
のI’に大径はおよそ300mmである。将来的には5
00In In以上、2000 mm程度の直径の非球
面金属vAl’J作の要求も発生ずると考えられること
から、非球面加工のできる超精密旋盤の開発が4手され
た。
However, currently, the large diameter of the mirror I' that can be processed in our 1llf, 1 is approximately 300 mm. 5 in the future
Since it is thought that there will be a demand for manufacturing aspherical metal vAl'J with a diameter of 00 In In or more and about 2000 mm, four efforts were made to develop an ultra-precision lathe capable of machining aspheric surfaces.

超精密工作機械においても回転軸は最も重要な構成要素
であり、回転軸の性能のいかんにより加工面の形状精度
、表面粗さの程度が決定されるといっても過言ではない
ので、回転軸を製作し、その回転精度を正しく評価する
技術の確立が要請されている。
The rotary shaft is the most important component in ultra-precision machine tools, and it is no exaggeration to say that the shape accuracy and surface roughness of the machined surface are determined by the performance of the rotary shaft. There is a need to establish a technology to manufacture a rotor and accurately evaluate its rotational accuracy.

回転精度測定のうち、回転軸の半径方向における回転誤
差が測定用基準球を使用した方法により比較的容易に測
定し得るのに対し、反射鏡のflL盤加工において重要
な軸の角度的な振れや、軸の軸心方向の用人の測定技術
は確立されていない。
Among rotational accuracy measurements, rotational errors in the radial direction of the rotating shaft can be measured relatively easily using a measurement reference ball, whereas angular runout of the shaft is important in the FLL plate processing of the reflecting mirror. There is no established technique for measuring the axial direction of the shaft.

この発明は上記のごとき事情に鑑みてなされたものであ
って、回転軸の角度的な振れや軸の軸心方向の出入の測
定が可能で回転軸の回転精度を正しく評価することがで
きる工作機械等の回転軸の回転精度測定装置を提供する
ことを目的とするものである。
This invention was made in view of the above circumstances, and is a device that can measure the angular deflection of a rotating shaft and the movement in and out of the shaft in the axial direction, and can accurately evaluate the rotation accuracy of a rotating shaft. The object of the present invention is to provide a rotation accuracy measuring device for a rotating shaft of a machine or the like.

この目的に対応し”C1この発明の回転軸の回転精度測
定装置は、回転中心が回転軸と一致するように取付りら
れた被加工面の前記回転中心位置にお番プる被加工面と
被加工面外の定点との間の距離を測定するレーザー干渉
測長器と、前記被加工面の前記回転中心位置を中心とす
る円上の少なくども3箇所における被加工面と被加工面
外の定点との間の距離を測定する他のレーザー干渉測長
器とを備え、前記被加工面の運動を前記各レーザー干渉
副長器にJ:って測定し、前記回転軸の回転精度成分と
被加工面の形状成分とを含む前記各レーザー干渉測長器
の出力信号から前記形状成分を検出して区別し、前記レ
ーザー干渉副長器の変位出力信号を前記被加工面の形状
に基づく変位について補正することによって前記理転軸
の回転精度を測定することを特徴としている。
Corresponding to this purpose, the rotational accuracy measuring device for a rotating shaft of the present invention is provided with a workpiece surface that is mounted so that its center of rotation coincides with the rotational shaft, and that is mounted at the rotation center position of the workpiece surface. a laser interferometric length measuring device that measures the distance between a fixed point outside the workpiece surface; and another laser interference length measuring device for measuring the distance between the two fixed points, and the movement of the work surface is measured by each of the laser interference sub length measuring devices, and the rotation accuracy component of the rotating shaft is measured. Detecting and distinguishing the shape component from the output signal of each of the laser interference length measuring devices including the shape component of the surface to be processed, and determining the displacement output signal of the laser interference sub length measuring device based on the shape of the surface to be processed. It is characterized in that the rotation accuracy of the rotation axis is measured by correction.

以下、この発明の詳細を一実施例を示す図面についてシ
1明Jる。
The details of this invention will be described below with reference to the drawings showing one embodiment.

第1図及び第2図において、1は回転rili瓜を測定
しようとする工作機械の回転軸2に数句けられIこ被加
工面である金属の鏡面であり、鏡面1は回転中心が回転
軸2と概略一致するように取付けられている。鏡面1の
回転中心位置りに向かってレーザー干渉測長器3が配設
され、まl〔、回転中心位置りを中心とする仮想の円上
の3点A1B1Cに向かって他のレーザー干渉測長器4
.5.6が配設されており、それぞれ点ASB、C及び
Dの鏡面の運動を前記各レーザー干渉副長器によって測
定するように構成されている。
In Figures 1 and 2, reference numeral 1 is a mirror surface of metal that is the surface to be machined, and the center of rotation of the mirror surface 1 is It is attached so as to roughly coincide with the shaft 2. A laser interferometric length measuring device 3 is disposed toward the rotation center position of the mirror surface 1, and another laser interferometric length measurement device is installed toward three points A1B1C on an imaginary circle centered around the rotation center position. Vessel 4
.. 5.6 are arranged, and are configured to measure the movement of the mirror surface at points ASB, C, and D, respectively, by means of the respective laser interferometers.

各レーザー干渉測長器3.4.5、及び6の出力信号は
回転軸2の回転精度成分と鏡面1の形状成分とを含むか
ら、それぞれの出力信号から形状成分を検出して区別し
、それぞれのレーザー干渉副長器の変位用ツノ信号を鏡
面1の形状に基づく変位について補正することによって
、回転軸2の回転精度を測定することができる。
Since the output signals of each laser interferometric length measuring device 3, 4, 5, and 6 include a rotation accuracy component of the rotating shaft 2 and a shape component of the mirror surface 1, the shape component is detected and distinguished from each output signal, By correcting the displacement horn signal of each laser interference sub-length device for the displacement based on the shape of the mirror surface 1, the rotation accuracy of the rotating shaft 2 can be measured.

ずなわら、超精密旋盤の回転軸回転精度を鏡面1の形状
精度、表面粗さとの対応でみると、母線方向における軸
の出入りZ(θ)、及び軸の角度的な振れωx(0)、
ω/(θ)が主要な成分である。
If we look at the rotation accuracy of the rotary axis of an ultra-precision lathe in terms of the shape accuracy of mirror surface 1 and the surface roughness, we can see that the rotational accuracy of the axis in the generatrix direction Z(θ) and the angular runout of the axis ωx(0) ,
ω/(θ) is the main component.

レーザー干渉測長器4.5.6をその間の角度がφ、τ
となるように配置する。半径 d/2の円周上における
鏡面1の形状を次のように表すものとする。
4.5.6 Laser interferometric length measurement device, the angle between them is φ, τ
Arrange it so that Let the shape of the mirror surface 1 on the circumference of a radius d/2 be expressed as follows.

1゛(θ)=r0+Σ(Ak003 kθ+Bk5ln
 kθ)     (1)1 各レーザー干渉測長器4.5.6の出力変化sL、sb
、s、、s、は次のようになる。
1゛(θ)=r0+Σ(Ak003 kθ+Bk5ln
kθ) (1)1 Output change sL, sb of each laser interferometric length measuring device 4.5.6
,s,,s, is as follows.

ωバθ)、ω/(θ)を次のように表わす。ω(θ) and ω/(θ) are expressed as follows.

s、L、 s、 、s、それぞれからSLを消去したも
のをSL、S’6 N S2とし、それを次のように表
ず。
s, L, s, , s, by deleting SL from each is SL, S'6 N S2, which is expressed as follows.

(1)〜(4)式より次式が導かれる。The following equation is derived from equations (1) to (4).

(5) したがって各レーザー測長器の出力信号3H1S置S’
をフーリエ級数に展開してG、Hをもとめたあと、(5
)式を解けばAk 〜F。
(5) Therefore, the output signal of each laser length measuring device is 3H1S and S'
After expanding into a Fourier series and finding G and H, (5
) Solving the equation gives Ak ~F.

(k=2.・・・・・・、oo)が求められるので、鏡
面1の形状、及びω、(θ)、ωy(θ)が推定できる
Since (k=2...,oo) is obtained, the shape of the mirror surface 1 and ω, (θ), and ωy(θ) can be estimated.

なお、母線方向における回転誤差成分2(θ)はS、(
(θ)により直接与えられる。
Note that the rotation error component 2 (θ) in the generatrix direction is S, (
(θ) is given directly.

この発明では変位計として静電容量型あるいは渦電流型
の変位計を使用せず、レーザー干渉測長器を使用してい
る。レーザー干渉副長法による副長確度はレーザー光の
波長で決まり、o、ippmの安定度が達成されている
。またレーザー光の波長は伝搬径路の空気の温度、湿度
及び気圧により影響を受けるが、これらは測定可能であ
るので、誤差の補正が容易である。またアナログ式の変
位g1では温度ドリフトを考慮しなければならないが、
レーザー干渉副長器ではその必要がない。さらにアナロ
グ式の変位計では、出力信号の伝達、増幅、並びにA−
D変換の際に誤差を生じるが、レーザー干渉副長器では
、測定結果をディジタル値として取扱えるので、その心
配がない。
In this invention, a capacitance type or eddy current type displacement meter is not used as a displacement meter, but a laser interferometric length measuring device is used. The sub-length accuracy of the laser interference sub-length method is determined by the wavelength of the laser beam, and stability of o, ippm has been achieved. Furthermore, the wavelength of the laser beam is affected by the temperature, humidity, and atmospheric pressure of the air in the propagation path, but since these can be measured, it is easy to correct errors. In addition, temperature drift must be taken into account when using the analog displacement g1.
This is not necessary with the laser interference sub-length device. Furthermore, with analog displacement meters, output signal transmission, amplification, and A-
Although errors occur during D conversion, there is no need to worry about this because the laser interference sub-meter can handle the measurement results as digital values.

wSa図は平面鏡を測定のターゲツト面としIC場合の
例を示したものであるが、測定光は干渉δ17と平面鏡
8の間を2往復するので、測定分解能はλ/80である
。したがってレーザー光の波長は6328Aを考慮する
と、分解能力は 0.00791μIlである。
The wSa diagram shows an example of an IC using a plane mirror as the measurement target surface, and since the measurement light makes two round trips between the interference δ17 and the plane mirror 8, the measurement resolution is λ/80. Therefore, considering that the wavelength of the laser beam is 6328A, the resolving power is 0.00791μIl.

(測定例) ボーレー超精密旋盤(DW4−1−13−P)を例に本
測定装置により回転軸回転精度を測定することを試みた
(Measurement example) An attempt was made to measure the rotational accuracy of a rotating shaft using the present measuring device using a Borley ultra-precision lathe (DW4-1-13-P) as an example.

測定は次に承り条件によりアルミニウム合金の被り材を
削って鏡面とし、これを対象面として行なった。
Next, the aluminum alloy covering material was ground to a mirror surface according to the accepted conditions, and this was used as the target surface.

条件 (1)回転軸回転数:1987rpm (2)送り: 15n+m/分 (3)切込み:30μm (4)チャック:3つ爪スクロールチャック(5)被削
vJ=アルミニウム合金 (No、5083) 直径200mm、厚み35mm (6)工具:ウインター製Rバイト (γ−1,34mm) 第4図aは本測定装置により推定した鏡面の形状を極座
標表示したものである。ただし、第3図により示される
ように、ここで用いたレー曾アー干渉g1では測定光は
平面鏡の2点において反射する。
Conditions (1) Rotating shaft rotation speed: 1987 rpm (2) Feed: 15n+m/min (3) Depth of cut: 30μm (4) Chuck: 3-jaw scroll chuck (5) Workpiece vJ = Aluminum alloy (No. 5083) Diameter 200mm , thickness 35 mm (6) Tool: R bit made by Winter (γ-1, 34 mm) Figure 4a shows the shape of the mirror surface estimated by this measuring device in polar coordinates. However, as shown in FIG. 3, in the laser interference g1 used here, the measurement light is reflected at two points on the plane mirror.

したがってこの干渉計を第2図に示すレーザー干渉測長
器4.5.6として使用づるわけであるから、本測定装
置により求められる鏡面の形状は点りを中心とする半径
の異なる2つの円周に沿った面の凹凸を表す量となって
いる。実線は回転軸回転直後において測定した形状を、
また破線及び鎖線は回転後3時間以上経過し1=後に測
定した形状を示している。図から明らかなように、回転
後において順次測定した鏡面の形状がほぼ同一〇あるの
に対し、回転直後の測定の形状が著しく異なっている。
Therefore, since this interferometer is used as the laser interferometric length measuring device 4.5.6 shown in Fig. 2, the shape of the mirror surface determined by this measuring device is two circles with different radii centered on the dot. It is a quantity that represents the unevenness of the surface along the circumference. The solid line represents the shape measured immediately after the rotation axis is rotated.
Moreover, the broken line and the chain line indicate the shape measured after 3 hours or more had elapsed after the rotation (1=1). As is clear from the figure, while the shapes of the mirror surfaces sequentially measured after rotation are almost the same, the shapes measured immediately after rotation are significantly different.

これは鏡面の熱変形のためと考えられる。This is thought to be due to thermal deformation of the mirror surface.

本旋盤の回転軸は油を作動流体とした動圧軸受を採用し
ているために、回転軸の回転に伴い油温が3時間で40
℃程度上昇し、この熱により回転軸が伸びるばかりでな
く、チトツク及び鏡面も熱変形する。
The rotating shaft of this lathe uses a dynamic pressure bearing that uses oil as the working fluid, so as the rotating shaft rotates, the oil temperature drops to 40°C in 3 hours.
The temperature rises by approximately .degree. C., and this heat not only stretches the rotating shaft, but also thermally deforms the tip and mirror surface.

第4図すはy軸回りのアンギュラ−モーションω/と回
転中心と測定位置との間の距離d /2 (d =82
mm)との積を回転軸の8回転分について求め、それを
極座標表示したものである。
Figure 4 shows the angular motion ω/ around the y-axis and the distance d /2 between the center of rotation and the measurement position (d = 82
mm) is calculated for 8 rotations of the rotation axis, and is expressed in polar coordinates.

本回転軸の軸受けは流体軸受であるので、転がり軸受を
使用した回転軸に比べ回転精度は格段に良好であるが、
回転軸の各回転ごとの軌跡は同一とはならず、0.1μ
m程度の幅で雲状の広がりを持っている。
Since the bearing of this rotating shaft is a fluid bearing, the rotation accuracy is much better than that of a rotating shaft using a rolling bearing.
The locus of each rotation of the rotation axis is not the same, and the trajectory is 0.1μ
It has a cloud-like spread with a width of about m.

最小領域円半径差法により評価した鏡面の形状とアンギ
ュラ−モーションは、第4図aの破線で示した鏡面の形
状及びアンギュラ−モーションのそれぞれに対し、0.
27μm及び0.25μmとなり、はぼ一致している。
The shape and angular motion of the mirror surface evaluated by the minimum area circle radius difference method are 0.0.
They are 27 μm and 0.25 μm, which are in close agreement.

第5図は第4図に示した鏡面の形状とアンギュラ−モー
ションのパワースペクトル曲線である。
FIG. 5 is a power spectrum curve of the mirror surface shape and angular motion shown in FIG. 4.

鏡面の形状成分では3山と6山成分が卓越している。ア
ンギュラ−モーションにお(プる3山と6山成分の振幅
が小さい口とから判断して、これらの成分は鏡面を保持
している3つ爪チャックと関連しているものと考えられ
る。
Among the shape components of the mirror surface, the 3-peak and 6-peak components are predominant. Judging from the small amplitude of the 3- and 6-peak components that are pulled into the angular motion, these components are considered to be related to the three-jaw chuck that holds the mirror surface.

以上の説明から明らかな通りこの発明によれば回転軸の
角度的な振れや軸の軸心方向の出入の測定が可能で回転
軸の回転精度を正しく評価することができる回転軸の回
転精度測定装置を1qることができる。
As is clear from the above description, according to the present invention, it is possible to measure the angular deflection of the rotating shaft and the movement in and out of the shaft in the axial direction, and the rotational accuracy of the rotating shaft can be accurately evaluated. 1q of equipment can be installed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例に係わる回転軸の回転精度
測定装置を示ず斜視説明図、第2図は測定原理を示す説
明図、第3図はこの発明の一実施例に係わる回転軸の回
転精度測定装置で使用する光学系を示す説明図、第4図
は鏡面の形状及びアンギュラ−モーションを極座標で示
したグラフ、及び第5図は鏡面の形状及びアンギュラ−
モーションのパワースペクトルである。 1・・・鏡面  2・・・回転軸  3.4.5.6・
・・レーザー干渉副長器 第1図 第2図 第3図 第4図 一一一一″    リ  4 −−’−43,5
Fig. 1 is a perspective explanatory view, not showing a rotation accuracy measuring device for a rotating shaft according to an embodiment of the present invention, Fig. 2 is an explanatory diagram showing the measurement principle, and Fig. 3 is a rotational accuracy measuring device according to an embodiment of the present invention. An explanatory diagram showing the optical system used in the shaft rotational accuracy measurement device. Fig. 4 is a graph showing the shape of the mirror surface and angular motion in polar coordinates, and Fig. 5 is a graph showing the shape of the mirror surface and angular motion.
This is the power spectrum of motion. 1... Mirror surface 2... Rotating axis 3.4.5.6.
... Laser interference sub-length device Fig. 1 Fig. 2 Fig. 3 Fig. 4 1111'' 4 -'-43,5

Claims (1)

【特許請求の範囲】[Claims] 回転中心が回転軸と一致するように取付けられた被加工
面の前記回転中心位置における被加工面と被加工面外の
定点との間の距離を測定するレーザー干渉副長器と、前
記被加工面の前記回転中心位置を中心どする円上の少な
くとも3箇所における被加二[面と被加工面外の定点と
の間の距離を測定する他のレーザー干渉測長器とを備え
、前記被加工面の運動を前記各レーザー干渉副長器にJ
:って測定し、前記回転軸の回転精度成分と被加工面の
形状成分とを含む前記各レーザー干渉副長器の出力信号
から前記形状成分を検出して区別し、前記レージ”−干
渉測長器の変位出力信号を前記被加工面の形状に基づく
変位について補正することによっ−C前記回転軸の回転
精度を測定することを特徴とJる回転軸の回転精度測定
装置
a laser interference sub-length device for measuring the distance between the workpiece surface and a fixed point outside the workpiece surface at the rotation center position of the workpiece surface, which is attached so that the rotation center coincides with the rotation axis; and the workpiece surface and another laser interferometric length measuring device for measuring the distance between the workpiece surface and a fixed point outside the workpiece surface at at least three locations on a circle centered on the rotation center position of the workpiece, J
: The shape component is detected and distinguished from the output signal of each of the laser interferometers including the rotation accuracy component of the rotating shaft and the shape component of the workpiece surface, and the laser interference length measurement is performed. A device for measuring rotational accuracy of a rotating shaft, characterized in that the rotational accuracy of the rotating shaft is measured by correcting the displacement output signal of the machine for displacement based on the shape of the surface to be machined.
JP9453083A 1983-05-27 1983-05-27 KAITENJIKUNOKAITENSEIDOSOKUTEIHOHO Expired - Lifetime JPH0244362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9453083A JPH0244362B2 (en) 1983-05-27 1983-05-27 KAITENJIKUNOKAITENSEIDOSOKUTEIHOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9453083A JPH0244362B2 (en) 1983-05-27 1983-05-27 KAITENJIKUNOKAITENSEIDOSOKUTEIHOHO

Publications (2)

Publication Number Publication Date
JPS59218904A true JPS59218904A (en) 1984-12-10
JPH0244362B2 JPH0244362B2 (en) 1990-10-03

Family

ID=14112881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9453083A Expired - Lifetime JPH0244362B2 (en) 1983-05-27 1983-05-27 KAITENJIKUNOKAITENSEIDOSOKUTEIHOHO

Country Status (1)

Country Link
JP (1) JPH0244362B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106568383A (en) * 2016-11-15 2017-04-19 长春理工大学 Non-contact large-scale shafting centring method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106568383A (en) * 2016-11-15 2017-04-19 长春理工大学 Non-contact large-scale shafting centring method

Also Published As

Publication number Publication date
JPH0244362B2 (en) 1990-10-03

Similar Documents

Publication Publication Date Title
CN109556556B (en) Method for measuring blade tip clearance of high-pressure turbine rotor stator in cold-state assembly process
US8347713B2 (en) Apparatus and method for measuring dynamic rigidity of a main shaft of a machine tool
US7328125B2 (en) Measuring method of cylindrical body
JP6336488B2 (en) Method and apparatus for determining a machining axis
CN102890475A (en) Method for measuring and compensating surface profile error of large rotary body part in real time
RU186481U9 (en) INTERFEROMETRIC DEVICE FOR CENTERING OPTICAL ELEMENTS WITH ASPHERIC SURFACES IN FRAMES
JP5264034B2 (en) Cutting tool for cutting a workpiece provided with a tool part and a shank, and an apparatus for machining a workpiece provided with a receiving part for cutting tool
US4706360A (en) Thread gage
JPS59218904A (en) Device for measuring rotating accuracy of rotary shaft
CN110345838B (en) Method for measuring working radius of four-axis centrifugal machine
JPS6073413A (en) Measuring method of roundness
JPH05272958A (en) Automatic detection method and detector for rotation center position by flat substrate and three sensors
JPS60111913A (en) Apparatus for measuring rotation accuracy in non-contact state
JP2003337018A (en) Three-dimensional shape measuring machine
JPS6130681B2 (en)
JPS5853843B2 (en) How to measure rotational accuracy of rotating shaft
JP2010253604A (en) Scanning motion error measuring method
Radev et al. New technology for measuring geometric parameters of large-sized rotary parts
JPH0323297B2 (en)
Lee et al. A 3D Optical Sensor Using Optical Axis Deviation Method for Rotational Errors.
JP3593445B2 (en) Scroll wrap processing method and processing apparatus
JP2007198944A (en) Deflection measuring instrument, and deflection measuring method
CN206944952U (en) A kind of rotation angle measuring system based on primary standard of curved surface part
JP3396733B2 (en) Separation measuring method and measuring device of circumferential shape and motion accuracy of rotating body by combination of goniometer and displacement meter
CN107238353A (en) A kind of rotation angle measuring method based on primary standard of curved surface part