JPS59217145A - Total sugar amount measuring apparatus - Google Patents
Total sugar amount measuring apparatusInfo
- Publication number
- JPS59217145A JPS59217145A JP9290983A JP9290983A JPS59217145A JP S59217145 A JPS59217145 A JP S59217145A JP 9290983 A JP9290983 A JP 9290983A JP 9290983 A JP9290983 A JP 9290983A JP S59217145 A JPS59217145 A JP S59217145A
- Authority
- JP
- Japan
- Prior art keywords
- sample
- liquid
- solution
- conductivity
- fed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/04—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
- G01N27/06—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a liquid
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は食品中に含まれる全糖量(単糖類と2糖類の
合計量)を電導塵測定によって連続して簡易、迅速かつ
正確に求めることができる全糖量測定装置に関するもの
である。Detailed Description of the Invention This invention provides a total sugar content measurement method that allows the total sugar content (total amount of monosaccharides and disaccharides) contained in food to be determined continuously, easily, quickly, and accurately by conductive dust measurement. It is related to the device.
食品中の品質を決定する因子には種々のものがあるが、
中でも甘味は食品の品質を支配する重要な因子である。There are various factors that determine the quality of food.
Among these, sweetness is an important factor that controls food quality.
しかしながら、食品中に含まれる甘味の主体をなす単糖
類(ブドウ糖、果糖、ガラクトース等)と2糖類(ショ
糖、乳糖、麦芽糖等)の合計量すなわち全糖量(以下糖
含量と記すの測定法としては、現在までのところ化学的
な方法(フェノール硫酸法およびオルシノール硫酸法)
以外に確固とした方法、装置がなく、食品の生産、製造
上はもとより研究上からも大きな隘路となっている。例
えば、砂糖業界で用いられている旋光度法(旋光度針)
は、果実類などの天然物ではそれぞれ旋光度を異にする
各種の糖および有機物が共存するため本質的に使用に供
し得ない。However, there is a method for measuring the total sugar content (hereinafter referred to as sugar content) of monosaccharides (glucose, fructose, galactose, etc.) and disaccharides (sucrose, lactose, maltose, etc.) that are the main components of sweetness contained in foods. As of now, chemical methods (phenol-sulfuric acid method and orcinol-sulfuric acid method)
There are no other reliable methods or equipment, and this has become a major bottleneck not only in terms of food production and manufacturing, but also in terms of research. For example, the optical rotation method (optical rotation needle) used in the sugar industry
is essentially unusable in natural products such as fruits, since various sugars and organic substances with different degrees of optical rotation coexist.
また、現在唯一の現場分析法として多用されている屈折
率測定法(屈折糖度計)は、糖含量ではなく全可溶性固
形物量に比例した量を測定するためその誤差率は13%
を越える。一方、上記の化学的方法は熟練を要するばか
りでなく、その操作が繁雑でしかも長時間を要するため
現場分析には基本的に適し得ない。これらの現状から、
糖含量を正確かつ簡易、迅速に測定し得る方法、装置の
開発は食品産業にとって喫緊の要務とされて来た。In addition, the refractive index measurement method (refractometer), which is currently the only on-site analysis method that is widely used, has an error rate of 13% because it measures the amount proportional to the total soluble solid content rather than the sugar content.
exceed. On the other hand, the above-mentioned chemical methods not only require skill, but also are complicated and time-consuming to operate, so they are basically not suitable for on-site analysis. From these current circumstances,
The development of methods and devices that can accurately, simply, and quickly measure sugar content has been an urgent requirement for the food industry.
本発明者はこのような要望に応えるため、先に電気化学
的手法すなわち電導度測定法に基礎を置く、全く新らし
い粘合N Ml)定法を開発して来た。In order to meet such demands, the present inventors have previously developed a completely new viscous NMI) method based on an electrochemical method, that is, an electrical conductivity measuring method.
本発明者のp発した測定法は食品試料すなわち、多成分
混合系に一定多量の強電解質(塩化カリウムまたは塩化
ナトリウム)を添加することによって、有機酸や無機成
分など各種の共存物質の実測導電率への影響を抑制し、
同時にその糖z量を次式のように導笛、率変化に比例す
る特異的な量として測定しようとするものである。The measurement method proposed by the present inventor is to measure the actual conductivity of various coexisting substances such as organic acids and inorganic components by adding a certain amount of strong electrolyte (potassium chloride or sodium chloride) to a food sample, that is, a multi-component mixed system. control the impact on the rate,
At the same time, the aim is to measure the amount of sugar z as a specific amount proportional to the change in rate, as shown in the following equation.
Kc= cl 、 AOヱエーニーー〇・・・(1)A
o tpIρ ψ ψρ
ここで、Cは食品試料中の糖濃度じ)であり、I(Qは
糖−電解質溶液の導電率である。また、A、Q %ψ、
lはそれぞれ糖−電解質溶液を導電体とみなしたときの
有効断面積、抵抗率、長さであり、ρは糖の密度である
。Kc = cl, AO eneee... (1) A
o tpIρ ψ ψρ where C is the sugar concentration in the food sample) and I (Q is the conductivity of the sugar-electrolyte solution. Also, A, Q %ψ,
1 is the effective cross-sectional area, resistivity, and length when the sugar-electrolyte solution is regarded as a conductor, and ρ is the sugar density.
すなわち、末法は濃厚な(06〜I D、J)強電解質
溶液を媒体−導電体としてこれに密度ρの不導電性の球
体(糖)が濃度Cで均一に分散17でいるときの導?1
!率を測定するものであり、測定導電率が糖の種類によ
らず糖の濃度(重重%)のみに依存する。つまり理想的
t〔全糖量測定伊である。That is, the final method is the conductivity when non-conductive spheres (sugar) of density ρ are uniformly dispersed in a concentrated (06~I D, J) strong electrolyte solution as a medium-conductor at a concentration C? 1
! The measured electrical conductivity does not depend on the type of sugar, but only on the sugar concentration (weight %). In other words, this is the ideal time for measuring total sugar content.
しかしながら、電解質溶液の示す電気化学的な性質の計
測すなわち定母的2り取り扱いは希薄溶液(<10”M
)&こ対してのみ可能とされ・末法で用いる0、6〜I
Mといった濃厚溶液(実測導電率6〜118m−’)を
取り扱った例は全くη仁い。換言すれば、既存の計測装
置では末法による正確な糖含量の測定つまり、末法の実
用化は不可能である。However, the measurement of electrochemical properties of electrolyte solutions, that is, standard two-way treatment, is difficult for dilute solutions (<10"M
) & This is possible only for 0, 6 to I used in the final method.
The example in which a concentrated solution such as M (actually measured conductivity: 6 to 118 m-') was handled is quite η poor. In other words, it is impossible to accurately measure sugar content using the powder method, that is, to put the powder method into practical use with existing measuring devices.
一方、近代産業の発達は、工程管理、計測の省力化、迅
速化さらには正確さを要求しており、本測定法の汎用化
には、分析工程の連続化と自動化が必須である。On the other hand, the development of modern industry demands labor-saving, speedy, and accurate process control and measurement, and the continuous and automation of the analysis process is essential for the generalization of this measurement method.
この発明は上記事情に恭みてなされたものであり、多数
の果汁等の食品試料液を連続して簡易迅速に、かつ正碌
に処理、測定し、技術者の熟練度には関係なく糖含量を
正確に求めることのできる全糖量測定装置を提供するこ
とを目的とするものである。This invention was made in consideration of the above circumstances, and it is possible to continuously process and measure a large number of food sample liquids such as fruit juice easily, quickly, and accurately, and to determine the sugar content regardless of the skill level of the technician. It is an object of the present invention to provide a total sugar amount measuring device that can accurately determine the amount of sugar.
以下図面を参照してこの発明の全糖量測定装置について
説明する。The total sugar content measuring device of the present invention will be explained below with reference to the drawings.
第1図および@2図は、この発明の全糖量測定装置の一
実強例を示すものである。この例に示した全糖量測定装
置は、強電解質溶液を送液する試薬管路1と、サンプル
液を送液するサンプル管路2と、洗浄液を送液する洗浄
管路3と、上記サンプル管路2と洗浄管路3とを切替え
サンプル液と洗浄液を交互に流す切替弁4と、合流した
上記強電解質溶液とサンプル液もしくは強電解質溶液と
洗浄液とを均一に温合するミキサー5と、上記ミキサー
5で混合された測定液を流し、測定液の電導度を測定す
るフロースルー型4電極セル6(以下フローセルと略記
する)と、このフローセル6からの電導度信号から糖含
量を演算し表示する演算処理回路7とを有してなるもの
で、試薬管路1および洗浄管路3における溶液の圧送に
はマルチチャンネル型のマイクロチューブポンプ(以下
ポンプと略記する)8を用い、切替弁4には六方弁を用
いたものである。Figures 1 and 2 show a practical example of the total sugar content measuring device of the present invention. The total sugar content measuring device shown in this example consists of a reagent conduit 1 for delivering a strong electrolyte solution, a sample conduit 2 for delivering a sample solution, a cleaning pipe 3 for delivering a washing solution, and a sample pipe for the above-mentioned sample. A switching valve 4 that switches between the pipe line 2 and the cleaning pipe line 3 to alternately flow the sample liquid and the cleaning liquid; a mixer 5 that uniformly warms the combined strong electrolyte solution and sample liquid or the strong electrolyte solution and the cleaning liquid; A flow-through type four-electrode cell 6 (hereinafter abbreviated as flow cell) is used to flow the measurement liquid mixed in the mixer 5 and measure the conductivity of the measurement liquid, and the sugar content is calculated from the conductivity signal from this flow cell 6. A multi-channel microtube pump (hereinafter abbreviated as pump) 8 is used to pump the solution through the reagent conduit 1 and the cleaning conduit 3, and a switching valve is used. 4 uses a hexagonal valve.
図示しない試薬貯槽から送られてくる高濃度の塩化ナト
リウム(NaC61)、塩化カリウム(Kcal等の強
電解質水溶液は、試薬管路1中でまずガラスウール等が
管体に充填されてなるフィルター9によって異物が除失
された後、ポンプ8に送られる。A highly concentrated aqueous electrolyte solution such as sodium chloride (NaC61) and potassium chloride (Kcal) sent from a reagent storage tank (not shown) is first passed through a filter 9 in which the tube body is filled with glass wool or the like in the reagent conduit 1. After the foreign matter is removed, it is sent to the pump 8.
ポンプ8は、5チヤンネルを有するマイクロチューブポ
ンプであり、この試薬管路1には1チヤンネルが配分さ
れ、残る4チヤンネルは後述するように洗浄管路に配分
されており、試薬管路1を流れる強電解質溶液と洗浄液
管路3を流れる洗浄液とを1:4の流量比で圧送する。The pump 8 is a microtube pump having 5 channels, one channel is allocated to the reagent conduit 1, and the remaining 4 channels are allocated to cleaning conduits as will be described later. The strong electrolyte solution and the cleaning liquid flowing through the cleaning liquid pipe line 3 are pumped at a flow rate ratio of 1:4.
ポンプ8を出た強電解質溶液は、ダンパー10に送られ
る。このダンX−10は、ポンプ8から送られてくる溶
液の脈動を解消するとともに、管路内の溶液に気胞が流
入するのを防ぐエアートラップの役目を兼ねるもので、
第3図に示すように、中空円柱体がらなるダンパ一本体
10aを2個、細径のチューブからなる抵抗管10 b
によって連結したもので、このダンパー10を通過した
強電解質溶液は、ミキシングポイント(以下MPと略記
する)11を経てミキサー5へ送られ名。The strong electrolyte solution leaving pump 8 is sent to damper 10. This dan
As shown in FIG. 3, there are two damper bodies 10a each made of a hollow cylindrical body, and a resistance tube 10b made of a small diameter tube.
The strong electrolyte solution that has passed through this damper 10 is sent to a mixer 5 via a mixing point (hereinafter abbreviated as MP) 11.
また、図示しない洗浄液槽からは、純水などからなる洗
浄液が洗浄管路3へ供給されている。この洗浄管路3へ
供給される洗浄液は、試薬管路1と同様のフィルター9
によって異物が除去された後4本の分流ライン12・・
・に送られる。この分流ライン12は、試薬管路1と同
径のチューブによって構成されており、各分流ライン1
2・・・を流れる洗浄液は、各々試薬管路1を流れる強
電解質溶液と同じ流量で、ポンプ8によってダンパー1
0へ圧送される。このダンパー10を通過した洗浄液は
、再度合流され、電解質溶液の4倍の流量で切替弁4へ
送られる。Further, a cleaning liquid made of pure water or the like is supplied to the cleaning pipe line 3 from a cleaning liquid tank (not shown). The cleaning liquid supplied to this cleaning pipe line 3 is filtered through a filter 9 similar to the reagent pipe line 1.
After foreign matter is removed by four branch lines 12...
・Sent to. This branch line 12 is composed of a tube having the same diameter as the reagent pipe line 1, and each branch line 1
The cleaning liquid flowing through the dampers 1 and 2 is pumped by the pump 8 at the same flow rate as the strong electrolyte solution flowing through the reagent pipes 1, respectively.
Forced to 0. The cleaning liquid that has passed through the damper 10 is combined again and sent to the switching valve 4 at a flow rate four times that of the electrolyte solution.
さらに、図示しないサンプル源からは、サンプル管路2
に食品試料、例えば果汁等のサンプル溶液が流入する。Further, from a sample source (not shown), a sample conduit 2
A sample solution of a food sample, for example fruit juice, flows into the container.
サンプル管路2にはポンプ13が設けられており、これ
によって流入したサンプル液はフィルター14へ送られ
る。このフィルター14は、サンプル液中の不溶性固形
物を除去し、かつ管路中に気泡が流入するのを防ぐエア
ートラップの役目を兼ねるもので、このフィルター14
を通過したサンプル液は、I、Il、を弁4へ送られる
。A pump 13 is provided in the sample conduit 2 , and the sample liquid flowing therein is sent to a filter 14 . This filter 14 serves as an air trap that removes insoluble solids from the sample liquid and prevents air bubbles from flowing into the pipe.
The sample liquid that has passed through is sent to valve 4 through I and Il.
切替弁4は六方弁からなるもので、この切替弁4には、
サンプル管路2と洗浄管路3の他に、さらに、切替弁4
に圧送されてきたサンプル液又は洗浄液をMPIIに送
る接続管15と、これらを排出する排出管16と、サン
プル溶液を計量するための所定容積を有すサンプル注入
管17の両端末とが接続されている。The switching valve 4 is made of a hexagonal valve, and this switching valve 4 includes:
In addition to the sample pipe line 2 and the washing pipe line 3, there is also a switching valve 4.
A connecting pipe 15 that sends the sample liquid or washing liquid that has been pressure-fed to the MPII, a discharge pipe 16 that discharges these, and both ends of a sample injection pipe 17 having a predetermined volume for measuring the sample solution are connected. ing.
この切替弁4に圧送されてきたサンプル液と洗浄液とは
、この切替弁4を切替えることによって交互にMPII
に送圧される。ます、第1図中実線で示した状態に切替
弁4を切替えた場合には、洗浄液が洗浄管路3から接続
管15を経てT’、4 P 11に送られる。またサン
プル管路2から送られてくるサンプル液は、サンプル注
入管17を経て排出管16から排出される。次に、切替
弁4を第1図中点線で示した状態に切替えた場合には、
サンプル注入管17に在中したサンプル液が、洗浄管路
3から送られてくる洗浄液に押し出されて、MPllに
送られる。By switching this switching valve 4, the sample liquid and washing liquid that have been pressure-fed to this switching valve 4 can be alternately transferred to MPII.
Pressure is sent to First, when the switching valve 4 is switched to the state shown by the solid line in FIG. 1, the cleaning liquid is sent from the cleaning pipe line 3 to T', 4 P 11 via the connecting pipe 15. Further, the sample liquid sent from the sample pipe line 2 is discharged from the discharge pipe 16 via the sample injection pipe 17. Next, when the switching valve 4 is switched to the state shown by the dotted line in FIG.
The sample liquid present in the sample injection tube 17 is pushed out by the cleaning liquid sent from the cleaning pipe line 3 and sent to MPll.
MPIIでは、試薬管路1から送られてくる強電解質溶
液と、切替弁4を経て送られてくるサンプル液もしくは
洗浄液とが合流して、ミキサー5へ送られる。この際、
強電解質溶液と合流するサンプル溶液は、サンプル注入
管17に在中した所定量が、洗浄管路3から1°ンプ8
によって強電解質溶液の4倍の流量で送られてくる洗浄
液によって押し出されてくる。従ってサンプル液と強電
解質溶液は、所定の比で所定量が混ざることとなり、こ
れらによって作られる測定液は、強電解質を所定濃度で
含む溶液とされる。In MPII, the strong electrolyte solution sent from the reagent conduit 1 and the sample liquid or washing liquid sent via the switching valve 4 are combined and sent to the mixer 5. On this occasion,
A predetermined amount of the sample solution that merges with the strong electrolyte solution in the sample injection tube 17 is pumped 1° from the cleaning conduit 3 to the pump 8.
It is pushed out by the cleaning liquid that is sent at a flow rate four times that of the strong electrolyte solution. Therefore, the sample liquid and the strong electrolyte solution are mixed in predetermined amounts at a predetermined ratio, and the measurement liquid produced by them is a solution containing the strong electrolyte at a predetermined concentration.
このMPIIで合流した、強電解質溶液とサンプル液も
しくは強電解質溶液と洗浄液とは、ミキサー5で均一に
混合されて、測定液もしくは前後の測定液を分けるとと
もに7四−セル6を洗浄する混合液となる。このミキサ
ー5は、細管がコイル状に巻かれてなるもので、このミ
キサー5を通過した測定液と混合液は、フローセル6に
送られる。The strong electrolyte solution and the sample solution or the strong electrolyte solution and the cleaning solution that have been combined in this MPII are mixed uniformly in the mixer 5, and the mixed solution is used to separate the measurement solution or the previous and subsequent measurement solutions and to clean the 74-cell 6. becomes. This mixer 5 is made up of a thin tube wound into a coil, and the measurement liquid and mixed liquid that have passed through this mixer 5 are sent to a flow cell 6.
フローセル6は、測定液の電導度を測定するためのもの
で、第4図に示すように、その本体6aはポリアセター
ル樹脂等によって略中空円柱状に成形されている。この
フローセル6の中空(5i%分は、測定液と混合液が流
通するプローブ室6bである。The flow cell 6 is for measuring the electrical conductivity of the measuring liquid, and as shown in FIG. 4, its main body 6a is formed of polyacetal resin or the like into a substantially hollow columnar shape. The hollow space (5i%) of this flow cell 6 is a probe chamber 6b through which the measurement liquid and the mixed liquid flow.
このプローブ室6bには、プローブ室6bの両端部に配
置された一対の通電電極6c、6cと、この通電電極6
c、6cの間に配置された一対のプローブ電極6 d、
6 aとが設けられており、これらの電極6c、6c
・6as6aには、白金が好ましく用いられる。This probe chamber 6b includes a pair of current-carrying electrodes 6c, 6c arranged at both ends of the probe chamber 6b, and a pair of current-carrying electrodes 6c, 6c arranged at both ends of the probe chamber 6b.
a pair of probe electrodes 6 d, disposed between 6 c and 6 c;
6a are provided, and these electrodes 6c, 6c
- Platinum is preferably used for 6as6a.
ミキサー5からこのフローセル6のプローブ宋6bに送
られた測定液は、通電電極6c、6cおよびプローブ電
極6a、6aによって電導度が測定され、また、混合液
は、プローブ室6b内と各軍si6 Q、 6 o ・
6 d、6dの洗浄を行なった後、温度センサー18に
よってその液温が測定され、フィルター19に送られる
。The conductivity of the measurement liquid sent from the mixer 5 to the probe chamber 6b of this flow cell 6 is measured by the current-carrying electrodes 6c, 6c and the probe electrodes 6a, 6a, and the mixed liquid is sent to the probe chamber 6b and each group si6. Q, 6 o・
After washing 6d and 6d, the temperature of the liquid is measured by the temperature sensor 18 and sent to the filter 19.
このフィルター19は、高濃度の強電解質溶液とサンプ
ル液が混合された際、塩析によって発生する可能性のあ
る固形物を除失するためのものである。このフィルター
19によって口過された測定液と混合液は抵抗管20へ
送られる。This filter 19 is for removing solid matter that may be generated due to salting out when a highly concentrated strong electrolyte solution and a sample liquid are mixed. The measurement liquid and mixed liquid passed through the filter 19 are sent to the resistance tube 20.
この抵抗管20は、極組径の細管によって杉皮されてお
り、測定液や混合液が流通する際の抵抗を増し、フロー
セル6のプローブ室6b内の液圧を高くするためのもの
である。この抵抗管20を出た測定液と混合液は排出口
21から排出される。This resistance tube 20 is made of cedar bark and is made of a thin tube with a diameter of about 100 mm, and is used to increase the resistance when the measurement liquid or mixed liquid flows, and to increase the liquid pressure in the probe chamber 6b of the flow cell 6. . The measurement liquid and mixed liquid that have exited the resistance tube 20 are discharged from the discharge port 21.
次にフローセル6の通電電極6a、6asプローブ電極
6a、6aおよび温度センサ・−18に接続された演算
処理回路7について説明する。Next, the arithmetic processing circuit 7 connected to the current-carrying electrode 6a, 6as probe electrodes 6a, 6a, and temperature sensor -18 of the flow cell 6 will be explained.
第2図に示すように、まず通電電極6as6aにはこれ
と直列に標準抵抗22が設けられており、これらには正
弦波交流発振器23および定電流回路24によって測定
液の液抵抗に拘りなく所定周波数で所定の電流が印加さ
れている。As shown in FIG. 2, first, a standard resistor 22 is provided in series with the current-carrying electrode 6as6a, and these are set to a predetermined value by a sine wave AC oscillator 23 and a constant current circuit 24, regardless of the liquid resistance of the measuring liquid. A predetermined current is applied at a frequency.
次にプローブ電極6d%6dには差動アンプ25が接続
されている。この差動アンプ25は、プローブ室6b内
を流れる溶液の液抵抗(電導明に比例(逆比例)するプ
ローブ電極6d、fz1間の電位差を電導度信号として
差動アンプ26へ送るものである。上記標準抵抗22に
も同様に差動アンプ27が接続されており、この差動ア
ンプ27からは所定電圧の信号が差動アンプ26へ送ら
れる。この標準抵抗22は、プローブ電極6a。Next, a differential amplifier 25 is connected to the probe electrode 6d%6d. This differential amplifier 25 sends the potential difference between the probe electrodes 6d and fz1, which is proportional (inversely proportional) to the liquid resistance (conductivity) of the solution flowing in the probe chamber 6b, to the differential amplifier 26 as a conductivity signal. A differential amplifier 27 is also connected to the standard resistor 22, and a signal of a predetermined voltage is sent from the differential amplifier 27 to the differential amplifier 26.The standard resistor 22 is connected to the probe electrode 6a.
6dから差動アンプ25を介して差動アンプ26へ送ら
れてくる電導度信号がハイブランクであり、測定液の電
導度による変化が相対的に小さいので、これをゼロサブ
レジョンするために設けられたものである。差動アンプ
26では、差動アンプ25と差動アンプ27とから送ら
れてくる信号が引き算されて、ゼロサブレジョンが行な
われた電導度信号が電圧検出器28へ送られる。電圧検
出器28に送られてきた電導度信号は交流から直流に置
換えられ、さらに電圧レベルが変換された後中央演算処
理装置29に送られる。The conductivity signal sent from 6d to the differential amplifier 26 via the differential amplifier 25 is a high blank, and the change due to the conductivity of the measurement liquid is relatively small. It is something that was given. In the differential amplifier 26, the signals sent from the differential amplifier 25 and the differential amplifier 27 are subtracted, and a conductivity signal subjected to zero subregion is sent to the voltage detector 28. The conductivity signal sent to the voltage detector 28 is converted from alternating current to direct current, and then sent to the central processing unit 29 after its voltage level is converted.
この中央演算処理装@29には、前記温度センサー18
に接続された温度補正回路3oから送られてくる測定液
の温度情報と、電圧検出器28から送られてくる電導度
信号とが入力される。中央演算処理装置29では、これ
らの情報信号があらかじめ入力された糖濃度−測定液電
導度一測定液温度の関係式などによって処理されて、サ
ンプル液の糖含量等が求められる。この糖含量信号はデ
ジタルボルトメーター31に送られ、サンプル液中の糖
含量が表示記録される。This central processing unit @29 includes the temperature sensor 18.
Temperature information of the measuring liquid sent from the temperature correction circuit 3o connected to the temperature correction circuit 3o and a conductivity signal sent from the voltage detector 28 are input. In the central processing unit 29, these information signals are processed using a relational expression of sugar concentration-measuring liquid conductivity-measuring liquid temperature, etc., which have been input in advance, and the sugar content of the sample liquid is determined. This sugar content signal is sent to the digital voltmeter 31, and the sugar content in the sample liquid is displayed and recorded.
このように構成された命糖量測定装置は、切替弁4の切
替によって洗浄液とサンプル液とが交互に送られ、ミキ
シングポイント(MP)11で強電解質溶液と合流し、
ミキサー5で均一に混合され各々洗浄効果を有する混合
液と測定液とにされてフ四−セル6に送られ、ここで電
導度が測定されて、この電導度から演算処理回路7によ
ってサンプル液の糖含量が算出され表示されるものなの
で、多数の果汁などのサンプル液を簡単かつ迅速に連続
して処理でき、しかも正確にその糖含量を求めることの
できる装置となる。In the life sugar amount measuring device configured in this way, the cleaning liquid and the sample liquid are alternately sent by switching the switching valve 4, and are combined with the strong electrolyte solution at the mixing point (MP) 11.
The mixer 5 uniformly mixes the mixed liquid and the measuring liquid, each having a cleaning effect, and sends them to the cell 6, where the electrical conductivity is measured. Based on this electrical conductivity, the arithmetic processing circuit 7 determines the sample liquid. Since the sugar content of the sample is calculated and displayed, the apparatus can easily and quickly process a large number of sample liquids such as fruit juice in succession, and can accurately determine the sugar content.
また、測定液を作るための強電解質溶液とサンプル液と
の混合比は、サンプル液をMPIIへ押し出す洗浄液の
流量とサンプル流の流量との比によって決まり、この流
量比は、マルチチャンネル型のマイクロチューブポンプ
(ポンプ)8における洗浄管路3と試薬管路lとへのチ
ャンネルの配分比によって決定される。従って、ポンプ
8の送液量が変化しても安定した混合比で強電解質溶液
とサンプル液とが混合され測定、液となるので、測定液
中の強電解質の濃度は安定に保たれ、従って正確な糖含
量が測定できる。In addition, the mixing ratio of the strong electrolyte solution and the sample liquid for making the measurement liquid is determined by the ratio of the flow rate of the cleaning liquid that pushes the sample liquid to the MPII and the flow rate of the sample flow. It is determined by the distribution ratio of the channels to the cleaning line 3 and the reagent line 1 in the tube pump (pump) 8. Therefore, even if the amount of liquid sent by the pump 8 changes, the strong electrolyte solution and the sample liquid are mixed at a stable mixing ratio and become the measurement liquid, so the concentration of the strong electrolyte in the measurement liquid is kept stable. Accurate sugar content can be measured.
さらに、フローセル6には、通電電極6 c 、 6
cとプローブ電極6a、6aとを設け、各々通電を行な
う電極、測定を行う電極として機能を分離したので、こ
のフローセル6は高い導電率(6〜118m−’)を示
す測定液でも電極界面インピーダンスの影響を受けずに
正確に、その電導度を測定することができるものとなり
、従ってより正確な糖含量を知ることができる。又、こ
れらのT4T、極6C・6C・6ti、6dを白金製と
すれば、コロイド状高分子物質を多く含む果汁等のサン
プル液を1より安定にかつ正確に測定することができる
。Furthermore, the flow cell 6 includes current-carrying electrodes 6 c , 6
c and probe electrodes 6a, 6a are provided, and the functions are separated as electrodes for conducting current and electrodes for measurement, so this flow cell 6 has a low electrode interface impedance even when the measurement liquid exhibits high conductivity (6 to 118 m-'). It becomes possible to accurately measure the conductivity without being influenced by the sugar content, and therefore the sugar content can be determined more accurately. Furthermore, if these T4T, poles 6C, 6C, 6ti, and 6d are made of platinum, it is possible to measure sample liquids such as fruit juice containing a large amount of colloidal polymer substances more stably and accurately than in 1.
次に、実験例を示してこの発明の全糖量測定装置をさら
に詳しく説明する。Next, the total sugar content measuring device of the present invention will be explained in more detail by showing experimental examples.
〔実験例11装置操作と検量線〕
濃度既知のショ糖溶液を数種類作り、これをサンプル液
とした。4.5 M NaCe溶液(室温飽和溶液)を
強電解質溶液とし、導電率1×1o−’S−m−’オー
ダーの脱イオン水に導電率への影響の少ない非イオン性
界面活性剤であるトリ)i−100(商品名)を0.1
%添加したものを洗浄液とした。これらの溶液を前記実
施例に示した装置に送り、晴度を求め、導電率−ショ糖
濃度の検量線を作成し、その直線性を調べた。この際、
測定は20°Cで行ない、洗浄液と強電解質溶液との流
量比は4:1とし、測定液のNa、Ce濃度は0,9M
とされた。[Experimental Example 11 Equipment Operation and Calibration Curve] Several types of sucrose solutions with known concentrations were prepared and used as sample solutions. A 4.5 M NaCe solution (room temperature saturated solution) is used as a strong electrolyte solution, and a nonionic surfactant that has little effect on conductivity is added to deionized water with a conductivity of 1 × 1 o-'S-m-' order. Tri) i-100 (product name) to 0.1
% was added as a cleaning solution. These solutions were sent to the apparatus shown in the above example, the brightness was determined, a calibration curve of conductivity-sucrose concentration was created, and its linearity was examined. On this occasion,
The measurement was carried out at 20°C, the flow rate ratio of the cleaning solution and the strong electrolyte solution was 4:1, and the Na and Ce concentrations of the measurement solution were 0.9M.
It was said that
また、全糖量測定装置の各部材の仕様の概略を以下に示
す。In addition, an outline of the specifications of each component of the total sugar content measuring device is shown below.
試薬管路1には内径1,5關のテフロンチューブを用い
た。分流ライン12にも同一のチューブを用い、このラ
イン12は4木とした。ゲンブ8には、マルチチャンネ
ル型のマイクロチューブポンプMP−1001型(商品
名:東京理化器誠)を用いた。これによる試薬管路1、
分流ライン12・・・の送液量は、1チャンネル当り0
.46 m、17分とした。For the reagent conduit 1, a Teflon tube with an inner diameter of 1.5 mm was used. The same tube was used for the branch line 12, and this line 12 was made of four pieces of wood. For Genbu 8, a multi-channel microtube pump MP-1001 type (trade name: Tokyo Rikaki Makoto) was used. According to this, reagent conduit 1,
The amount of liquid sent through the branch line 12 is 0 per channel.
.. The distance was 46 m and 17 minutes.
ダンパー10の本体10aには、内径0.9α、長さ3
crrLのポリカーボネートパイプを利用し、抵抗管1
0bGこは内径0.25mm5長さ50cmのテフロン
チューブを用いた。サンプル注入管17には内径2朋の
テフロンチューブを用いて、ミキシングポイント(MP
)11に送り出されるサンプル液の一単位量が0.68
mlとな、るようにその長さを設定した。The main body 10a of the damper 10 has an inner diameter of 0.9α and a length of 3.
Resistance tube 1 using crrL polycarbonate pipe
A Teflon tube with an inner diameter of 0.25 mm and a length of 50 cm was used. A Teflon tube with an inner diameter of 2 mm is used for the sample injection tube 17, and the mixing point (MP
) 1 unit volume of sample liquid sent to 11 is 0.68
The length was set so that it was ml.
ミキサー5には、内径08m1I+1長さ80cmのス
テンレス管を内径10龍のコイル状に巻いたものを用い
た。フローセル6のプローブ室6bは、長さ5cInと
しその両端部1信を径51Trmsその中央部を径1.
5關とした。プローブ室6bの両端径3龍の部分には通
電電極6o、6aを、工5cIrL間隔で設け、その突
出寸法は3朋とした。この通電電極5c、6cには径1
關の白金線を用いた。またプローブ室6bの中央部径1
.5朋の部分には、プローブ電極6 a、 6 at−
2cIn間隔で設け、その突出寸法はo−s mm弱と
した。このプローブ電極6d。For the mixer 5, a stainless steel tube with an inner diameter of 08 m1I+1 and a length of 80 cm was wound into a coil with an inner diameter of 10 mm. The probe chamber 6b of the flow cell 6 has a length of 5 cIn, with a diameter of 51 Trms at both ends and a diameter of 1 Trms at its center.
There were 5 questions. Current-carrying electrodes 6o and 6a were provided at a distance of 5cIrL at both ends of the probe chamber 6b with a diameter of 3mm, and their protrusion dimension was 3mm. These current-carrying electrodes 5c and 6c have a diameter of 1
A platinum wire was used for the connection. Also, the central diameter of the probe chamber 6b is 1
.. In the part 5, probe electrodes 6 a, 6 at-
They were provided at intervals of 2 cIn, and their protruding dimensions were a little less than os mm. This probe electrode 6d.
6dには径0.5羽の白金線を用いた。このフレーセル
6のセル定数θは流速に関係なくθ=1.114X10
〜1であった0このフローセル6の通電電極60%6Q
には1.5にΩの標準抵抗22を接続し、周波数1kn
eで25α0μAの電流を液抵抗に拘りなく通し、定電
流方式により測定液の電導度を測定した。A platinum wire with a diameter of 0.5 wire was used for 6d. The cell constant θ of this Freisel 6 is θ=1.114X10 regardless of the flow rate.
~1 was 0 energized electrode of this flow cell 6 60% 6Q
Connect a standard resistor 22 of Ω to 1.5, and set the frequency to 1 kn.
At e, a current of 25α0 μA was passed regardless of the liquid resistance, and the conductivity of the measurement liquid was measured by a constant current method.
このようにして測定を行なった結果、差動アンプ26か
らは、第5図に示した電導度信号32が得られた。この
信号32の試料ピーク33は測定液の液抵抗を示すもの
で、この値をフローセル6のセル定数θで処理して導電
率を求め、各濃度のショ糖溶液についてプロットした結
果、第6図に示す検量線が得られた。As a result of the measurement in this manner, the conductivity signal 32 shown in FIG. 5 was obtained from the differential amplifier 26. The sample peak 33 of this signal 32 indicates the liquid resistance of the measurement liquid, and this value is processed using the cell constant θ of the flow cell 6 to determine the conductivity, and the results are plotted for each concentration of sucrose solution, as shown in Figure 6. The calibration curve shown in was obtained.
この検量線から、この装置においてショ糖溶液の濃度と
測定液の導電率との間には良好な直線関係が成立するこ
とがわかる(相関係数γ= −0,999)。It can be seen from this calibration curve that a good linear relationship is established between the concentration of the sucrose solution and the conductivity of the measurement liquid in this device (correlation coefficient γ=-0,999).
〔実験例2、装置の連続運転〕
実験例1に示した装置を実験例1と同一の条件で運転し
て、その間に20W/W%のショ糖溶液をサンプル液と
して所定時間毎に注入した。測定液の導1率から第6図
の検量線を用いてショ糖濃度を求め、運転開始1時間後
の値を100とし相対的に表示したところ第7図に示す
結果を得た。この結果からこの装置の12時間の連続運
転によって生じる測定誤差は最大3.8%であることが
わかる。[Experimental Example 2, Continuous Operation of the Apparatus] The apparatus shown in Experimental Example 1 was operated under the same conditions as Experimental Example 1, during which a 20 W/W% sucrose solution was injected as a sample liquid at predetermined intervals. . The sucrose concentration was determined from the conductivity of the measured solution using the calibration curve shown in FIG. 6, and the value 1 hour after the start of operation was set as 100 and relative display was obtained, and the results shown in FIG. 7 were obtained. This result shows that the measurement error caused by continuous operation of this device for 12 hours is 3.8% at maximum.
しかし、この割合は、化学分析および@器分析における
許容測定誤差±5%に比較して充分に小さく、シかも誤
差は運転時間とともにほぼ一定の割合で増加しているこ
とから、簡単な機械的補正が可能であり、この補正を行
なえばより高い精度で長時間の連続測定を行なうことが
できる。However, this ratio is sufficiently small compared to the permissible measurement error of ±5% in chemical analysis and @mechanical analysis, and since the error increases at an almost constant rate with operating time, it is possible to Correction is possible, and if this correction is performed, continuous measurement over a long period of time can be performed with higher accuracy.
実施例
実験例1に示した全糖量測定装置て同一条件において測
定の再現性と分析所要時間を調べた。EXAMPLE Using the total sugar content measuring device shown in Experimental Example 1, the reproducibility of measurement and the time required for analysis were investigated under the same conditions.
10 w/w%のショ糖溶液をサンプル液として連続的
に10回注入したところ±0.05 w / w%の誤
差を生じたのみであった。また、試料の注入がら応答を
得るまでの所要時間は1分弱であった。When a 10 w/w% sucrose solution was continuously injected 10 times as a sample solution, an error of only ±0.05 w/w% occurred. Further, the time required from injecting the sample to obtaining a response was a little less than 1 minute.
実施例
実験例1に示したのと同様な条件、同様な装置でカンキ
ツ果汁、リンゴ果汁およびてん葉根搾汁液中糖含量を測
定してフェノール硫酸法によって求めた糖含量と比較し
た。EXAMPLE The sugar content in citrus juice, apple juice and sugar beet root juice was measured using the same conditions and equipment as shown in Experimental Example 1 and compared with the sugar content determined by the phenol-sulfuric acid method.
まず、カンキツ果汁の測定に先立って、モデルサンプル
液によって糖含量−電導度一液温の関係式を求め、これ
を中央演算装置29に入力した。First, prior to the measurement of citrus juice, a relational expression of sugar content-conductivity-liquid temperature was determined using a model sample liquid, and this was input into the central processing unit 29.
モデルサンプル液としては、糖としてショ糖、ブドウ糖
および果糖が7:2二゛10重量比で混合され、さらに
クエン酸およびクエン酸カリウムが所定量添加された溶
液を用いた。温州ミカン果汁、ハツサク果汁および市販
の果汁入り飲料等のカンキツ果汁について求めた結果を
第1表に示す。As a model sample solution, a solution was used in which sucrose, glucose, and fructose were mixed as sugars at a weight ratio of 7:2 to 10, and a predetermined amount of citric acid and potassium citrate was added. Table 1 shows the results obtained for Citrus fruit juice such as Satsuma mandarin juice, Hatsusaku fruit juice, and commercially available fruit juice-containing drinks.
また第2表に同様にして測定したリンゴ(ふじ、玉杯、
世界一)果汁中の糖含量を、第3表にてん葉根の搾汁液
中の糖含量測定結果を示す。Table 2 also shows apples (Fuji, Tamakai,
Table 3 shows the results of measuring the sugar content in the juice of betel leaf root.
第1表 カンキツ果汁および果汁入り飲料第2表
リンゴ果汁
表1〜3かられかるように両者には良好な対応が得られ
、この発明の装置によればフェノール硫酸法に匹敵する
精度で糖含量を求めることができることが硲詔された。Table 1 Citrus juice and juice-containing beverages Table 2
As can be seen from apple juice Tables 1 to 3, a good correspondence was obtained between the two, and it was demonstrated that the apparatus of the present invention can determine the sugar content with an accuracy comparable to that of the phenol-sulfuric acid method.
なお、以上の説明において、試薬管路1および洗浄管路
3の溶液輸送には共通のポンプ8を用いたが、これは別
のものを用いても良い。又各管路1.2.3溶液の輸送
には、ポンプ8.13に限らず、各溶液の貯留槽(図示
せず)との高低差を利用して溶液を輸送する、又は、高
圧ガスを用いて送液するなどの方法を用いても良く、こ
の際、溶液の流舟調整には流量調整弁などを用いること
ができる。In the above description, a common pump 8 was used to transport the solution in the reagent pipe line 1 and the cleaning pipe line 3, but different pumps may be used. In addition, each pipe line 1.2.3 is not limited to a pump 8.13 for transporting the solution, but it is also possible to transport the solution by using the difference in height from the storage tank (not shown) of each solution, or by using high-pressure gas. You may also use a method such as sending the solution using a liquid flow rate, and in this case, a flow rate adjustment valve or the like can be used to adjust the flow rate of the solution.
また切替弁4に六万弁を用いた場合について説明したが
、切替弁4に電磁弁などを用いても良い。Furthermore, although a case has been described in which a 60,000 valve is used as the switching valve 4, a solenoid valve or the like may be used as the switching valve 4.
ただしこの場合に溶液の輸送にポンプを用いるならば、
サンプル管路2および洗浄管路3に設けたポンプと電磁
弁とは連動して動作させる必要がある。However, if a pump is used to transport the solution in this case,
The pump and solenoid valve provided in the sample pipe line 2 and the washing pipe line 3 need to be operated in conjunction with each other.
さらに試薬管路1の強電解質溶液とサンプル管路2のサ
ンプル液とは1:4の比で混合したが、試料の種類によ
って測定条件が変わるので、当然この比も変えられる。Further, the strong electrolyte solution in the reagent conduit 1 and the sample liquid in the sample conduit 2 were mixed at a ratio of 1:4, but since the measurement conditions change depending on the type of sample, this ratio can of course be changed.
この比を変える場合第1図に示した例の装置では、試薬
管路1と分流ライン12の本数の比が変えられる。When this ratio is changed, in the example apparatus shown in FIG. 1, the ratio of the number of reagent conduits 1 to the number of branch lines 12 is changed.
またさらに、第1図に示した例の装置においては、切替
弁4の切替に伴ってフローセル6で測定する電導度信号
にノイズが発生するので、これを解消するために、洗浄
管路3の末端部と接続管15との間に、切替弁4の切替
時これと連動して開く弁が設けられた細管からなるバイ
パスを設けても良い。Furthermore, in the example apparatus shown in FIG. 1, noise is generated in the conductivity signal measured by the flow cell 6 as the switching valve 4 is switched. A bypass consisting of a thin tube provided with a valve that opens in conjunction with switching of the switching valve 4 may be provided between the end portion and the connecting pipe 15.
さらにまた、本発明者は、先に開発した食品中の全糖量
の測定方法を、濃厚眠解質溶液中において糖と同様に抵
抗体として挙動する物質Gこ対しても応用し得ることを
明らかにし、強電解質を添加した測定液を調整し、その
導電率から測定対象l物質の濃度を求める測定方法とし
て発展させており、実際に牛乳中の乳粘合mはもとより
、蛋白質(カゼイン)含量、脂肪含量、さら(こけ全固
形分含量を求める方法として良い結果を得ている。従っ
て、今後この発明の測定装置の利用範囲も広がるものと
思われる。Furthermore, the present inventor has found that the previously developed method for measuring the total amount of sugar in food can be applied to substance G, which behaves as a resistor in the same way as sugar in a concentrated sleep solute solution. The method has been developed as a measurement method in which the concentration of the substance to be measured is determined from the electrical conductivity of a measurement solution containing a strong electrolyte. Good results have been obtained as a method for determining moss content, fat content, and moss total solid content. Therefore, it is expected that the scope of use of the measuring device of the present invention will expand in the future.
以上説明したように、この発明の全糖量測定装置は、試
薬管路から送られてくる強電解質溶液と、切替弁を切替
えることによってサンプル管路あるいは洗浄管路から交
互に送られてくるサンプル液あるいは洗浄液とをミキサ
ーで均一に混合し、測定液と洗浄作用を有する混合液と
にしてフローセルのプローブ室内を流し、この70−セ
ルにおいて測定液の屯導度を測定し、この電導度信号を
演算回路で処理し糖含量などを求めるものである。As explained above, the total sugar content measuring device of the present invention uses a strong electrolyte solution sent from the reagent pipe and a sample sent alternately from the sample pipe or cleaning pipe by switching the switching valve. The solution or cleaning solution is mixed uniformly with a mixer to form a mixed solution with a cleaning action and the measurement solution is flowed through the probe chamber of the flow cell.The 70-cell measures the bulk conductivity of the measurement solution, and the conductivity signal is obtained. is processed by an arithmetic circuit to determine the sugar content, etc.
従って、この発明の測定装置は各種の食品およびその原
料から得た多数のサンプル液を速続して簡単迅速に、か
つ正確に処理測定し、それらの糖含量を正確に求めるこ
とのできる装置となる。Therefore, the measuring device of the present invention is a device that can easily, quickly, and accurately process and measure a large number of sample solutions obtained from various foods and their raw materials, and accurately determine their sugar content. Become.
第1図はこの発明の全糖量測定装置の一実強例を示すブ
ロック図、第2図は演算回路の一実施例を示すブロック
図、第3図はダンパーの一例を示す一部断面視した正面
図、第4図はフローセルの一例を示す一部断面視した斜
視図、第5図(ま差動アンプで得られる電導度信号の一
例を示すり゛ラフ、第6図はこの発明の装置を用いて得
られた導電率−ショ糖濃度の検量線、第717はこの発
明のも・r′ζを連結して運転した場合の測定の安定性
を示すグラフである。
1・・・・・試薬管路、2・・・・・サンプル管路、3
・・・・・洗浄管路、4・・・・・切替弁、訃・・・・
ミキサー、6・・・・・フロースルー型4 電極セル〔
)四−セル)、7・・・・・演算処理回路。
出願人 富士乎工業株式会社
第2図
第5図
第6図
伸線濃度 (九%)
K:等?!卑 X:ショ棒環度 r:、7圃赤本0
5 10 15時1%
’l (四)Fig. 1 is a block diagram showing an example of the total sugar content measuring device of the present invention, Fig. 2 is a block diagram showing an embodiment of the arithmetic circuit, and Fig. 3 is a partial cross-sectional view showing an example of a damper. 4 is a partially cross-sectional perspective view showing an example of a flow cell, FIG. 5 is a rough view showing an example of a conductivity signal obtained by a differential amplifier, and FIG. The 717th calibration curve of electrical conductivity and sucrose concentration obtained using the device is a graph showing the stability of measurement when operating by connecting the r'ζ of this invention. 1... ...Reagent pipe line, 2...Sample pipe line, 3
...Cleaning pipe, 4...Switching valve, End...
Mixer, 6...Flow-through type 4 Electrode cell [
)4-cell), 7... Arithmetic processing circuit. Applicant: Fujikogyo Co., Ltd. Figure 2 Figure 5 Figure 6 Wire drawing density (9%) K: Etc.? ! Low X: Low circularity r:, 7 fields red book 0
5 10 15:00 1%
'l (four)
Claims (1)
するサンプル管路と、洗浄液を送液する洗浄管路と、上
記サンプル管路と洗浄管路とを切替える切替弁と、上記
強電解質溶液とサンプル液もしくは強電解質溶液と洗浄
液とを均一に混合するミキサーと、上記ミキサーで混合
された測定液を流し測定液の電導塵を測定するフロース
ルー型4電極セルと、このフロースルー型4電極セルか
らの電導塵信号から糖含量を演算し表示する演算処理回
路とを有してなる全糖量測定装置。a reagent conduit for conveying a strong electrolyte solution, a sample conduit for conveying a sample liquid, a cleaning conduit for conveying a cleaning liquid, a switching valve for switching between the sample conduit and the cleaning conduit, and a switching valve for switching between the sample conduit and the cleaning conduit; A mixer that uniformly mixes an electrolyte solution and a sample solution or a strong electrolyte solution and a cleaning solution, a flow-through type 4-electrode cell that flows through the measurement liquid mixed in the mixer and measures conductive dust in the measurement liquid, and this flow-through type A total sugar content measuring device comprising an arithmetic processing circuit that calculates and displays sugar content from conductive dust signals from a four-electrode cell.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9290983A JPS59217145A (en) | 1983-05-26 | 1983-05-26 | Total sugar amount measuring apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9290983A JPS59217145A (en) | 1983-05-26 | 1983-05-26 | Total sugar amount measuring apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59217145A true JPS59217145A (en) | 1984-12-07 |
JPH0251140B2 JPH0251140B2 (en) | 1990-11-06 |
Family
ID=14067607
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9290983A Granted JPS59217145A (en) | 1983-05-26 | 1983-05-26 | Total sugar amount measuring apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59217145A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57138050U (en) * | 1981-02-23 | 1982-08-28 | ||
JPS5892908A (en) * | 1981-11-30 | 1983-06-02 | Seikosha Co Ltd | Detector using piezo vibrator |
-
1983
- 1983-05-26 JP JP9290983A patent/JPS59217145A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57138050U (en) * | 1981-02-23 | 1982-08-28 | ||
JPS5892908A (en) * | 1981-11-30 | 1983-06-02 | Seikosha Co Ltd | Detector using piezo vibrator |
Also Published As
Publication number | Publication date |
---|---|
JPH0251140B2 (en) | 1990-11-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Muramatsu et al. | Viscosity monitoring with a piezoelectric quartz crystal and its application to determination of endotoxin by gelation of limulus amebocyte lysate | |
EP0281602B1 (en) | Determination of biomass | |
US10648936B2 (en) | Blood condition analyzing device, blood condition analyzing system, blood conditon analyzing method, and blood condition analyzing program for causing computer to execute the method | |
JPH06507967A (en) | Apparatus for determining the foamability of at least partially soluble materials | |
EP0763728A1 (en) | Method of determining nonelectrolyte concentration in electrolyte solution and method and apparatus for preparing solution containing mixture of electrolyte with nonelectrolyte | |
US8647570B1 (en) | Ascorbate monitoring and control system | |
Zhao et al. | Triple-frequency method for measuring blood impedance | |
Prentice | The conductivity of milk—the effect of the volume and degree of dispersion of the fat | |
US3658679A (en) | System for determining the hydrogen ion concentration of flowing liquids | |
US4646562A (en) | Method and apparatus for detecting relative dynamic liquid surface activity | |
Lamsal et al. | Variation in electrical conductivity of selected fruit juices during continuous Ohmic heating | |
Sproule et al. | An improved polarographic method for measuring oxygen tension in whole blood | |
Su et al. | Flow injection determination of sulfite in wines and fruit juices by using a bulk acoustic wave impedance sensor coupled to a membrane separation technique | |
Frances | Separation of leukocytes from whole blood by flotation on gum acacia | |
JPS59217145A (en) | Total sugar amount measuring apparatus | |
Widodo et al. | Study on the effect of sugar canes and saccharin to the value of electrical impedance of apple cider manalagi (Malus sylvestris mill) | |
MacInnes et al. | THE POTENTIALS AT THE JUNCTIONS OF MONOVALENT CHLORIDE SOLUTIONS. | |
Bett et al. | An automatic coulometric titrimeter | |
Sadler et al. | Determination of oxygen solubility in liquid foods using a dissolved oxygen electrode | |
JP2002511613A (en) | Chemical process automatic control system | |
CN208537475U (en) | A kind of online W/O content testing device | |
Mayers et al. | A rapid method for measuring blood oxygen content utilizing the oxygen electrode. | |
Hidayanto et al. | Measurement of viscosity and sucrose concentration in aqueous solution using portable Brix meter | |
Tjin et al. | Investigation into the effects of haematocrit and temperature on the resistivity of mammalian blood using a four-electrode probe | |
Swift | A holding box system for physiological experiments on rainbow trout (Salmo gairdneri Richardson) requiring rapid blood sampling |