JPS59216091A - Control system of control rod - Google Patents

Control system of control rod

Info

Publication number
JPS59216091A
JPS59216091A JP58090633A JP9063383A JPS59216091A JP S59216091 A JPS59216091 A JP S59216091A JP 58090633 A JP58090633 A JP 58090633A JP 9063383 A JP9063383 A JP 9063383A JP S59216091 A JPS59216091 A JP S59216091A
Authority
JP
Japan
Prior art keywords
control rod
control
rod
withdrawal
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58090633A
Other languages
Japanese (ja)
Other versions
JPH0410595B2 (en
Inventor
扇谷 俊亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58090633A priority Critical patent/JPS59216091A/en
Publication of JPS59216091A publication Critical patent/JPS59216091A/en
Publication of JPH0410595B2 publication Critical patent/JPH0410595B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】[Detailed description of the invention]

[発明の技術分野] 本発明は、沸騰水型原子炉の制御棒制御システムに関す
る。 [発明の技術的背景とその問題点] ?li5騰水型原子炉シーは、出力運転時の制御棒引抜
1−よって生じる出力上昇を監視するため1二、制御棒
引抜監視装置が設けられている。この装置は、出力を上
昇させるためC二、ある制御棒が選択されると、その選
択された引抜制御棒のまわりg二配随されている複数個
の固定型炉内中性子検出器(以後これをL P RMと
叶ぶ)を選択する0さらにこの選択されたL P RM
からの信号の平均値をとり、その値が引抜前の平均値よ
りも所定の値だけ上回った時、制御枠の引抜を阻止する
制御棒引抜阻止信号を送出し、制御棒引抜を阻止するこ
と1−より、出力の上昇を所定のレベル以下
[Technical Field of the Invention] The present invention relates to a control rod control system for a boiling water nuclear reactor. [Technical background of the invention and its problems]? The Li5 rising water reactor sea is equipped with a control rod withdrawal monitoring device 12 to monitor the power increase caused by control rod withdrawal 1- during power operation. In order to increase output, when a certain control rod is selected, a plurality of fixed in-core neutron detectors (hereinafter referred to as 0 and this selected L P RM
to take the average value of the signals from the control frame, and when that value exceeds the average value before withdrawal by a predetermined value, send a control rod withdrawal prevention signal to prevent withdrawal of the control frame, thereby preventing control rod withdrawal. From 1-, the increase in output is below a predetermined level.

【二押える
機能を備えている。 第1図は従来の装置CおけるL P RMの配置例を示
した図である。この図から明らかなよう1−1上記のよ
うに選択さt’tた引抜制御棒1(同図中IAは児全g
二引抜かれた制御棒のスクラム時の状態を示す。)のま
わりには円2と三角3で標示したLPI(Mすなわち固
定型炉内中性子検出器が16個格子状C二配装dされて
いる。(炉心の周辺ff1jを除いて、この様5二自e
[されている。)このI、 P RMは、2つの系たと
えばA系、B系に分かれており。 それぞれの系には8個のLPRMが割当てられている。 そして、A系、B系は第2図(a) 、 (b)の特性
図1=それぞれ示されるようζ二、異なった信号強度−
制御柿引抜位1ね特性を有している。なお第2図の継軸
はL P RMの信号強匿を示し、横軸は制御棒引抜位
置(選択された引抜制御棒の引抜き距離で0点は全挿入
位置を示し右に移動するlユつれて引抜き距離が増加す
る)を示す。すべてのLPRMが正常で、A系、B系と
もに作動している場合の特性は第2図(a) 、 (b
)の実線AI、Blで示されているように両系の応答は
、後述する点線A2.B2の場合に比較して早い。この
実線Al、Blの特性曲線と、あらかじめ設定されてい
る引抜阻止レベル紗L(二点鎖線で示す)との交差点か
ら垂線を下すと制御棒引抜阻止位置al、blが得られ
る。したがってA系、B系のうち早く上述した交差点に
達した方の糸から、前述した制御棒引抜阻止イ1号が送
出される。 ところで、制御棒引抜l二ともなうLPRMの出力には
バラツキがある。このバラツキの中(二は、制御棒引抜
阻止という点から見ると好捷しくないものも含まれてい
る。たとえば故障等により、その平均値より極端に大き
な出力とか逆に小さな出力は、制御棒を誤って引抜き操
作する原因(二なる。 そこで、制御棒引抜阻止の観点から好ましくないLPR
Mをバイパスすなわち機能を停止させ、好ましいLPR
Mからの出力信号のみにもとづいて制御棒引抜阻止信号
を出力するようC二している。 そのため、ある場合には、A系、B系の一方を全面的C
ニバイパスすることがある。第1表Cユ記述されている
A系バイパスあるいはB゛系バイパスはこれを意味する
。 第 1 表 系がバイパスされた場合は、正常の場合、すなわちバイ
パスが行なわれていない場合に比べて、系の応答は一般
C二悪くなる。捷た、系内のLPRMのうち、第1図に
おいて、引抜制御棒1に近い、良い応答を示すLPRM
2あるいは3がバイパスされている場合も応答が悪くな
る。この場合を最悪バイパスと旨う。第1表には、様々
な場合の引抜阻止位置が示さ才しているが、この表(−
おいて、m1n(al、bl)あるいはmin (ag
、 bz )はal+b1のうち小さい方の値、あるい
は”B+ b2のうち小さい方の値をとることを意味す
る。 第2図(a) 、 (b)の点線A 2 、 B 2 
テ示すしfc特性曲線は、各基の最悪バイパス時の特性
を示している。第2図からもわかるように、R悪バイパ
ス時には制御棒引抜位置がA系の場合はaz、B系の場
合にはb2に移動し、正常時!−比べてかなり悪い応答
状態となる。 このように、従来の装置では各基ならび(二特定のLP
RMがバイパスされた場合、応答が悪くなり、その改善
が望まれていた。また、高い安全性が要求される原子炉
において、以上のようなバイパスによる応答性の劣化は
安全性の余裕なせばめる点で好1しくない。 甘た、同時に衿敷の制御棒を操作する運転の場合、検出
対象となるL P RMの個数は増加する。 例えば同時番−4本の制御棒を操作する場合、16X4
=64個のLPRMの検出が制御棒引抜監視のための必
要となり、監視装置の構成が複雑となる0 [発明の目的] 本%明け、従来の制御1枠引抜監視装置の短所である以
下の(イ)(ロ)を改ぜIすることを目的とする。 (イ)合糸ならびに特定のLPRMがバイパスされプ(
、場合 、 応答が悪化し、出力上昇量が増加する。 (ロ)ゼノ数の制御棒を同時に操作(引抜)する場合、
炉心状態の変化の検出回路が複雑化する。よって監視糸
が複雑化する。 すなわち、制御棒引抜監視装置、 (i?’F容引抜長
さ)の設定に、炉心状態(局所的な出力)変化の検出を
I四相しないこと番二より、安定でかつ確実な引抜阻止
機能を確保する事にある。 [発明の概・要] 不発14は原子炉の炉心と、この炉心内に引抜挿入され
る制御棒と、この制御棒の制御棒駆動機構と、この制御
f?!flit、動機構を制御する制御棒制御装置と、
上記制御棒の制御棒軸方向位置検出装置と、この制御棒
軸方向もL置検出装置と上記制御棒制御装置からの信号
を受は制御棒引抜阻止位置信号を上記制御棒制御装置C
二人力する制御棒引抜監視装丁6.と、この制御棒引抜
監視装置C二引抜制御棒【二隣接する炉科集合体の軸方
向出力分布を入力するプロセス計算機とを具備する制御
棒制御システムにおいては、制御棒引抜監視装置は、制
御棒軸方向位置検出装置からの制御棒軸方向位置信号と
制御棒制御装置からの制御棒選択信号とが入力される対
象制御棒選択回路と、プロセス計算機からの引抜制御棒
5二隣接する燃料集合体の軸方向出力分布信号を用いて
fr、 谷引抜長特性を作成する特性変換回路と、この
特性変換1r!l路からの許容引抜長特性と上記対象制
御棒選択回路からの引抜制御棒軸方向位置信号を用いて
決定される制御棒引抜阻止位置信号を制御棒制御製置に
出力する制御棒引抜阻止位置設定回路とからなることを
特徴とする制御棒制御システムにある。 [発Qlの実施例] す、下図面を参照しながら、本発明の一実施例を説明す
る。 第3図に本発明を二かかる制御棒引抜監視装置4を用い
た沸騰水型原子炉の制御棒駆動系が示されている。 第3図1−示す炉心5の内部5二は、第1図5−示され
たような引抜制御棒1が多数本格納されている。 同図では、引抜かれない制仲j棒は省略し、示されてい
ない。上記引抜制御棒1は炉心5の下方に設けられた制
御棒駆動機構6(二よって引抜・挿入がなされる。この
制御棒駆動機構6は制御棒制御製置7によって制御され
る。この制御棒制御製置7は制御棒操作信号S1と制御
棒引抜■止位置化号S2とを入力し、制御棒駆動信号S
3と制御棒選択信号84,84Aとを出力する。制御棒
駆動信号S3は上記制御棒駆動機構6 C1送られ、制
御棒選択信号S4は制御棒引抜監視装置4に、制御棒選
択信号S4Aはプロセス計算機ill二送出される。こ
の制御棒引抜監視装置4は制御棒軸方向位置、検出装慴
10から送出される制御棒軸方向位置信号S5とプロセ
ス計算機11より送出される選択制御棒に隣接する燃料
集合体12の軸方向出力分布信号S6と制御棒制御装置
からの制御棒選択信号S4とを入力し、前記制御棒引抜
阻止位置信号S2を制御棒制御製置7に出力する。 プロセス計算機11は制御棒制御装置7より送出される
制御棒選択信号84Aを入力し、選択制御棒に瞬接する
燃料果合体12の軸方向出力分布信号S6を出力する。 第3図5二示さ−れた本発明にかかる制御棒引抜監視装
置4の構成を詳細に図示したものが第4図である。 この第4図において、対象制御棒選択回路8は制御P4
選選択量84Cユ応じて引抜制御棒1を選択し、オ!択
された引抜制御棒軸方向位置信号85Aを制御棒引抜阻
止位置設定回路9に送出する。 甘た勃性変換回路13けプロセス泪算機11より送出さ
れる選択引抜制御棒1に隣接する燃料集合体120躬1
方向出力分布信号S6を用いて、許餐引抜技特1・手を
作成し、この6′[芥引抜長特性信号S7を制御棒引抜
阻止位置設定回路9に送出する。 この制σl 4ii3引抜阻止位置設定回路9では、前
記許容引抜長特性(すなわち、制御棒初期軸方同位1汽
P■と許容引抜長△Lの関係)信号S7と、引抜てυ;
j御棒初ハj」軸方向位置信号85Aを用いて許谷引抜
技△Lを求める。引抜制側]棒初期軸方向位置信号S5
Aとこの許容引抜長△Lから、引抜阻止位置が設定され
、これが、引抜阻止位置信号S2として、制御棒制御装
置7に送出される。 特性変換回路131−は、第5図i−示す基本許容引抜
長さ特性50および第6図に示す基本軸方向出力分布6
0が内紙してあり、これらを用いて、引抜制御棒1に隣
接する燃料集合体12の軸方向出力分布を引抜制御棒1
の許容引抜長のlp¥性(二変換する。 変換方法の実施例を第7図、第8図を用いて説明する。 ある軸方向位置(二おける基本許容引抜長を△LB、基
本111方向相対出力なPAB、引抜制御神蒔接燃料の
軸方向相対出力をPAcとすると、その位f改での引抜
f!jll @棒の許容引抜長△Lcは△L c−1h
L B X PAB Ac で設定する。その他の軸方向位置でも同様にしてe′ト
容引抜長を求め、引抜制御棒の許容引抜長特性を作成す
る。 引抜阻止位置は上述の許容引抜長特性(制御棒初期軸方
向位置Plと11−答引抜長△Lの関係)から求められ
た許容引抜長を、初期軸方向位置から差し引いた値とし
て設定される。すなわち、匍]御棒初ルJ4VI+方向
位置を”I+ このPIに対応する杆容引抜長を△Lと
すると、引抜阻止位置PBはPB: PI−△L になるように設定される。 以上のように構成された本発明の制御棒制御システムは
、出力運転時2二引抜制御棒lが選択され。 制御棒制置装置7に制御棒操作信号s1が入力されると
、制御棒引抜監視装置4の対象制御棒選択回路8に制御
棒選択信号S4が、またプロセス計算機11 C制御棒
選択信号S4Aが送られる。対象制御棒選択回路8でd
この制御棒選択信号84を二もとづき、必要な引抜制御
棒lを選択し、その引抜制御棒1の初期軸方向位置信号
S5を制御棒引抜阻止位置設定回路9に送る。 一方、プロセス計算機l】では、制御棒選択信号S4A
にもとづき、その引抜制御棒1に隣接する燃料12の軸
方向出力分布46号S6をj!ilj ;j+3141
引抜監視装置ts、 4の特性俊換回kN113 を二
速る。特性変換回路13では、軸方向出力分布信号85
にもとづき、引抜制御棒1の許容引抜長特性を作成しそ
の信号s7を制御棒引抜阻止位置設定回路9I−送る。 この制御柿引抜阻止位置設定回ll′?−+9では、初
期軸方向位置信号S5を二もとづき、その初期軸方同位
flP1を二対応する許容引抜長ΔLを設定し、初期軸
方向位置と、許容引抜長から制御棒の引抜阻止位置PB
を設定する。この位置を制御棒引抜監視装置椙号S2と
して、制御棒制御装置7へ送出する。 制御棒制御装置7では、制御棒操作信号S1が制御棒引
抜阻止位置信号s2により入力された引抜阻止位置を超
えた引抜を指示した場合には引抜1・f4止位nt信号
s2の阻止位置で制御棒の引抜を阻止する制御が行なわ
れる。 第9図は本発明の装置を用いた場合の出方上昇特性を従
来の装置の場合と比較して示す。同図中、PIは引抜制
御棒の初期軸方向位置を示し、Plは本発明の装置を用
いた場合、または従来の装置で全L I) RMが正常
の場合の引抜阻止位置を示し、その時の出力上昇量が△
Plである。またP2は従来の装置においである系なら
びに物足のLPRMがバイパスされた場合の引抜阻止位
置を示し、その時の出力上昇量が△P2である。 従って、本発明の装置を用いた場合の出方上昇量は、検
出器のバイパス状態(−関係なく、従来装置の全L P
 Rklが正常の場合と同様、確実に十分低い址に抑え
られる。 本発明の特徴の−っである初期軸方向位置g二よって許
容引抜長を変化させる事の効果l二ついて以下に説明す
る。 沸騰水型原子炉の炉心において゛、軸方向の出力分;4
5は、炉心の上部および下部で小さく、炉心の中央部で
大きくなっている。このため、制御棒を同一長さだけ引
抜いた時、縦軸に出力上外景△P。 横軸に引抜制御棒の制御棒初期軸方向位置を定め第10
図に示すように、出力の大きい炉心中央′r1.lで、
その局所的な出力上昇量は大きく、これに対して出力の
小さい炉心上下部では、その出力上昇′t1は小さい特
性となる。従って、本発明のシステムを用いた場合、第
5図(1示ずような炉心中央部で許料引抜長さを小さく
、炉心上下部で許容引抜長さを大きくなるようf二引抜
制価!?+1の市!、御徨引抜が阻止されるため、第1
j図に示すよう番二制御棒初期軸力向位館によらず、一
定の出力上昇it−抑えることが出来る。 また本発明の制御棒制御システムの採用【二より、複数
本の制御棒な同時に引抜する場合、出力運転中に制御棒
誤引抜が行なわれても、炉心の検出系を使用しないため
、常にある位置で、簡単2二制御棒引抜阻止がかかり、
過度の出力上昇を未然ζ二防止できる。 [)#、明の効果] 以上詐述したように、本発明の制御棒制御システムは、
プロセス計算機の軸方向出力分布【二基づく初期制御棒
位置と許容引抜長さの関係を用いて、制御棒引抜阻止を
行なうので、LPRMのバイパス状態、引抜制御棒の本
数および初期制御棒位1rt(二依らずに、出力運転時
に制御棒引抜が行なわれても、′トイに確実な制御棒引
抜阻止により、局f9frt)+な出力上昇量を適切な
一定量に制限する小ができ、燃料の熱的余裕を保つこと
ができ、沸騰水型原子炉の信頼性、安全性を高めること
ができる。
[Equipped with a double press function. FIG. 1 is a diagram showing an example of the arrangement of L P RM in a conventional device C. As is clear from this figure, 1-1 the withdrawal control rod 1 selected as described above (IA in the figure is
2. Shows the state of the withdrawn control rod during scram. ), 16 LPIs (M, i.e., fixed in-reactor neutron detectors) are arranged in a lattice pattern C2, marked by a circle 2 and a triangle 3. Second self e
[has been. ) This I, PRM is divided into two systems, for example, the A system and the B system. Eight LPRMs are assigned to each system. The A and B systems have different signal intensities -
It has one characteristic of controlling persimmon pulling. The joint axis in Fig. 2 indicates the signal concealment of L P RM, and the horizontal axis indicates the control rod withdrawal position (with the withdrawal distance of the selected control rod, 0 points indicates the full insertion position, and the l unit moving to the right (the pull-out distance increases as the distance increases). The characteristics when all LPRMs are normal and both A and B systems are operating are shown in Figure 2 (a) and (b).
) as shown by the solid lines AI and Bl, the responses of both systems are shown by the dotted lines A2. It is faster compared to B2. If a perpendicular line is drawn from the intersection of the characteristic curves of solid lines Al and Bl and a preset withdrawal prevention level gauze L (indicated by a two-dot chain line), control rod withdrawal prevention positions al and bl are obtained. Therefore, the aforementioned control rod withdrawal prevention No. 1 is sent out from the thread of the A system or the B system that reaches the above-mentioned intersection earlier. By the way, the output of the LPRM varies depending on the control rod withdrawal. Among these variations (2), some are unfavorable from the point of view of preventing control rod withdrawal.For example, due to a malfunction, an extremely large output or a small output than the average value may occur when the control rod This is the second cause of erroneous pulling out of the control rod.
Bypassing or disabling M, the preferred LPR
C2 is configured to output a control rod withdrawal prevention signal based only on the output signal from M. Therefore, in some cases, one of the A and B systems may be completely C
Double passes may occur. This is what the A-system bypass or B-system bypass described in Table 1 C-U means. Table 1 When the system is bypassed, the response of the system is generally C2 worse than in the normal case, that is, when no bypass is performed. Among the broken LPRMs in the system, in Fig. 1, the LPRM that shows a good response is close to the withdrawn control rod 1.
If 2 or 3 is bypassed, the response will also be poor. This case is called a worst-case bypass. Table 1 shows the pull-out prevention positions in various cases, and this table (-
, m1n (al, bl) or min (ag
, bz) means to take the smaller value of al+b1 or the smaller value of "B+b2". Dotted lines A 2 and B 2 in Figure 2 (a) and (b)
The fc characteristic curve shown in FIG. 1 shows the worst case bypass characteristics of each group. As can be seen from Figure 2, during R bad bypass, the control rod pullout position moves to az for A system and to b2 for B system, and when normal! − The response state is considerably worse than that of In this way, in the conventional device, each group and (two specific LPs)
When the RM is bypassed, the response deteriorates, and an improvement has been desired. Further, in a nuclear reactor where high safety is required, the deterioration of response due to the bypass described above is undesirable because it reduces the safety margin. In the case of operation in which the control rods on the collar are operated at the same time, the number of L P RMs to be detected increases. For example, when operating four control rods at the same time, 16X4
= Detection of 64 LPRMs is required for control rod withdrawal monitoring, which complicates the configuration of the monitoring device. The purpose is to amend (a) and (b). (b) Doubling threads and certain LPRMs are bypassed and
, the response deteriorates and the amount of output increase increases. (b) When operating (withdrawing) a number of control rods at the same time,
The circuit for detecting changes in core status becomes complicated. Therefore, the monitoring thread becomes complicated. In other words, the control rod withdrawal monitoring device must not detect changes in the core state (local output) in the setting of (i?'F volume withdrawal length). The purpose is to ensure functionality. [Summary/Summary of the Invention] The misfire 14 includes a reactor core, a control rod that is pulled out and inserted into this reactor core, a control rod drive mechanism for this control rod, and this control f? ! flit, a control rod control device that controls the motion mechanism;
The control rod axial position detection device for the control rod, the L position detection device for the control rod axial direction, and the control rod control device receive signals from the control rod control device and transmit the control rod withdrawal prevention position signal to the control rod control device C.
Control rod withdrawal monitoring device for two people 6. In a control rod control system equipped with a control rod withdrawal monitoring device C and a process computer that inputs the axial power distribution of the adjacent reactor assembly, the control rod withdrawal monitoring device A target control rod selection circuit receives a control rod axial position signal from the rod axial position detection device and a control rod selection signal from the control rod controller, and a control rod 5 and two adjacent fuel assemblies to be extracted from the process computer. A characteristic conversion circuit that creates fr, valley pull length characteristics using the body's axial output distribution signal, and this characteristic conversion 1r! A control rod withdrawal prevention position that outputs a control rod withdrawal prevention position signal to the control rod control equipment, which is determined using the allowable withdrawal length characteristics from the L path and the withdrawal control rod axial position signal from the target control rod selection circuit. A control rod control system comprising a setting circuit. [Embodiment of Irradiation Ql] An embodiment of the present invention will be described with reference to the drawings below. FIG. 3 shows a control rod drive system for a boiling water reactor using the control rod withdrawal monitoring device 4 according to the present invention. In the interior 52 of the core 5 shown in FIG. 3, a large number of extraction control rods 1 as shown in FIG. 1 are stored. In the figure, the control rod that is not pulled out is omitted and not shown. The withdrawal control rod 1 is pulled out and inserted by a control rod drive mechanism 6 (2) provided below the reactor core 5. This control rod drive mechanism 6 is controlled by a control rod control equipment 7. The control equipment 7 inputs the control rod operation signal S1 and the control rod withdrawal/stop positioning signal S2, and outputs the control rod drive signal S.
3 and control rod selection signals 84, 84A. The control rod drive signal S3 is sent to the control rod drive mechanism 6C1, the control rod selection signal S4 is sent to the control rod withdrawal monitoring device 4, and the control rod selection signal S4A is sent to the process computer ill2. This control rod withdrawal monitoring device 4 detects the control rod axial position, the control rod axial position signal S5 sent from the detection device 10, and the axial direction of the fuel assembly 12 adjacent to the selected control rod sent from the process computer 11. The output distribution signal S6 and the control rod selection signal S4 from the control rod controller are inputted, and the control rod withdrawal prevention position signal S2 is outputted to the control rod control equipment 7. The process computer 11 inputs the control rod selection signal 84A sent from the control rod control device 7, and outputs an axial power distribution signal S6 of the fuel fruit assembly 12 that momentarily contacts the selected control rod. FIG. 4 shows in detail the structure of the control rod withdrawal monitoring device 4 according to the present invention shown in FIG. 3. In this FIG. 4, the target control rod selection circuit 8 is the control rod P4
Select the extraction control rod 1 according to the selection amount 84C, and o! The selected withdrawal control rod axial position signal 85A is sent to the control rod withdrawal prevention position setting circuit 9. 120 fuel assemblies 1 adjacent to the selective extraction control rod 1 sent out from the 13-process calculator 11 of the sweet erectile conversion circuit;
Using the directional output distribution signal S6, a permit withdrawal technique characteristic 1/hand is created, and this 6'[musket withdrawal length characteristic signal S7 is sent to the control rod withdrawal prevention position setting circuit 9. In this control σl 4ii3 withdrawal prevention position setting circuit 9, the allowable withdrawal length characteristic (that is, the relationship between the control rod initial axial position 1st P■ and the allowable withdrawal length ΔL) signal S7 and the withdrawal υ;
Using the axial position signal 85A, the Kyoya pulling technique ΔL is determined. Pull-out control side] Rod initial axial position signal S5
A and the allowable withdrawal length ΔL, a withdrawal prevention position is set, and this is sent to the control rod control device 7 as a withdrawal prevention position signal S2. The characteristic conversion circuit 131- has the basic allowable pull-out length characteristic 50 shown in FIG. 5i and the basic axial direction output distribution 6 shown in FIG.
0 is inside the paper, and these are used to determine the axial power distribution of the fuel assembly 12 adjacent to the extracted control rod 1.
The lp characteristic of the allowable pulling length of If PAB is the relative output, and the relative output in the axial direction of the welded fuel is PAc, then the pullout at f break is f!
Set with LB X PAB Ac. At other axial positions, the e' capacity pull-out length is determined in the same manner, and the allowable pull-out length characteristics of the pull-out control rod are created. The pull-out prevention position is set as a value obtained by subtracting the allowable pull-out length obtained from the above-mentioned allowable pull-out length characteristics (relationship between control rod initial axial position Pl and 11-Answer pull-out length ΔL) from the initial axial position. . In other words, if the position in the J4VI+ direction of the rod is "I+" and the rod pull-out length corresponding to this PI is △L, then the pull-out prevention position PB is set to be PB: PI-△L. In the control rod control system of the present invention configured as follows, 22 withdrawal control rods 1 are selected during output operation.When the control rod operation signal s1 is input to the control rod restraint device 7, the control rod withdrawal monitoring device A control rod selection signal S4 is sent to the target control rod selection circuit 8 of No. 4, and a control rod selection signal S4A of the process computer 11C is sent to the target control rod selection circuit 8.
Based on this control rod selection signal 84, a necessary extraction control rod 1 is selected, and an initial axial position signal S5 of the extraction control rod 1 is sent to the control rod extraction prevention position setting circuit 9. On the other hand, in the process computer l], the control rod selection signal S4A
Based on the axial power distribution No. 46 S6 of the fuel 12 adjacent to the withdrawn control rod 1, j! ilj ;j+3141
Pull-out monitoring device TS, 4 characteristic quick turn times kN113 to 2 speeds. In the characteristic conversion circuit 13, the axial output distribution signal 85
Based on this, the allowable withdrawal length characteristics of the withdrawal control rod 1 are created and the signal s7 is sent to the control rod withdrawal prevention position setting circuit 9I. This control persimmon pulling prevention position setting time ll'? -+9, based on the initial axial position signal S5, the initial axial position flP1 is set to the corresponding allowable pull-out length ΔL, and the control rod pull-out prevention position PB is determined from the initial axial position and the allowable pull-out length.
Set. This position is sent to the control rod control device 7 as the control rod withdrawal monitoring device S2. In the control rod control device 7, when the control rod operation signal S1 instructs the withdrawal beyond the withdrawal prevention position inputted by the control rod withdrawal prevention position signal s2, the control rod control device 7 performs the withdrawal at the prevention position of the withdrawal 1/f4 stop position nt signal s2. Control is performed to prevent withdrawal of the control rod. FIG. 9 shows the output increase characteristic when using the device of the present invention in comparison with the case of a conventional device. In the figure, PI indicates the initial axial position of the withdrawal control rod, and PI indicates the withdrawal prevention position when the device of the present invention is used or when the conventional device is used and the entire L I) RM is normal. The output increase amount is △
It is Pl. Further, P2 indicates a pull-out prevention position when a certain system and a secondary LPRM are bypassed in a conventional device, and the amount of increase in output at that time is ΔP2. Therefore, the amount of increase in output when using the device of the present invention is the same as the total L P of the conventional device regardless of the bypass state of the detector (-
As in the case where Rkl is normal, it can be reliably suppressed to a sufficiently low level. Two effects of changing the allowable pull-out length according to the initial axial position (g), which are features of the present invention, will be explained below. In the core of a boiling water reactor, the output in the axial direction is 4
5 is smaller at the top and bottom of the core and larger at the center of the core. Therefore, when the control rod is pulled out by the same length, the output external view △P is shown on the vertical axis. The initial axial position of the control rod to be pulled out is determined on the horizontal axis.
As shown in the figure, core center 'r1. In l,
The amount of local power increase is large, whereas in the upper and lower parts of the core where the power is small, the power increase 't1 is small. Therefore, when using the system of the present invention, it is possible to reduce the allowable pull-out length at the center of the core and increase the allowable pull-out length at the top and bottom of the core, as shown in Figure 5 (1). ? +1 city!, the first one because Mitomo withdrawal is prevented.
As shown in Figure J, a constant increase in output can be suppressed regardless of the initial axial force orientation of the No. 2 control rod. In addition, the adoption of the control rod control system of the present invention [Secondly, when multiple control rods are withdrawn at the same time, even if a control rod is erroneously withdrawn during power operation, the core detection system is not used. At this position, the control rod is prevented from being pulled out easily.
Excessive increase in output can be prevented. [) #, bright effect] As stated above, the control rod control system of the present invention has the following effects:
Since control rod withdrawal is prevented using the relationship between the initial control rod position and allowable withdrawal length based on the axial power distribution of the process computer, the bypass state of the LPRM, the number of control rods to be withdrawn, and the initial control rod position 1rt ( Even if control rods are withdrawn during power operation, there is a small amount of fuel that can be used to limit the increase in power output to an appropriate constant amount by reliably preventing control rod withdrawal. It is possible to maintain a thermal margin and improve the reliability and safety of boiling water reactors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図打引抜制御棒と固定型炉内中性子検出器の配置図
、第2図は従来装置の信号強度−制御棒引抜位向特性図
、第3図は本発明5二かかる沸騰水型原子炉の制御棒駆
動系を示す図、菓4図は本発明にかかる制御棒引抜監視
装置の構成を示すブロック図、第5図は本発明にかかる
制御棒引抜監視装置内f二組み込まれている基本許容引
抜長特性図、第6図は本発明にかかる制御棒引抜監視装
置内に和み込まね、ている基本D%j+方回出カ分布図
、第7図第8図は本発明5二ががり軸方向1出カ分布が
ら許容引抜長への変換手法を示す図%第9図(−1゛本
発明の装fifを用いた場合の出カ上昇七H−g制御棒
軸方同位G−t Q!J性図、第10図は同一長さだけ
イbIJ御棒を引抜いた場合の出力上昇fit−制OI
I棒初期位置特性図、第11図は本発明の装[6゛を用
いた場合の出カ上昇Jk−制御柿初期(M鈴特性図であ
る。 1・・・引抜jfl制御神 4・・・制御棒引抜監視装
置65・・・炉心      6・・制御棒駆動(イク
構7・・・制御棒制御装置 8・・・幻象制御伜選択回路 9・・・制御棒引抜阻止位置設定回路 10・・・制御棒軸方向位置検出装置 11・・・プロセス計遭1機 12・・・引抜制御棒瞬接すhf科集合体13・・・特
性変換回路 Sl・・・制御8操作4g号S2・・・ル
制御棒引抜阻止位fe1信号S3・・・?1ilJ御棒
駆動信号 S4・・・制御棒選択信号 S4A・・・iV制御棒選択信号 S5・・・制御棒軸方向位動、信号 S 5 A・・・引抜制御棒軸方向位置信号S6・・・
軸方向出力分布4i号 S7・・・許答引抜長特性信号 代理人 弁理士 則 近 恵 佑 (ほか1名)第7図 (上部)(+4−央部)          (1部)
牛’ll’&UjhJ7JjKRIm力H・イark 
 (JUt#(ITL)、PI第8図 (1部)         (中*部J       
  (T部ジ軸方−臼] イ、4(オロカfイ1t )
第9図
Fig. 1 is a layout diagram of a punched control rod and a fixed type in-reactor neutron detector, Fig. 2 is a signal strength-control rod drawing position characteristic diagram of a conventional device, and Fig. 3 is a boiling water type atom according to the present invention 52. Figure 4 is a block diagram showing the configuration of the control rod withdrawal monitoring device according to the present invention, and Figure 5 is a diagram showing the control rod drive system of the reactor. 6 is a basic allowable withdrawal length characteristic diagram, and FIG. 6 is a basic D%j+ direction output force distribution diagram that is integrated into the control rod withdrawal monitoring device according to the present invention. FIG. Fig. 9 shows a method of converting the output distribution in the axial direction of the gap to the allowable pull-out length. -t Q!J characteristic diagram, Figure 10 shows the output increase when the IbIJ control rod is pulled out by the same length fit-control OI
The I rod initial position characteristic diagram and FIG. 11 are the output rise Jk-control persimmon initial position (M bell characteristic diagrams) when the device of the present invention is used.・Control rod withdrawal monitoring device 65...Reactor core 6...Control rod drive (actuation structure 7...Control rod control device 8...Phantom control/selection circuit 9...Control rod withdrawal prevention position setting circuit 10...・Control rod axial position detection device 11 ・Process detection 1 machine 12 ・Hf group for instantaneous contact with withdrawal control rod 13 ・Characteristics conversion circuit Sl ・Control 8 operation 4g No. S2・...Le control rod withdrawal prevention position fe1 signal S3...?1ilJ control rod drive signal S4...Control rod selection signal S4A...iV control rod selection signal S5...Control rod axial position movement, signal S 5 A... Pull-out control rod axial position signal S6...
Axial output distribution No. 4i S7... Acceptance and withdrawal length characteristic signal Representative Patent attorney Nori Kei Chika (and 1 other person) Figure 7 (Top) (+4-Center) (Part 1)
Cow 'll'& UjhJ7JjKRImiki H・ark
(JUt# (ITL), PI Figure 8 (Part 1) (Middle * Part J
(T part ji axial direction - mortar) A, 4 (Oroka f I 1t)
Figure 9

Claims (2)

【特許請求の範囲】[Claims] (1)原子炉の炉心と、この炉心内に引抜挿入される制
御棒と、この制?1lII棒の制御棒駆動機第4と、こ
の制御棒駆動機構を制御する制御棒制御装ぼと、上記制
御棒の制御棒軸方向位置検出装置と、この制御棒nib
方回位置検出装置と上記側(fi’l棒制御装置からの
1δ号を受は制@I棒引抜阻止位置信号を上記jii制
御棹制御製制御装置力する制御棒引抜監視装置と、この
制御棒引抜監視装置(−引抜制御棒f二隘接する燃料集
合体の軸方向出力分布を入力するプロセス計別撮とを具
備する制御棒制御システムにおいて、制御棒引抜監視装
置は、制御棒軸方向位置検出装置からの制御棒軸方向位
置(i号と制御棒制御装置「1からの制御棒選択信号と
が入力される対象制御棒選択回路と、プロセス計舞機か
らの引抜制御棒に隣接する燃料集合体の軸方向出力分布
信号を用いて許容引抜長特性を作成する特性変換回路と
、この特性変換回路からの許容引抜長特性と上記対象制
御Its J択回路からの引抜制御棒軸方向位置信号を
用いて決定される制御棒引抜阻止位詔信号を制御棒制御
装置に出力する制御棒引抜阻止位置設定回路とからなる
ことを特徴とする制御棒制御システム。
(1) What is the core of a nuclear reactor, the control rods that are pulled out and inserted into this core, and these controls? A fourth control rod driver for the 1lII rod, a control rod control device that controls this control rod drive mechanism, a control rod axial position detection device for the control rod, and this control rod nib.
A control rod withdrawal monitoring device which receives the 1δ signal from the above side (fi'l rod control device) and sends a control @I rod withdrawal prevention position signal to the control device made by the JII control rod control device, and this control rod. In a control rod control system equipped with a rod withdrawal monitoring device (-a process monitoring system that inputs the axial power distribution of the fuel assembly in contact with the control rod f), the control rod withdrawal monitoring device monitors the control rod axial position. The target control rod selection circuit receives the control rod axial position from the detection device (No. A characteristic conversion circuit that creates an allowable pull-out length characteristic using the axial output distribution signal of the aggregate, the allowable pull-out length characteristic from this characteristic converter circuit, and a pull-out control rod axial position signal from the target control Its J selection circuit. 1. A control rod control system comprising: a control rod withdrawal prevention position setting circuit that outputs a control rod withdrawal prevention position signal determined using the control rod withdrawal prevention position signal to a control rod control device.
(2)特性変換回路の許容引抜長特性は、特性変換回路
に内蔵された基本許容引抜長特性と基本軸方向出力分布
を用いて設定することを特徴とする特許請求の範囲第1
項の制御棒制御システム0
(2) The allowable pull-out length characteristic of the characteristic conversion circuit is set using the basic allowable pull-out length characteristic and the basic axial direction output distribution built into the characteristic conversion circuit.
Control rod control system 0
JP58090633A 1983-05-25 1983-05-25 Control system of control rod Granted JPS59216091A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58090633A JPS59216091A (en) 1983-05-25 1983-05-25 Control system of control rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58090633A JPS59216091A (en) 1983-05-25 1983-05-25 Control system of control rod

Publications (2)

Publication Number Publication Date
JPS59216091A true JPS59216091A (en) 1984-12-06
JPH0410595B2 JPH0410595B2 (en) 1992-02-25

Family

ID=14003889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58090633A Granted JPS59216091A (en) 1983-05-25 1983-05-25 Control system of control rod

Country Status (1)

Country Link
JP (1) JPS59216091A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114188051B (en) * 2021-12-03 2024-02-20 中国原子能科学研究院 Method and device for monitoring position of safety bar

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114188051B (en) * 2021-12-03 2024-02-20 中国原子能科学研究院 Method and device for monitoring position of safety bar

Also Published As

Publication number Publication date
JPH0410595B2 (en) 1992-02-25

Similar Documents

Publication Publication Date Title
JPS59216091A (en) Control system of control rod
EP0415711A1 (en) Median signal selector for feedwater control systems
JP5291888B2 (en) Control rod withdrawal monitoring method and control rod withdrawal monitoring system
JPS5933866B2 (en) Control rod withdrawal monitoring device
JPH043516B2 (en)
EP3570291B1 (en) Control rod operation monitoring system and control rod operation monitoring method
JPS58182589A (en) Control rod blocking device
JPS6093997A (en) Control rod drawing monitor device
JPS60165592A (en) Monitor device for driving mechanism of control rod
JPS61105494A (en) Monitor device for drawing of control rod
JP3162516B2 (en) Nuclear reactor and control rod driving method for nuclear reactor
JPS5931033B2 (en) Control rod withdrawal monitoring device
JPS6338677B2 (en)
US20120263266A1 (en) Method and device for detecting the drop of a cluster in a nuclear reactor
JP3080726B2 (en) Control rod removal prevention monitor
JPS59155788A (en) Reactor shutdown device
JPS58106498A (en) Control rod withdrawal monitoring device
JPH0778549B2 (en) Control rod withdrawal monitoring device
JPS60200196A (en) Control-rod drawing monitor device
JPS62229098A (en) Control-rod drawing monitor device
JPH0429996B2 (en)
JPH07253495A (en) Digital rod block monitor
JPS60186784A (en) Method of controlling output from nuclear reactor
JPS59132390A (en) Method of monitoring and controlling reactor
JPS637639B2 (en)