JPS59216760A - Brake control method for rolling stock - Google Patents

Brake control method for rolling stock

Info

Publication number
JPS59216760A
JPS59216760A JP9317683A JP9317683A JPS59216760A JP S59216760 A JPS59216760 A JP S59216760A JP 9317683 A JP9317683 A JP 9317683A JP 9317683 A JP9317683 A JP 9317683A JP S59216760 A JPS59216760 A JP S59216760A
Authority
JP
Japan
Prior art keywords
signal
command signal
brake force
force command
electric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9317683A
Other languages
Japanese (ja)
Other versions
JPS6310024B2 (en
Inventor
Tatsuo Fujiwara
達雄 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nabco Ltd
Original Assignee
Nabco Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nabco Ltd filed Critical Nabco Ltd
Priority to JP9317683A priority Critical patent/JPS59216760A/en
Publication of JPS59216760A publication Critical patent/JPS59216760A/en
Publication of JPS6310024B2 publication Critical patent/JPS6310024B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/665Electrical control in fluid-pressure brake systems the systems being specially adapted for transferring two or more command signals, e.g. railway systems

Abstract

PURPOSE:To early prevent slippage of an inverter-controlled trolley car, by a method wherein, when the electric brake rate of a motor car is reduced to below 100% irrespective of the intensity of a composition damping force instructing signal, the composite damping force of a motor car is immediately reduced. CONSTITUTION:Diodes 14 and 15 are located in the electric control circuts of fluid brake devices 7t and 7m. The diodes 14 and 15, when the output of computers 12 and 13 are positive, output them as they are, and when the outputs of the computers 12 and 13 are below 0, the diodes output 0. When the component of a coach M of a composition damping force instruction signal F from a composition brake instructing device 2 is below an electric brake force equivalent G, F-G is outputted as the brake force instructing signal of a fluid brake 7t of coach T, and O is outputted as the instrution signal of a fluid brake 7m of a coarch M. When the component of the coach M of a signal F exceeds the signal G, a coach T allotment of the signal F is outputted as the instruction signal of the coach T, and a difference between the coach M allotment of the signal F and the signal G is outputted as the instructing signal of the coach M.

Description

【発明の詳細な説明】 本発明は、モータ車とトレーラ車とから成る〜成車両の
ブレーキ時に、指令され九絹成ブレーキ力に対して′心
気ブレーキカが不足するとその不足分を流体ブレーキ力
により補柚する鉄道車両用ブレーキ制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION When braking a vehicle consisting of a motorized vehicle and a trailer vehicle, if there is a shortage of in-center brake force relative to the commanded brake force, the fluid brake force can be used to compensate for the insufficiency. The present invention relates to a brake control method for a railway vehicle that is compensated for by the following methods.

この種のブレーキ割姉ノj法における一般の遅れ込め制
御は、特開昭56−110404号に従来技術として開
示されているように、編成ブレーキ力がモータ車の最大
粘着ブレーキ力以下のときモータ屯が編成重両の全ブレ
ーキ力を負担し、編成ブレーキ力が前記最大粘着ブレー
キ力より太きいときモータ車が最大粘着ブレーキ力を保
持すると共にトレー2車がその不足分を流体ブレーキ力
で負担し、モータ屯の電気ブレーキ力を最大限に利用す
るものでるる。
General delay control in this type of brake splitting method is disclosed as a prior art in Japanese Patent Application Laid-Open No. 110404/1983, when the train set braking force is less than the maximum adhesion braking force of the motor car, the motor The ton bears the entire braking force of the heavy vehicles in the formation, and when the brake force in the formation is greater than the maximum adhesive braking force, the motor car maintains the maximum adhesive braking force, and the 2nd tray car bears the shortfall with fluid braking force. However, it makes maximum use of the electric braking force of the motor.

ところが、上記一般のブレーキ制御方法においては、架
線AIイ圧あるいは回生無負荷等によって電気ブレーキ
が失効して廂成ブレーキカの全てを流体ブレーキ力で負
担するとき、モータ車が電気ブレーキシー当の流体ブレ
ーキ力を負担し、トレことになるので、mnZブレーキ
カが最大の付近を1余けばモータ車とトレーラ車とのi
AI Bブレーキカ負担4jjが大巾に醍なりており、
モータ車のブレーキシー−の1.1.j耗がトレーラ車
のそれに比べて著しく、モータ車とトレーラ屯とのブレ
ーキシューの交換周期が一致せずメンテナンスに問題が
ある。
However, in the above-mentioned general brake control method, when the electric brake is disabled due to overhead line AI pressure or regenerative no load, etc., and the entire brake force is borne by the fluid brake force, the motor car is forced to release the fluid for the electric brake seat. Since the braking force will be borne and the trailering will occur, if the mnZ brake force is around the maximum, the difference between the motor vehicle and the trailer vehicle will be
The AI B brake force burden of 4jj is the most important,
1.1. Brake seams for motor vehicles. The wear and tear is significant compared to that of a trailer vehicle, and the brake shoe replacement cycles for motor vehicles and trailer vehicles do not match, leading to maintenance problems.

このだめ、特開昭56−110404号公報に発明とし
て開示される通り、電気ブレーキ有効時((けモータ屯
の電気ブレーキ力を最大限に利用し、電気ブレーキ失効
時にけモータ車とトレーラ車とにそれぞれ重ン、t゛配
分した流体ブレーキ力を負担させるようにしたブレーキ
制御方法が提案されており、この従来方法を第1図〜v
J3図にもとづいて以下に説明する。
In this case, as disclosed as an invention in Japanese Patent Application Laid-Open No. 56-110404, when the electric brake is effective ((k), the electric braking force of the motor is utilized to the maximum, and when the electric brake is disabled, the motor vehicle and the trailer vehicle are A brake control method has been proposed in which a fluid brake force is distributed to each of
This will be explained below based on Figure J3.

第1図は従来方法を適用した装置を示し、モータ車(以
下、M車という)とトレーラ車(以下、T車という)と
はそれぞれ流体ブレーキ装置(以下、流側装置という)
7m、7tを備えており、これら流p+1装置7 m 
、 7 t Itj電気−流体圧変換弁EPと中継弁R
VとブレーキシリンダBeとから成る。
Figure 1 shows a device to which the conventional method is applied, and a motor vehicle (hereinafter referred to as M vehicle) and a trailer vehicle (hereinafter referred to as T vehicle) each have a fluid brake device (hereinafter referred to as flow side device).
7m, 7t, these flow p+1 equipment 7m
, 7 t Itj electric-fluid pressure conversion valve EP and relay valve R
It consists of V and a brake cylinder Be.

編成ブレーキ力指令器2(以下、編成制動力指令器2と
いう)からの編成ブレーキ力指令信号F(以下、編成制
動力指令信号Fという)は電気ブレーキ力指令器3(以
下、電制力指令器3という)および演算器30の正の入
力側へ伝達され、該電制力指令器3はリミッタ特性を有
する。すなわち、編成制動力指令信号FがM車の最大粘
着ブレーキカ等画信号H(以下、最大粘着制勃力等11
15信号Hという)未満のとき、戒制力指令43の出力
である電気ブレーキ力指令信号E(以下、電制力指令信
号Eという)は、E=Fであり、編成jtill動力指
令信号Fが最大粘着制動力等価信号8以上のとき、電制
力指令信号Eは、K=Hである。
The formation brake force command signal F (hereinafter referred to as formation braking force command signal F) from the formation brake force command device 2 (hereinafter referred to as formation braking force command 3) and the positive input side of the arithmetic unit 30, and the electric brake force command unit 3 has limiter characteristics. That is, the formation braking force command signal F is the maximum adhesion braking force etc. signal H (hereinafter referred to as maximum adhesion braking force etc. 11
15 signal H), the electric brake force command signal E (hereinafter referred to as electric brake force command signal E), which is the output of the restraint force command 43, is E=F, and the formation jtill power command signal F is When the maximum adhesive braking force equivalent signal is 8 or more, the electric braking force command signal E is K=H.

この電制力指令信号Eにもとづいて電気ブレーキ装置t
4(以下、% ;fill装置〆t4という)が作動し
、その実際のべ気ブレーキカ(以下、電制力という)に
相当する′;u気ブレーキ力等価信号G(以下、電制力
指令信号Gという)が演算器30の負の入力端および演
算器31の正の入力側へ伝達される。
Based on this electric brake force command signal E, the electric brake device t
4 (hereinafter referred to as %;fill device〆t4) operates, and the electric brake force equivalent signal G (hereinafter referred to as electric brake force command signal) corresponds to the actual brake force (hereinafter referred to as electric brake force). G) is transmitted to the negative input terminal of the arithmetic unit 30 and the positive input side of the arithmetic unit 31.

演算器30は、偏成Hq11動力指令信号Fから電制力
等1曲信号Gを7威算し、その結果(F−a)をM4i
設定器5mおよびT重設定器5tへ伝達する。
The arithmetic unit 30 calculates the electric braking force etc. 1 music signal G by 7 times from the biased Hq11 power command signal F, and calculates the result (F-a) as M4i.
It is transmitted to the setting device 5m and T weight setting device 5t.

T車設定訂5tld11:(F’−G)XT/(M+T
)]を出力し、このT車配分を演算器32の正の入力端
へ伝τ゛トする。一方、M¥L設定器5mは、((F−
G ) X +’、”(λイ+T))を出力し、この1
、II車配分を演iン器31 、33の正の入力側へ伝
達する。ただし、前記内設定器5t、5mの説明に卦い
て、MはM車の爪情、Ti−1:T@の重量とし、一般
に(M)T)である。
T car setting revision 5tld11: (F'-G)XT/(M+T
)] and transmits this T vehicle allocation to the positive input terminal of the arithmetic unit 32. On the other hand, the M\L setting device 5m is ((F-
G ) X +', "(λi+T))"
, II car distribution to the positive input sides of input units 31 and 33. However, in the explanation of the internal setting devices 5t and 5m, M is the weight of the M car, and the weight of Ti-1:T@, which is generally (M)T).

演算器31は、その負の人力jlilに等画信号発生?
;÷34からの最大粘着制動力等価信号Hが伝達されて
おυ、(C)+’(F−a ) X M/ (M+T 
) −H〕をダイオード35へ伝達する。
Does the arithmetic unit 31 generate an equal image signal for the negative human power jlil?
The maximum adhesion braking force equivalent signal H from ÷34 is transmitted and υ, (C)+'(F-a) X M/ (M+T
) -H] is transmitted to the diode 35.

このダイオード35は、演算器31の出力が正のときは
これをそのまま演は器32の正の入力側および演′Q、
器33の負の入力側へ伝達し、演算器31の出力が0以
下のときはその出力をOとして演′R:器32,33へ
0を伝達する。
When the output of the arithmetic unit 31 is positive, this diode 35 directly connects the output to the positive input side of the arithmetic unit 32 and the arithmetic unit 'Q'.
When the output of the arithmetic unit 31 is less than 0, the output is set as O and 0 is transmitted to the arithmetic unit 32 and 33.

演算器33は、M車設定器5mの出力であるM車配分か
らダイオード35の出力を減算し、その結果をM車増幅
器6mを介してM車の流割装置7mへ伝達する。
The arithmetic unit 33 subtracts the output of the diode 35 from the M car distribution, which is the output of the M car setter 5m, and transmits the result to the M car flow dividing device 7m via the M car amplifier 6m.

同様に、演!f器32は、T車設定器5℃の出力である
T車配分にダイオード35の出力を加算し、その結果を
T車増幅器6tを介してT車の流11】す装置7tへ伝
達する。
Similarly, performance! The f unit 32 adds the output of the diode 35 to the T-car distribution, which is the output of the T-car setter 5°C, and transmits the result to the T-car flow control device 7t via the T-car amplifier 6t.

すなわち、上記従来のブレーキ制御方法は、t+、I+
成制動力指令信号FとtS制等価価信号Gとの差をM車
とT車の重重:比に分配し、そのM車配分に11N制力
等価信号Gを加nしだものがM車の最大粘着制動力等両
信号H以下の場合には、M車配分である((p−o)x
yx/(+、++T))をM車の流1等価指令信号とす
ると共に、T車配分である((F−G)XT/(M+、
T ))t−T車の流側力指令信号とし、また、前記M
車配分に市等価等価信号Gを加算したものがM車の最大
粘着制動力等価信号Hを超える場合には、この超過分を
M車配分から減算した(H−a)をM車の流側力指令信
号とすると共に、前記超過分をT車配分に加算した(F
−H)をT jp−の流:I+lI力指令信号とするよ
うになっている。
That is, in the conventional brake control method, t+, I+
The difference between the brake force command signal F and the tS control equivalent signal G is distributed to the weight ratio of the M car and the T car, and the 11N braking force equivalent signal G is added to the M car distribution. If both signals such as the maximum adhesive braking force of
yx/(+, ++T)) is the flow 1 equivalent command signal for M cars, and the T car distribution is ((F-G)XT/(M+,
T)) t-T The downstream force command signal of the vehicle, and the M
If the car distribution plus the city equivalent equivalent signal G exceeds the maximum adhesion braking force equivalent signal H of the M car, this excess is subtracted from the M car allocation (H-a) and is calculated as the flow side of the M car. In addition to using it as a force command signal, the excess amount was added to the T vehicle distribution (F
-H) is used as the flow of T jp-: I+lI force command signal.

ここで、編成制動力指令信号Fが!4車の最大粘着制動
力等価信号H未満1以上の2つの場合に分けて考えると
、 まず、(F<H)の場合、電制力指令器3の特性により
電制力指令信号E=編成制動力指令信号Fであって、電
制力指令信号(E=F )に対する′1E制力等価信号
Gけ(G≦F)であり、がっ、前8己の7由り(F<H
)であるから、常に(G+(F−G)×上、</(M+
T):]<Hとなり、このため、M車の流側力指令信号
はM車配分((F−G)XM/(M+T ) 〕であり
、T*の流側力指令信号はT車配分[: (F−a )
 X T / (rt + T ) :]である。
Here, the formation braking force command signal F! Considering the two cases in which the maximum adhesion braking force equivalent signal of 4 cars is less than H and 1 or more, first, in the case of (F<H), the electric braking force command signal E = formation due to the characteristics of the electric braking force command device 3. The braking force command signal F is the '1E braking force equivalent signal G (G≦F) with respect to the electric braking force command signal (E=F), and the 7th difference (F<H) is the braking force command signal F.
), so it is always (G+(FG)×up, </(M+
T):]<H, therefore, the downstream force command signal of M vehicle is M vehicle distribution ((FG)XM/(M+T))], and the downstream force command signal of T* is T vehicle distribution. [: (F-a)
XT/(rt+T):].

これに対し、(F≧H)の場合、電制力指令器3のリミ
ッタ特性によりIu制等価令信号E=最大粘着制動力等
価信号Hであり、且つ、前記の通シ(F≧H)であるた
め、電制力指令器号(E−H)K対する市等価等価信号
Gの111合(以下、電制率という)が高ければ、CG
+(y−o)x+A/(M+T )]>Hとなり、山;
側車が低ければ、〔G十(y−a )XM/(M+T 
))≦H七なる。
On the other hand, in the case of (F≧H), the Iu control equivalent command signal E = maximum adhesive braking force equivalent signal H due to the limiter characteristics of the electric braking force command device 3, and the above-mentioned through (F≧H) Therefore, if the 111 ratio of the city equivalent signal G to the power control command number (E-H) K (hereinafter referred to as the power control rate) is high, the CG
+(y-o)x+A/(M+T)]>H, and the mountain;
If the sidecar is low, [G0(y-a)XM/(M+T
)) ≦H7.

したがって、(F≧H)の場合において電制率が高いと
、M車の流側力指令信号が(H−a)てありてT車の流
側力指令信号が(F−H)であり、(F≧H)の用台に
おいて電制率が低いと、λぺ車の流側力指令信号が((
y−a ) X M/ (+a−)−T)〕であってT
車の流側力指令信号が[(F−。
Therefore, in the case of (F≧H), if the curtailment rate is high, the downstream force command signal of vehicle M is (H-a) and the downstream force command signal of vehicle T is (F-H). , (F≧H), when the electric control rate is low, the downstream force command signal of the λ-pedal wheel becomes ((
y-a) X M/ (+a-)-T)] and T
The downstream force command signal of the vehicle is [(F-.

)XT/(λ弓+T)〕である。)XT/(λbow+T)].

これらM 、iij 、 T車の流側力指令信号+dそ
れぞれの流等価とみることができるから、上記従来のブ
レーキ;口制御方法によるM車とT車の流1ii11力
を整理すると以下の++hりとなる。
Since these M, Iij, and T cars' downstream force command signals +d can be regarded as equivalent to each other, the above conventional brake; becomes.

(I)  編成;t11助力指令信号F(M車の最大粘
着・till動力等動力等価信号へ、 M車流制カー(F−G ) XM/(M+T )T車流
制力=(y−a ) XT/(M+T )(11)  
〜rIi、制動力指令信号F≧Mホの最大粘着制動力等
価信号Hのとき、 (H−a )、電制率(G/H)が高い場合、M車流制
カー(H−a) T車流制力=(F−H) (II −b )、市jtdj率(a / T()が低
い場合、M屯流等価=(F−G)XM/(M+T)T車
流制力=(F−a ) XT/(M+T )′また、4
1両の減速度は制動力を型骨で除算したものであり、M
車の合成制動力はM車の流等価と・jr、 !’、il
l力との第11であるから、上記従来のブレーキ制御力
、夫におけるT車の流制減速I現βt、M車の流・ti
ll減速度73 m 、 M車の合成減速間βMは次の
通りとなる。
(I) Formation; t11 assistance command signal F (to power equivalent signal such as maximum adhesion and till power of M car, M car flow control car (F-G) XM/(M+T) T car flow control force = (y-a) XT /(M+T)(11)
~rIi, When the maximum adhesion braking force equivalent signal H of braking force command signal F≧Mho, (H-a), When the electric braking rate (G/H) is high, M vehicle flow control car (H-a) T Vehicle flow control force = (F - H) (II - b ), city jtdj rate (a / T () is low, M tonne flow equivalent = (F - G) XM / (M + T) T vehicle flow control force = (F -a) XT/(M+T)' Also, 4
The deceleration of one vehicle is the braking force divided by the mold bone, and M
The combined braking force of a car is equivalent to the flow of an M car. ',il
Since the above-mentioned conventional brake control force, the flow control deceleration I current βt of the T vehicle at the husband, and the flow ti of the M vehicle,
I deceleration is 73 m, and the resultant deceleration interval βM of M car is as follows.

(イ)  F<Hのとき、 βを一βm = (F−G ) / (M +T )β
M=(F−G )/(M+T )十〇/M(ロ) F≧
Hのとき、 (ローa)、知、■・il率(G/H)が高い場合、r
t =(F−H)/T βm = (H−G  ) / M βM=(H−G)/M十〇/M=H/M(ローb)、電
制率(G/)()が低い場合、βを一βm−(F−G 
)/(M+T )βM= (F−a ) / (M+T
 ) 十G /+Aそして、上記(イ)の関係を第2図
に示し、上記(ロ)の関係を第3図に示す。
(a) When F<H, β is one βm = (FG) / (M + T) β
M=(F-G)/(M+T) 10/M(b) F≧
When H, (rho a), knowledge, ■・il rate (G/H) is high, r
t = (F-H)/T βm = (H-G) / M βM = (H-G)/M〇/M = H/M (low b), the electric current control rate (G/) () If it is low, let β be one βm-(F-G
)/(M+T)βM=(F-a)/(M+T
) 10G /+A The relationship in (a) above is shown in FIG. 2, and the relationship in (b) above is shown in FIG. 3.

¥、2図からも明らかな辿り、(F<H)すなわち編成
制動力指令信号Fが小さいとき、M単流i!j1減速度
βmおよびT車流制減速度βtは′dλ1hす率100
%から低下するにしたがって0から〔F/(M+T)’
:I筐で上昇し、M東合成減速度βM i#市。
¥, It is clear from Figure 2 that (F<H), that is, when the formation braking force command signal F is small, M single flow i! j1 deceleration βm and T vehicle flow control deceleration βt are 'dλ1h rate 100
As it decreases from %, it decreases from 0 to [F/(M+T)'
: Rise in I housing, M East synthetic deceleration βM i# city.

利率100πから低下するにともなって(F/M)から
CF/(M+T ) )まで低1する。
As the interest rate decreases from 100π, it decreases by 1 from (F/M) to CF/(M+T).

また、第3図からも明らかな辿り、(F≧H)すなわち
@成制ツ111力指令信号Fが最大粘着制動力等価信号
Hより太きいとき、T小流’jlll減速IWβtは電
制率が高いと一定値C(F−H)/T〕を保持し、M単
流制減速度βmは′a電制率低下にしたがって上昇し、
ある電制率以下になると、両減速1Wβt、βmは同じ
ように上昇してCF / (M +T))に達し、IA
車合Fy、減速度βMf′i電希1]電力1]率力;高
114. (H/ >A)を保持し電制率がある(直以
下になるとCF/(M+T ):)まで低下する。
Also, as is clear from Fig. 3, (F≧H), that is, when the force command signal F is thicker than the maximum adhesion braking force equivalent signal H, the T small flow 'jllll deceleration IWβt is the electric braking rate. When is high, the constant value C(F-H)/T] is maintained, and the M single-flow limiting deceleration βm increases as the limiting rate 'a decreases,
When the electric current reduction rate falls below a certain rate, both decelerations 1W βt and βm increase in the same way and reach CF / (M + T)), and IA
Vehicle coupling Fy, deceleration βMf'i electric power 1] power 1] rate power; high 114. (H/>A) is maintained and the charge reduction rate decreases to a certain level (CF/(M+T):) when it becomes just below.

従来のブレーキ制御方法においては、各減速度βt、β
m、βMが以上の辿りであって、次に述べる問題を有す
る。
In the conventional brake control method, each deceleration βt, β
m and βM are the above traces, and have the following problems.

従来の直流電動機のチョソノく制(11亀車に対して、
最近は誘導電動機のインノ(−夕制却電車が開発されて
おり、このインバータ制御′妊車は、M車制動中に車輪
が滑走するとこれを検知して誘導電動機が直ちにトルク
を減じて電制力を低下させるという特性を有する。
Conventional DC motor control system (11 turtle cars,
Recently, an inverter-controlled train has been developed using an induction motor, and when the wheels of an M car slip during braking, the induction motor immediately reduces the torque and controls the electric control. It has the property of reducing force.

ところが、上述のIInす、従来のブレーキ制御方法に
おいては、編成制動力指令信号FがM車の最大粘着制動
力等画信号Hな超えているとき、電制力Gが低下しても
即ち電制率(G/I()が低下しても、その低下f4が
少ないと、この電制力Gの低下分をM車の電制力が補足
するために、M車の合成減速度βMとしては一定値(H
/ M )を保持し、電制率の低下がある値になっては
じめてM車合成減速度βMが低下するのである。
However, in the conventional brake control method mentioned above, when the composition braking force command signal F exceeds the maximum adhesion braking force etc. image signal H of M cars, even if the electric braking force G decreases, Even if the control rate (G/I()) decreases, if the decrease f4 is small, the electric braking force of the M vehicle will supplement the decrease in the electric braking force G, so the combined deceleration βM of the M vehicle will be is a constant value (H
/M) is maintained, and the combined deceleration βM of the M vehicle decreases only when the electric control rate decreases to a certain value.

すなわち、従来のブレーキ制御方法を上記インバータ制
御電車に適用すると、編成制動力指令信号FがM車の最
大粘着制動力等価信号Hを超えているときに車輪が滑走
すると、誘導電IPI1機のトルクが減少して電制力G
 (電制率)が几下するが、その低下;辻が少ないとM
車合成減逮世βMすなわちM車合成制動力が一足値を保
持するため、車輪が滑走を続け、車輪とレール間の早期
再粘着が不可能である。
That is, when the conventional brake control method is applied to the above-mentioned inverter-controlled electric train, if the wheels skid while the formation braking force command signal F exceeds the maximum adhesion braking force equivalent signal H of M cars, the torque of one induction electric IPI decreases and the electric control force G
(Electrification rate) decreases, but its decline; if there are few intersections, M
Since the vehicle composite deceleration βM, that is, the M vehicle composite braking force, maintains a constant value, the wheels continue to slide, and early readhesion between the wheels and the rails is impossible.

そこで、本発明は、編成制動力指令信号の大小にかかわ
らずM車の電制率が100%から低下すると直ちにM車
の合成減速度すなわち合成制動力を減じる(ただし、T
車の流側減速度すなわち電制力を増大させる)ことを目
的とし、その特徴とするところは、鉄道車両用ブレーキ
制御方法において、編成制動力指令信号FのM東配分(
F X M/(M+T):]が1E制力等等信号Gより
小さいとき、編成制動力指令信号Fと′礪等価Gとの差
(F−G)をT車の電制力指令信号とすると共に、M軸
信号G以上のとき、編成it+ll動力指令信号7のT
車配分(FXT/(M+T)]をT車の電制力指令信号
とすると共に、編成制動力指令信号FのM屯配分と電制
力等価信号Gとの差[F’ X M / (M+T )
 −a 〕をM車の電制力指令46号とするところにあ
る。
Therefore, the present invention reduces the combined deceleration of M cars, that is, the combined braking force, as soon as the electric braking rate of M cars decreases from 100%, regardless of the magnitude of the formation braking force command signal (however, T
Its purpose is to increase the downstream deceleration of cars (in other words, increase the electric braking force), and its feature is that in the railway vehicle brake control method, the M east distribution of the formation braking force command signal F (
When F X M/(M+T): ] is smaller than the 1E braking force etc. signal G, the difference (FG) between the formation braking force command signal F and the 'T' equivalent G is the electric braking force command signal of the T car. At the same time, when the M-axis signal is equal to or higher than G, T of the formation it+ll power command signal 7
Let vehicle distribution (FXT/(M+T)) be the electric braking force command signal for T cars, and the difference between the M tonne distribution of the formation braking force command signal F and the electric braking force equivalent signal G [F' )
-a] is the electronic control force command number 46 for M cars.

以下、本発明の鉄道車両用ブレーキ制御方法を第4図〜
;A10図にもとづいて説明する。なお、従来と同一部
分については第1図と同一符号を付して詳説はしない。
Hereinafter, the brake control method for railway vehicles of the present invention will be explained in Figs.
; Explanation will be given based on Figure A10. Note that parts that are the same as those of the prior art are given the same reference numerals as in FIG. 1 and will not be described in detail.

第4図は本発明方法を適用した装置の第1実施1/すを
示し、揚収制動力指令器2 、 ′、i、:制力指令等
価。
FIG. 4 shows a first embodiment of the apparatus to which the method of the present invention is applied, in which the lifting and retrieving braking force command device 2,',i: braking force command equivalent.

ijLimll装置iZ 4 、 T単槽幅器6t、M
i増幅器6m。
ijLimll equipment iZ 4, T single tank width device 6t, M
i amplifier 6m.

T車の流側装置7t、M車の流側装置7mはそれぞれ従
来と同じである。
The downstream device 7t of the T vehicle and the downstream device 7m of the M vehicle are the same as the conventional ones.

T重設定器5tは、編成1111動力指令信号FをT卓
重量配分したもの(F X T / (M 十T ) 
〕を演算器11の正の入力4+++1へ伝達する。
The T weight setting device 5t is a T table weight distribution of the formation 1111 power command signal F (F XT / (M 1 T)
] is transmitted to the positive input 4+++1 of the arithmetic unit 11.

M軍役定器5mは、編成制動力指令15号FをM車重量
配分したもの(FXM/(M−1−T ) 〕を演算器
12の負の入力側および演1)器13の正の入力側へ伝
達する。
The M military service regulator 5m calculates the M vehicle weight distribution (FXM/(M-1-T)) of the formation braking force command No. 15 F to the negative input side of the calculator 12 and the positive input side of the calculator 13. Transmit to the input side.

演算器12は、その正の入力側へTif、等価等価信号
Gが伝達されているため、編成制動力指令信号FのM車
配分との差(a −F X M/ (M + T ) 
〕をダイオード14へ伝達する。
Since Tif and the equivalent equivalent signal G are transmitted to the positive input side of the computing unit 12, the difference between the formation braking force command signal F and the M car distribution (a − F X M/ (M + T )
] is transmitted to the diode 14.

ダイオード14ば、演算器12の出力が正のときこれを
その捷ま出力し、演算器12の出力がO以下のとき0を
出力し、この出力が演豹’、 器11の負の入力側に伝
達でれる。
The diode 14 outputs the output of the arithmetic unit 12 when it is positive, and outputs 0 when the output of the arithmetic unit 12 is less than O, and this output is the negative input side of the arithmetic unit 11. It can be communicated to.

したがって、演算:1ル11の出力すなわちT屯の電制
力指令信号は、G>(FXM/(M+T))のとき(F
−G)であり、G≦F X M / (M + T)〕
のとき(FXT/(M+T))である。
Therefore, when G>(FXM/(M+T)), the output of calculation 1 le 11, that is, the electric control force command signal of
-G), and G≦FXM/(M+T)]
When (FXT/(M+T)).

また、演−算器13は、その負の入力側に電制力等価信
号Gが入力されているため、編成制動力指令信号FのM
車配分との差(FXM/(M−1−T)−G)をダイオ
ード15へ伝θする。
Further, since the electric braking force equivalent signal G is input to the negative input side of the computing unit 13, the M of the train set braking force command signal F is
The difference (FXM/(M-1-T)-G) from the vehicle distribution is transmitted to the diode 15.

ダイオード15は、演算器13の出力が正のときこれを
そのま1出力し、演”¥ffff1S13の出力がθ以
下のとき0を出力する。
The diode 15 directly outputs 1 when the output of the arithmetic unit 13 is positive, and outputs 0 when the output of the operator \ffff1S13 is less than θ.

したがって、ダイオード15の出力すなわちM車の電制
力指令信号は、a ) (F X M / (M + 
T)〕のときOであり、G≦CFXM/(M+T )〕
のとき[: FXM/(M+T ) −G )である。
Therefore, the output of the diode 15, that is, the electric braking force command signal of the M vehicle is a) (FX M / (M +
T)] is O when G≦CFXM/(M+T)]
When [:FXM/(M+T)-G).

これらM Tif 、 T屯の電制力指令信号にもとづ
いてそれぞれの流側装置’1m、7tが作動するわけで
あるから、電制力指令信号は流Hall力とみることが
でき、また、電制力等価信号Gを電制力とみることがで
き、さらに、M車の合成制動力はM車の電制力と電制力
との和であるから、T車の電制力およびM車の流等価2
合成制動力を整理すると次の通りとなる。
Since the downstream devices '1m and 7t operate based on the electrical braking force command signals of M Tif and T ton, the electrical braking force command signal can be regarded as the flow Hall force, and the electrical braking force command signal The braking force equivalent signal G can be regarded as the electric braking force, and furthermore, since the composite braking force of the M car is the sum of the electric braking force of the M car and the electric braking force of the M car, the electric braking force of the T car and the M car flow equivalent 2
The combined braking force is summarized as follows.

(i)  a ) (F X N(/ (M + T 
) :]のとき、T屯流制力等価F−G) M車流制カーO M車合成制動カー〇 (ii)  G≦(FXM/(M+T):)のとき、T
車流等価=(FXT/(M+T):IM車流制等価 [
F X M / (IA十T ) −G ]M車合成制
動力=(FxM/(M+T ))そして、減速度は制動
力を重量で除算したものであるから、T車の流制減速度
βt、M車の流側減速度βm、M車の合成減速度βMは
次の通りである。
(i) a ) (F X N(/ (M + T
) : ], T ton flow braking force equivalent FG) M vehicle flow control car O M vehicle composite braking car 〇(ii) When G≦(FXM/(M+T):), T
Vehicle flow equivalent = (FXT/(M+T): IM vehicle flow control equivalent [
F , the downstream deceleration βm of the M car, and the composite deceleration βM of the M car are as follows.

(x)  G ) (F X M / (M + T 
) ]のとき、βt=(F−G)/T βm = 0 βM = G / M (y)  G≦[FXM/(M+T ))]のとき、β
t = F / (λづ+T) βm = F / (M 十T ) −G / MβM
=F/(M+T) これら減速度βt、βm、βMと電制率(G/E)との
関係を第5図、第6図に示し、第5図は(編成制動力指
令信号F)<(M車の最大粘着制動力等価信号H)の場
合、第6図は(F≧H)の場合である。
(x) G) (F X M / (M + T
)], then βt=(FG)/T βm = 0 βM = G/M (y) When G≦[FXM/(M+T))], β
t = F / (λ + T) βm = F / (M + T) -G / MβM
=F/(M+T) The relationship between these decelerations βt, βm, βM and the electric braking rate (G/E) is shown in Figs. 5 and 6. In the case of (maximum adhesion braking force equivalent signal H of M car), FIG. 6 shows the case of (F≧H).

第5図からも明らかな1由り、(F<H)の場合、(電
制力指令信号E )−(編成制動力指令信号F)である
から’till (G/FC) −(()/F’ )−
chす、市、側車100%のとき(F=G)であるため
、T車の流制$、速度βtは、電制率100%のとき0
であって電制率が低下するに従って上昇し、G≦(FX
M/(M十T ))の範囲において一定値[F / (
M + T ) ]である。また、M車の流側減速度β
mは、電制率が100%からG=(FXM/(M+T 
) )となるまで0であり、G≦〔FXu/(+a+T
):]の範囲において電制率が低下するにしだがって上
昇し、電制率0%でCF/(M十T)〕に達する。さら
に、M車の合成減速度βMは、電制率100%のとき(
F/M ’)であル、電制率が低下するにともなって低
下し、G≦〔FXM/(M+T))の範囲において一定
値〔F/(M+T ) )である。
As is clear from Fig. 5, in the case of (F<H), (electronic braking force command signal E) - (composition braking force command signal F), so 'till (G/FC) - (() /F')-
Channel, City, When the sidecar is 100% (F = G), the flow control $ and speed βt of the T car are 0 when the electric control rate is 100%.
, it increases as the electricity cut rate decreases, and G≦(FX
A constant value [F / (
M+T)]. Also, the downstream deceleration β of the M car is
m is G=(FXM/(M+T
)) until G≦[FXu/(+a+T
):], as the electric discharge rate decreases, it increases accordingly, and reaches CF/(M + T)] at a electric discharge rate of 0%. Furthermore, the composite deceleration βM of the M car is when the electric control rate is 100% (
F/M') decreases as the electric discharge rate decreases, and is a constant value [F/(M+T)) in the range of G≦FXM/(M+T)).

同様に、第6図に示す通り、(F≧H)の場合、(電制
力指令信号E ) = (M車の最大粘着制動力等価信
号H)であるから、電制率(a / K ) −(G/
H)であるため、T車の流側減速度βtは、電制率10
0%のとき[(F−’H)/T)であって電制率が低下
するにしだがって上昇し、G≦〔F X M / ()
A十T ) )の範囲において一定値〔F/ (M +
 T ) )である。寸だ、M車の流側減速度βmは、
電制率100%から() = [: F X M / 
(M十T)〕となる寸で0であり、G≦CF X rA
/ (M+T ))の範囲において電1till率が低
下するにしだがって」二昇し、Ri制側車%でCF/(
M+T )〕に達する。さらに、IA車の合成減速度β
Mは、電制率100%のとき(n/+、i)であυ、Y
lt: :li:、率が低下するにともなって低下し、
G≦[FXM/(M+T ))の範囲において一定値[
: p / (M +T))である。
Similarly, as shown in Fig. 6, in the case of (F≧H), (electronic braking force command signal E) = (maximum adhesion braking force equivalent signal H of vehicle M), so the electrical braking rate (a/K ) −(G/
H), the downstream deceleration βt of the T vehicle has an electric control rate of 10
When it is 0%, it is [(F-'H)/T), and as the curtailment rate decreases, it increases accordingly, and G≦[F X M / ()
A constant value [F/ (M +
T)). The downstream deceleration βm of the M car is
From 100% electricity cut rate () = [: F X M /
(M + T)], and G≦CF
/ (M+T)) As the electric current rate decreases, it increases by 2, and CF/(
M+T)]. Furthermore, the composite deceleration β of the IA car is
M is (n/+, i) when the power reduction rate is 100%, υ, Y
lt: :li:, decreases as the rate decreases,
Constant value [ in the range of G≦[FXM/(M+T))
: p/(M+T)).

以上の通9、本発明方法においては、編成制動力指令信
号Fが大きくても不埒くても、電制率が100%から低
下すると、直ちにM MLの合成減速度βMを減じるこ
とができる。このとき、T車の流側減速度βtが直ちに
上昇するが、M車の流側減速度は0のiまである。
As stated above, in the method of the present invention, regardless of whether the formation braking force command signal F is large or unreasonable, when the electric braking rate decreases from 100%, the combined deceleration βM of MML can be immediately reduced. At this time, the downstream deceleration βt of the T vehicle immediately increases, but the downstream deceleration of the M vehicle is up to 0 i.

なお、上記第4図の第1実施例においては、まず編成制
動力指令信号Fを発生させ、これをT重設定器5tとM
単投定器5mとでM車、T車それぞれの重量に応じて配
分しだが、これらを逆に行なっても良い。すなわち、M
車配分Cy X M / (M+T ) E 、’r車
配分〔FXT/(M+T)〕を先に発生させて、これら
を加算して編成制動力指令信号Fとしても本発明の実施
が可能である。
In the first embodiment shown in FIG.
Although the weights are distributed according to the weight of the M car and the T car using a single projector of 5m, it is also possible to do this in the opposite way. That is, M
It is also possible to implement the present invention by first generating car distribution Cy .

壕だ、第4121におけるM車に配置したT軍役定下 器5t、演算器11,7車増幅器6tをT車に配置して
も良く、この第2実施例を第7図に示す。
The T military regulator 5t, arithmetic unit 11, and 7th vehicle amplifier 6t that were placed on the M vehicle in the 4121st may be placed on the T vehicle, and this second embodiment is shown in FIG.

この第2突施例は第4図の第1実施例と実質的に同一で
あるのでその説明を省略する。
Since this second projecting embodiment is substantially the same as the first embodiment shown in FIG. 4, a description thereof will be omitted.

第8図は本発明方法を適用した装置の第3実施例を示し
、この第3実施例は、M車増幅器6mへの信号伝達手段
が第4図の第1実施例と同じであり、T水増幅器6tへ
の信号伝達手段を第1実施例とは異ならせたものである
ので、第1実施例とその手段の異なる点について以下に
説明する。
FIG. 8 shows a third embodiment of the device to which the method of the present invention is applied. In this third embodiment, the signal transmission means to the M car amplifier 6m is the same as in the first embodiment shown in FIG. Since the signal transmission means to the water amplifier 6t is different from the first embodiment, the differences between the means and the first embodiment will be explained below.

演算器16にて編成制動力指令信号Fと電制価等価信号
Gとの差(y−a)を求め、この演算器16の出力とT
重設定器5tの出力との差〔(F−G)−FXT/(M
+T):]すなわち[FXM/(M+T)−a)を演算
器17で求める。そして、(1,>[: FXM/(M
+T ))のとき、ターイオード18の出力が0である
から、イ寅O1器19は演算器16の出力(F−G)を
その寸ま出力し、G≦CFXM/(M+T)l)のとき
、ダイオード18の出力が[FXM/(M+T )−G
:]fあり、演算器19は演算器16の出力からダイオ
ード18の出力を減算したC F X M / (>、
t、 + T ) :Iを出力する。
The difference (y-a) between the train set braking force command signal F and the electric braking equivalent signal G is determined by the computing unit 16, and the output of this computing unit 16 and T
Difference from the output of the heavy setting device 5t [(FG)-FXT/(M
+T):], that is, [FXM/(M+T)-a) is determined by the calculator 17. And (1, > [: FXM/(M
+T)), the output of the third diode 18 is 0, so the second O1 unit 19 outputs the output (FG) of the arithmetic unit 16 to that extent, and when G≦CFXM/(M+T)l) , the output of diode 18 is [FXM/(M+T)-G
:] f exists, the arithmetic unit 19 subtracts the output of the diode 18 from the output of the arithmetic unit 16, which is C F X M / (>,
t, +T): Outputs I.

すなわち、第8図の第3実施例は、T車の流側力指令信
号を得る(14成が第4図の第1実施例と異なるものの
、そのT車の流側力指令信号が実質的にP81実施例と
同一てあり、T卓流制減速度2M車流制減速度、M屯合
代減速度と6を利率との関係は第1実施例と同じく第5
図、第6図の通りとなる。
That is, the third embodiment shown in FIG. 8 obtains the downstream force command signal for the T vehicle (although the 14 components are different from the first embodiment shown in FIG. 4, the downstream force command signal for the T vehicle is substantially different from the first embodiment shown in FIG. is the same as the example on page 81, and the relationship between the T flow control deceleration, 2M car flow control deceleration, the M ton combination deceleration, and the interest rate is the same as in the first embodiment.
As shown in Figure 6.

第9図は、第8図の第3実施例におけるM車に配置θし
たT重設定器5t、演算器17,19.ダイオード18
.T単槽輻芥6tをT車に配置した’ff 4突施例を
;irl、、この第4実施例は実質的に第8図の第3実
施例と同一であるのでその説明を省略する。
FIG. 9 shows a T-load setting device 5t, arithmetic units 17, 19, . diode 18
.. An example of the 'ff 4-projection example in which 6 tons of T single tank waste is placed on a T car; irl, This fourth example is substantially the same as the third example shown in Fig. 8, so its explanation will be omitted. .

第10図は本発明方法を適用した装置の第5実施例を示
し、M車増幅器6m、T水増幅器6tへの信号伝4手段
すなわち、M 4 、 T車それぞれの流1]リカ指令
信号を得るための(j〜l)y、ををらに変更したもの
であり、以下に説明する。
FIG. 10 shows a fifth embodiment of a device to which the method of the present invention is applied, in which four means for transmitting signals to the M car amplifier 6m and the T water amplifier 6t, that is, the flow of each of the M 4 and T cars 1] Rika command signal. This is a modification of (j to l)y to obtain, and will be explained below.

古′!す器16にて編成111す動力指令信号Fと電制
力令価信号Gとの差(F−a)を求め、この演算器工6
の出力とT jJU 設定器5tの出力との差[(F−
o )−FXT/(M+T) 〕すなわち(FXM/(
M−1−T)−G)を演n器17で求める。そして、Q
 ) [’ F X hイ/(M+T ) )のとき、
ダイオード18の出力が0であるから、M$J曽@器6
mの入力すなわちM車の流側力指令信号をOとすると共
に、演算器19は演Q、器16の出力(F−a)をその
まま出力し、これをT単槽幅器6tの入力すなわちT車
の電制力指令信号とする。まだ、G≦(yx1a/(M
+T )]のとき、ダイオード18の出力が[F X 
M / (M+ T ) −[) ]であるから、この
ダイオード18の出力をM車の電制力指令信号とし、演
算器19が演算器16の出力からダイオード18の出力
を減算した[: F X M / (M+T)〕を出力
し、これをT車の電制力指令信号とする。
Old′! The difference (F-a) between the power command signal F of the formation 111 and the electric control force value signal G is determined by the calculation device 6.
The difference between the output of and the output of the T jJU setting device 5t [(F-
o )-FXT/(M+T) ] i.e. (FXM/(
M-1-T)-G) is determined by the operator 17. And Q
) ['F
Since the output of diode 18 is 0, M$J so @ device 6
The input of m, that is, the downstream force command signal of the M vehicle, is set to O, and the arithmetic unit 19 outputs the output (F-a) of the operator Q and the unit 16 as it is, and inputs this to the input of the T single tank width device 6t, that is, the downstream force command signal of the M vehicle. This is the electric brake force command signal for the T vehicle. Still, G≦(yx1a/(M
+T)], the output of the diode 18 is [F
Since M/(M+T) - [)], the output of this diode 18 is used as the electric braking force command signal for the M vehicle, and the arithmetic unit 19 subtracts the output of the diode 18 from the output of the arithmetic unit 16 [: F X M / (M+T)], and this is used as the electric braking force command signal for the T vehicle.

すなわち、第10図の第5実施例は、M車、T車のそれ
ぞれの流等価指令fi号を得る構成が第1゜第2の実施
例と異なるものの、これら電制力指令信号が実質的に第
1−第4の実施jfllと同じであり、電制率に対する
減速度特性が第5 i:(] 、第6図の通りとなる。
That is, although the fifth embodiment shown in FIG. 10 differs from the first and second embodiments in the configuration for obtaining flow equivalent commands fi for M vehicles and T vehicles, these electric braking force command signals are substantially This is the same as in the first to fourth implementations, and the deceleration characteristics with respect to the curtailment rate are as shown in FIG. 6.

以上の説明の、’j(1す、本発明方法によれば、編成
制動力指令信号の大小にかかわらず、M車の電制力すな
わち電制率が100%から低下すると、直ちにM車の合
成減速度を低下させることができるため、インバータ制
御電車に適用した場合、車輪が滑走すると、直ちにM車
の合成制動力が低下して重輪とレール間の再粘着が可能
となる。
According to the method of the present invention, regardless of the magnitude of the formation braking force command signal, when the electric braking force of the M car, that is, the electric braking rate decreases from 100%, the M car's Since the composite deceleration can be reduced, when applied to an inverter-controlled electric train, when the wheels skid, the composite braking force of the M car immediately decreases, allowing the heavy wheels and rails to re-adhesion.

寸だ、本発明方法によれば、以下に述べる特有の効果が
得られる。
According to the method of the present invention, the following unique effects can be obtained.

一般に、編成制動力指令信号が与えられたとき、まず、
電制力が立ち上がり、その後に電制力が立ち上ってから
電制力が低下していく。つまり、電制力が立ち上がる寸
での流等価減速度は第2図。
Generally, when a formation braking force command signal is given, first,
The electrical braking force rises, then the electrical braking force rises, and then the electrical braking force decreases. In other words, the flow equivalent deceleration at the point where the electric braking force rises is shown in Figure 2.

第3図、P45図、第6図の電制力0のときの値であり
、電制力が立ち上がると、従来方法(第2図。
These are the values when the electric braking force is 0 in Fig. 3, P45, and Fig. 6, and when the electric braking force rises, the conventional method (Fig. 2).

第3図)においてはM車の流等価減速度βmが緩やかに
低下し、本発明方法(第5図、第6図)においてはM車
の流等価減速度βmが速やかに低下する。また、電制力
はその指令信号が変化しても若干遅れて変化する。した
がって、本発明方法によれば、従来方法に比べて、電1
till率の上昇に対するM車流等価減速度低下が速や
かであるため、M車合成制動力がオーバーシュートしに
〈<、車輪の滑走が少なくなる。
In FIG. 3), the flow equivalent deceleration βm of the M vehicle gradually decreases, and in the method of the present invention (FIGS. 5 and 6), the flow equivalent deceleration βm of the M vehicle decreases rapidly. Further, even if the command signal changes, the electric control force changes with a slight delay. Therefore, according to the method of the present invention, compared to the conventional method,
Since the M vehicle flow equivalent deceleration decreases quickly with respect to the increase in the till rate, the M vehicle composite braking force overshoots and the wheels slip less.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の鉄道車両用ブレーキ制御方法を適用した
装置のブロック図、第2図、第3図は同従来方法におけ
る電制率と減速度との関係を示す特性図、第4図は本発
明の鉄道車両用ブレーキ制御方法を適用した第1実施例
を示すブロック図、第5図、第6図は同第1実施例にお
ける′、i′+、制水と減速度との[夕1係を示す特性
図、第7図は同第2実施例を示すブロック図、第8図は
同第3実施例を示すブロックa1、第9図は同第4実施
例を示すブロック図、第10図は同第5実鳩例を示すブ
ロック図である。 F・・・編成ブレーキ力指令信号 (編成制動力指令信号) E・・・世銀ブレーキ力指令信号 (電制力指令信号) G・・・電気ブレーキカ等価信号 (電fiill力等価信号) H・・・モータ屯の最大粘着ブレーキカ等価信号3・・
・電気ブレーキ力指令器(市等価指令器)4・・・電気
ブレーキ装置(電制装置)5m・・・M軍役定心 5℃
・・・T車設定器6m・・IA車単槽・器 6を−・T
型槽幅器7m・・・M車の流体ブレーキ装置(電制装置
)7t・・・T車の流体ブレーキ装4(電制装置)出随
人:日本エヤーブレーギ株式会社 算10図 手続補正書く自発) 昭和59年4月4日 特許庁長官  若 杉 和 夫 殿 1、事件の表示 昭和58年特許願第93176号 2、発明の名称 鉄道車両用ブレーキ制御方法 3、補正をする者 事件との関係  特許出願人 郵便番号 651 (電話神戸(078)231−4134 >4、補正の
対象 明細書の発明の詳細な説明 5、補正の内容
Fig. 1 is a block diagram of a device to which a conventional railway vehicle brake control method is applied, Figs. 2 and 3 are characteristic diagrams showing the relationship between electric braking rate and deceleration in the conventional method, and Fig. 4 is a FIGS. 5 and 6 are block diagrams showing a first embodiment to which the railway vehicle brake control method of the present invention is applied. 7 is a block diagram showing the second embodiment, FIG. 8 is a block a1 showing the third embodiment, and FIG. 9 is a block diagram showing the fourth embodiment. FIG. 10 is a block diagram showing the fifth example of the pigeon. F...Composition braking force command signal (composition braking force command signal) E...World bank brake force command signal (electronic braking force command signal) G...Electric brake force equivalent signal (electric fiill force equivalent signal) H...・Maximum adhesion brake force equivalent signal of motor ton 3...
・Electric brake force command unit (city equivalent command unit) 4...Electric brake device (electronic control device) 5m...M military service center 5℃
...T car setting device 6m...IA car single tank/device 6--T
Model tank width 7 m...Fluid brake system (electronic control device) of M car 7t...Fluid brake system 4 (electronic control device) of T car Attendant: Nippon Air Brake Co., Ltd. Voluntary writing of calculation 10 diagram procedure correction ) April 4, 1980 Kazuo Wakasugi, Commissioner of the Patent Office 1. Indication of the case 1988 Patent Application No. 93176 2. Name of the invention Brake control method for railway vehicles 3. Person making the amendment Relationship to the case Patent applicant postal code 651 (Telephone: Kobe (078) 231-4134 > 4, Detailed explanation of the invention in the specification to be amended 5, Contents of the amendment

Claims (1)

【特許請求の範囲】[Claims] (1)編成ブレーキ力指令信号がモータ車の最大粘着ブ
レーキカ等価信号未満のとき該編成ブレーキ力指令信号
を電気ブレーキ力指令信号とすると共に、編成ブレーキ
力指令信号が前記最大粘着ブレーキカ等価信号以上のと
き該最大粘着ブレーキ力等価信号を電気ブレーキ力指令
信号とし、1該’1+4:気ブレーキ力指令信号にもと
づいて電気ブレーキ装置を作動させ、該電気ブレーキ装
置位の作動による実際の電気ブレーキ力に相当する電気
ブレーキ力等価信号と前記編成ブレーキ力指令信号との
差信号をモータ車の流体ブレーキ力指令信号とトレーラ
車の流体ブレーキ力指令信号とに分配し、これら流体ブ
レーキ力指令信号にもとづいてモータ車とトレーラ車の
それぞれの流体ブレーキ装置を作動させるようにした鉄
道車両用ブレーキi+ll f+方法において、 前記編成ブレーキ力指令信号に〔(モータ車重+、’、
−) / (モータ車重せ十トレーラ車重量)〕を乗じ
た信号が前記市、気ブレーキカ等価信号より小さいとき
、前記編成ブレーキ力指令信号と電気ブレーキカ等価信
号との差信号をトレーラ車の流体ブレーキ力指令信号と
すると共に、モータ車の流体ブレーキ力指令信号を零と
し、 前記偏成ブレーキカ指令信刊に〔(モータ車重(r士〕
/(モータ車重ta: + トレーラ車重量)〕を乗じ
た信号が前記電気ブレーキカ等価信号以上のとき、前記
編成ブレーキ力指令信号に〔(トレーラ車rl(縫)/
(モータ車重縫+トレーラ車重量)〕を東じた信号をト
レーラ車の流体ブレーキ力指令信号とすると共に、前記
編成ブレーキ力指令信号に〔(モータ車重セ)/(モー
タ屯重量十トレーラ車重量)〕を乗じた信号と前記電気
ブレーキ力等価信号との差信号をモータ車の流体ブレー
キ力指令信号とするようにした鉄道車両用ブレーキ制御
方法。
(1) When the composition brake force command signal is less than the maximum adhesive brake force equivalent signal of the motor car, the composition brake force command signal is set as the electric brake force command signal, and the composition brake force command signal is greater than or equal to the maximum adhesive brake force equivalent signal. When the maximum adhesion brake force equivalent signal is used as an electric brake force command signal, the electric brake device is operated based on the 1.1+4: air brake force command signal, and the actual electric brake force due to the operation of the electric brake device is The difference signal between the corresponding electric brake force equivalent signal and the formation brake force command signal is divided into a fluid brake force command signal of the motor car and a fluid brake force command signal of the trailer car, and based on these fluid brake force command signals, In the railway vehicle brake i+llf+ method, which operates the fluid brake devices of each of the motor vehicle and the trailer vehicle, the formation brake force command signal is set to [(motor vehicle weight +, ',
-) / (motor vehicle weight + trailer vehicle weight)] is smaller than the electric brake force equivalent signal, the difference signal between the formation brake force command signal and the electric brake force equivalent signal is used as the trailer vehicle fluid At the same time as the brake force command signal, the fluid brake force command signal of the motor vehicle is set to zero, and the differential brake force command signal is
/(motor vehicle weight ta: + trailer vehicle weight)] When the signal multiplied by [(trailer vehicle rl (sewing)/
(Motor vehicle weight + trailer vehicle weight)] is used as the fluid brake force command signal for the trailer vehicle. A brake control method for a railway vehicle, in which a difference signal between a signal multiplied by vehicle weight) and the electric brake force equivalent signal is used as a fluid brake force command signal for a motor vehicle.
JP9317683A 1983-05-25 1983-05-25 Brake control method for rolling stock Granted JPS59216760A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9317683A JPS59216760A (en) 1983-05-25 1983-05-25 Brake control method for rolling stock

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9317683A JPS59216760A (en) 1983-05-25 1983-05-25 Brake control method for rolling stock

Publications (2)

Publication Number Publication Date
JPS59216760A true JPS59216760A (en) 1984-12-06
JPS6310024B2 JPS6310024B2 (en) 1988-03-03

Family

ID=14075260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9317683A Granted JPS59216760A (en) 1983-05-25 1983-05-25 Brake control method for rolling stock

Country Status (1)

Country Link
JP (1) JPS59216760A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62155168A (en) * 1985-11-08 1987-07-10 アメリカン・スタンダ−ド・インコ−ポレイテツド Cross mixing brake gear

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62155168A (en) * 1985-11-08 1987-07-10 アメリカン・スタンダ−ド・インコ−ポレイテツド Cross mixing brake gear

Also Published As

Publication number Publication date
JPS6310024B2 (en) 1988-03-03

Similar Documents

Publication Publication Date Title
US5564795A (en) Electropneumatic brake control system parking brake
US4692867A (en) Brake control system
US4659149A (en) Cross blending electro-dynamic/friction brake system for multi-car train consist having mixed power and non-power cars
CN113165626B (en) Electronic control system for braking rail vehicle
JPS6310025B2 (en)
JPS59216760A (en) Brake control method for rolling stock
US3560054A (en) Brake control system for railroad trains
US6027181A (en) Locomotive brake control with holding and/or blending
US2933350A (en) Electrol-pneumatic and dynamic brake apparatus
CA2170857C (en) Brake control device for railroad rolling stock
US2266326A (en) Electrical transition control system
US2332584A (en) Wheel slip control means
US5535122A (en) Method of and an apparatus for providing a safety check of the brake retardation capability of a brake system on a vehicle
KR20180091150A (en) System and method for regenerative braking
JPH0256002B2 (en)
US2361099A (en) Vehicle brake and propulsion control
Zarifyan et al. Electric Locomotives Energy Saving by the Discrete-Adaptive Traction Drive Control: Experimental Confirmation
CN113460012A (en) Vehicle braking method and device, vehicle control method and vehicle
SU956326A1 (en) Device for regulating electrified rolling stock traction motors rotational speed
JPH0519369B2 (en)
RU2013231C1 (en) Arrangement for controlling the drive of electric locomotive
RU40278U1 (en) ELECTRONIC SYSTEM OF PROTECTION AGAINST BOXING AND USE OF ELECTRIC TRUCK WITH SMOOTH ZONE-PHASE VOLTAGE REGULATION OF VOLTAGE
JPS59153650A (en) Method of braking electric vehicle
JP2001327003A (en) Electric car control apparatus
SU812613A1 (en) Arrangement for protecting locomotive against slipping and skidding