JPS59215963A - Ignition device for internal-combustion engine - Google Patents

Ignition device for internal-combustion engine

Info

Publication number
JPS59215963A
JPS59215963A JP9275183A JP9275183A JPS59215963A JP S59215963 A JPS59215963 A JP S59215963A JP 9275183 A JP9275183 A JP 9275183A JP 9275183 A JP9275183 A JP 9275183A JP S59215963 A JPS59215963 A JP S59215963A
Authority
JP
Japan
Prior art keywords
signal
angle
engine
pressure
angle signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9275183A
Other languages
Japanese (ja)
Inventor
Takanori Fujimoto
藤本 高徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP9275183A priority Critical patent/JPS59215963A/en
Publication of JPS59215963A publication Critical patent/JPS59215963A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/05Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using mechanical means
    • F02P5/10Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using mechanical means dependent on fluid pressure in engine, e.g. combustion-air pressure
    • F02P5/103Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using mechanical means dependent on fluid pressure in engine, e.g. combustion-air pressure dependent on the combustion-air pressure in engine

Abstract

PURPOSE:To make improvements in the accelerativeness of an engine as well as in a rate of fuel consumption, by determining an ignition timing with a wave- form spark advancing angle controlled by a relatively broad angle signal in case of a low engine speed range, while determining the ignition timing with operation results on the basis of suction pressure in case of a medium-high engine speed range. CONSTITUTION:In this ignition device, there are provided with a generator coil 1 generating AC voltage in synchronous with engine revolution, a signal coil 8 generating a first angle signal being narrow in an angle range corresponding to the specified crank position of an engine, and a signal coil 10 generating a second angle signal being relatively broad in the angle range as delayed from the first angle signal. In addition, an operation circuit 14, which receives the first angle signal and calculates a delay position rather than the first angle signal generation position in response to a signal out of a suction pressure signal generating device 16, is installed as well. Moreover, there is provided with an adjusting device 13, which receives an output signal of the operation circuit 14 and adjusts the second angle signal for the duration of the said output signal, whereby an operating point of time in an on-off operation device 7 is adjusted.

Description

【発明の詳細な説明】 この発明は内燃機関点火装置、特にマグネト点火に好適
な無接点式の点火装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an internal combustion engine ignition system, and particularly to a non-contact type ignition system suitable for magneto ignition.

一般に、2輪車、4輪車等の内燃機関については、低速
でのケッチン防止、始動性向上等のため、又中速から高
速にかけての馬力向上等のため、機関の回転数に応じて
点火時期を制御する回転進角機能が備えられている。さ
らに、加速性能向上、燃費向上等のため、一般に機関の
吸気負圧により点火時期を制御させる負圧進角機能も併
用される場合がある。従来、この負圧進角による点火時
期制御手段として、機関の吸気圧に応動するダイア7ラ
ムにより点火時期を機械的に制御するものが用いられて
いた。しかし、耐久性、精度面上等のため、近年では半
導体圧力センサにより機関の吸気圧を検出し、そのイス
出力により点火時期を制御させるものが普及しつつある
In general, for internal combustion engines such as two-wheeled vehicles and four-wheeled vehicles, ignition is performed according to the engine speed in order to prevent kicking at low speeds, improve startability, etc., and to improve horsepower at medium to high speeds. It is equipped with a rotation advance function to control the timing. Furthermore, in order to improve acceleration performance, fuel efficiency, etc., a negative pressure advance function that controls the ignition timing using the engine's intake negative pressure is generally used in conjunction with the engine. Conventionally, as the ignition timing control means using this negative pressure advance, a method has been used in which the ignition timing is mechanically controlled by a dial 7 ram that responds to the intake pressure of the engine. However, due to reasons such as durability and accuracy, in recent years, devices that detect the intake pressure of the engine using a semiconductor pressure sensor and control the ignition timing based on the sensor output have become popular.

この発明は、係る実状に鑑み、2サイクルの様なケッチ
ン防止、始動性向上程度で比較的点火時期精度の必要と
しない低速回転領域においては、比較的角度幅の広い点
火信号波形が回転と伴に成長することを利用した波形進
角方式で対応し、加速性能の向上、燃費向上等のための
負圧進角機能が要求され、点火時期精度の必要とされる
中速から高速への回転領域においては、機関の吸気圧に
応じた点火時期を演算することで対応し得るように構成
して、機械的な制御部を解消するようにした負圧差角付
の点火装置を提供するものである。
In view of the above-mentioned circumstances, the present invention has been developed to provide an ignition signal waveform with a relatively wide angle width that accompanies the rotation in a low-speed rotation region such as a 2-cycle engine that does not require relatively high ignition timing accuracy for the purpose of preventing kickbacks and improving startability. This is supported by a waveform advance method that takes advantage of the growth in engine speed, and a negative pressure advance function is required to improve acceleration performance and fuel efficiency, and from medium to high speeds where ignition timing accuracy is required. In this area, the present invention provides an ignition system with a negative pressure differential angle that is configured to be able to handle the ignition timing by calculating the ignition timing according to the intake pressure of the engine, thereby eliminating the need for a mechanical control section. be.

以下、この発明の一実施例を図について説明する0第1
図において、(1)はイ源装置である図示しないマグネ
トの発電コイルで、機関の回転に同期して正負の交流電
圧を発生する。[2)、 f3)はこの発電コイル(1
)の出力を整流するダイオード、(4)はこのダイオー
ド(2)により整流された上記発電コイル(1)の出力
により充電されるコンデンサ、(5)はこのコンデンサ
(4)の放電回路に接続された点火コイルで、上記コン
デンサ(4)と直列接続された1次コイル(5a)と、
点火プラグ(6)に接続された2次コイル(5b)とか
らなる。(7)は上記コンデンサ(4)の放電回路に設
けられた開閉素子であるサイリスタで、このサイリスタ
(7)の導通時に上記コンデンサ(4)の充電々荷か上
記]−次ココイル放電される。(8)、Q[)は機関に
同期した信号を発生する信号コイルで、信号コイル(8
)は機関の所定クランク位置に対応した角度幅の狭い第
1の角度信号を発生し、信号コイル00は上記第1の角
度信号の発生位置よりも所定角関連れたクランク位置に
対応した比較的角度幅の広い第2の角度信号を発生する
。(91,01)は逆流阻止用のダイオード、0′2は
サイリスタ(7)のゲートに上記第2の角度信号を直接
供給するための電流制御用抵抗、α3は上記第2の角度
信号をサイリスタ(7)のゲートに供給する時期を制御
する調整手段としてのトランジスタで、上記第2の角度
信号をアースに側路する様に接続されている。α→は、
上記第1の角度信号を受け、機関の吸気圧に応じて上記
第1の角変信号の発生位置よりの遅れ位置を演算する演
算回路で、この出力は抵抗OQを介してトランジスタ0
3のベースに接続されている。αQば。
Hereinafter, one embodiment of the present invention will be explained with reference to the drawings.
In the figure, (1) is a power generating coil of a magneto (not shown) which is a power source device and generates positive and negative alternating current voltages in synchronization with the rotation of the engine. [2), f3) is this generator coil (1
), (4) is a capacitor that is charged by the output of the generator coil (1) rectified by this diode (2), and (5) is connected to the discharge circuit of this capacitor (4). a primary coil (5a) which is an ignition coil connected in series with the capacitor (4);
It consists of a secondary coil (5b) connected to a spark plug (6). (7) is a thyristor which is a switching element provided in the discharge circuit of the capacitor (4), and when the thyristor (7) is conductive, the charge of the capacitor (4) is discharged. (8), Q[) are signal coils that generate signals synchronized with the engine.
) generates a first angle signal having a narrow angular width corresponding to a predetermined crank position of the engine, and the signal coil 00 generates a relatively narrow first angle signal corresponding to a crank position related to a predetermined angle from the generation position of the first angle signal. A second angular signal having a wide angular width is generated. (91,01) is a reverse current blocking diode, 0'2 is a current control resistor for directly supplying the second angle signal to the gate of thyristor (7), and α3 is a current control resistor for directly supplying the second angle signal to the gate of thyristor (7). (7) A transistor serving as an adjusting means for controlling the timing of supply to the gate, and is connected so as to bypass the second angle signal to ground. α→ is
This is an arithmetic circuit that receives the first angle signal and calculates a delayed position from the generation position of the first angle change signal according to the intake pressure of the engine.
It is connected to the base of 3. αQba.

第3図に示すごとく機関の吸気圧に比例した圧力信号電
圧(■r)を発生する圧力信号発生手段で、例えば半導
体圧力センサが使用され、上記演算回路α荀を制御して
いる。
As shown in FIG. 3, the pressure signal generating means generates a pressure signal voltage (r) proportional to the intake pressure of the engine, for example, a semiconductor pressure sensor is used, and controls the arithmetic circuit α.

次に、第2図は上記演算回路04の詳細回路図で、図中
(141)は上記第1の角度信号を受けてセットされる
R−Sフリップフロッグ、(144)は演算増幅器であ
り、その反転入力端子は抵抗(’142)を介して上記
R−8フリップフロップ(141)の出力端子(Q、)
に接続されていると共に、コンデンサ(145)を介し
てそれ自身の出力端子に接続され、その非反転入力端子
は上記機関の吸気圧に比例した圧力信号電圧ffr)に
バイアスされている。(145)は電圧比較器であり、
その反転入力端子は上記演算増幅器(144)の出力端
子に接続され、その非反転入力端子はアースに接地され
、出力端子は上記R−8フリップフロップ1’141)
のリセット端子(R)に入力される。
Next, FIG. 2 is a detailed circuit diagram of the arithmetic circuit 04, in which (141) is an R-S flip-frog that is set in response to the first angle signal, and (144) is an operational amplifier. Its inverting input terminal is connected to the output terminal (Q, ) of the R-8 flip-flop (141) through a resistor ('142).
and to its own output terminal via a capacitor (145), the non-inverting input terminal of which is biased to a pressure signal voltage (ffr) proportional to the intake pressure of the engine. (145) is a voltage comparator,
Its inverting input terminal is connected to the output terminal of the operational amplifier (144), its non-inverting input terminal is grounded, and its output terminal is the R-8 flip-flop 1'141).
It is input to the reset terminal (R) of.

次に、第4図において(b)〜(f)図は上記第1図。Next, in FIG. 4, (b) to (f) are the same as the above-mentioned FIG. 1.

第2図中の各部の電圧A −Kのタイムチャートを示す
ものである。(a)図は機関のクランク位置の各符号を
示すタイムチャートであり、点(M)は機関の要求する
最大進角位i!よりも進んだ位置を示し、これは第1の
角度信号発生位置である。点(S)は、第2の角度信号
発生位置を示す。
3 shows a time chart of voltages A-K at various parts in FIG. 2. FIG. Figure (a) is a time chart showing each sign of the crank position of the engine, and point (M) is the maximum advance position i! required by the engine! This is the first angle signal generation position. Point (S) indicates the second angle signal generation position.

次に上記実施例の動作を説明する。Next, the operation of the above embodiment will be explained.

まず、第1図に示すCD工式のマグネト点火装置にあっ
ては、発電コイル(1)の整流出力によりコンデンサ(
4)を図示極性に充電し、その完成々荷が、機関の点火
時期にサイリスタ(7)が導通することにより、点火コ
イル(5)の1次コイル(5a)K印加される。それに
より2次コイル(5b)には、高電圧が発生し、点火プ
ラグ(6)に火花が飛ぶものである。
First, in the CD type magneto ignition device shown in Fig. 1, the rectified output of the generator coil (1) is used to convert the capacitor (
4) is charged to the illustrated polarity, and the completed charge is applied to the primary coil (5a) of the ignition coil (5) by making the thyristor (7) conductive at the ignition timing of the engine. As a result, a high voltage is generated in the secondary coil (5b), causing a spark to fly to the spark plug (6).

次に、サイリスタ(7)の導通時期、即ち点火時期の制
御方法を第2図、第3図、第4図、及び点火時期特性図
を示す第5図を参照して説明する〇今、機関が第5図に
示す回転数N】よりも高い回転領域にあって、機関の吸
気圧が’760mrnHg、 (大気圧)である場合は
、次に説明する様な動作となる。
Next, a method for controlling the conduction timing of the thyristor (7), that is, the ignition timing, will be explained with reference to Figs. 2, 3, and 4, and Fig. 5 showing the ignition timing characteristic diagram. If the engine is in a rotation range higher than the rotation speed N shown in FIG. 5 and the intake pressure of the engine is 760 mrnHg (atmospheric pressure), the operation will be as described below.

圧力信号発生手段αeは、第3図に示すごとく、機関の
吸気圧力に比例した圧力信号電圧vrを発生し機関の吸
気圧が760mmHgの場合、この電圧はVrlとなる
。この圧力信号電圧Vrlば、演算増幅器(144)の
非反転入力端子に供給され非反転入力端子電圧となる。
As shown in FIG. 3, the pressure signal generating means αe generates a pressure signal voltage vr proportional to the intake pressure of the engine, and when the intake pressure of the engine is 760 mmHg, this voltage becomes Vrl. This pressure signal voltage Vrl is supplied to the non-inverting input terminal of the operational amplifier (144) and becomes the non-inverting input terminal voltage.

一方、R−Sフリップフロップ(141)は機関のクラ
ンク位置(局において発生する第1の角度信号Aにより
セットされ、その出力電圧Bは、第4図(d)に示すご
とくハイレベルになる。出力電圧Bがハイレベルになる
と、第2図に示した電圧極性に充電されていたコンデン
サ(143)は、下式に示す電流12にて放電し始める
On the other hand, the R-S flip-flop (141) is set by the first angle signal A generated at the engine crank position (station), and its output voltage B becomes high level as shown in FIG. 4(d). When the output voltage B reaches a high level, the capacitor (143) that has been charged to the voltage polarity shown in FIG. 2 starts discharging at a current 12 shown in the equation below.

v、  Vrl 12−□ ただしvHはフリップフロップ(141)のノ1イレベ
ル電圧、Rは抵抗(142)の抵抗である。
v, Vrl 12-□ However, vH is the level voltage of the flip-flop (141), and R is the resistance of the resistor (142).

次にコンデンサ(n−3)の放電開始により、演算増幅
器(1aJの出力電圧Eは第4図(C)に示すごとく降
下り電圧比較器(nrs)の比較電圧(この実施例では
零電圧)に達すると電圧比較器(145)の出力には、
正のパルス電圧が発生する。この正のパルス1d圧は、
上記R−SフリップフロップC141)のリセット信号
となり、 R−Sフリップフロップt’141)の出力
電圧Bはローレベルになる。R−Sフリップフロップ(
14x)の出力電圧Bがローレベルになると、コンデン
サ(143)は第2図に示した電圧極性に充電し始める
ことになる。この時の充電電流11はVrl 11=□ さて、R−8フリツプフロツプ(141)のQ出力がハ
イレベルになる角度幅θlは、11で充電された電荷が
12で放電される三角波であり、その充放電周期を36
0°とすると 1l(360−θI)=’i2・θ1 であり、これにiI+’2を代入して解けば、Vrl θl = −X 360゜ vH となる。一般式で、角度幅をθとすれば、■r θ=−8360゜ vH となる。このように角度θ、またはθ1はvllは一定
値に保持できる故、機関の回転数には依存せず、吸気圧
vrにのみ依存した値となる。
Next, as the capacitor (n-3) starts discharging, the output voltage E of the operational amplifier (1aJ) drops as shown in FIG. When the voltage comparator (145) reaches the output of the voltage comparator (145),
A positive pulse voltage is generated. This positive pulse 1d pressure is
This becomes a reset signal for the R-S flip-flop C141), and the output voltage B of the R-S flip-flop t'141) becomes low level. R-S flip-flop (
14x) becomes a low level, the capacitor (143) begins to charge to the voltage polarity shown in FIG. The charging current 11 at this time is Vrl 11=□ Now, the angular width θl at which the Q output of the R-8 flip-flop (141) is at a high level is a triangular wave in which the charges charged at 11 are discharged at 12; Charge/discharge cycle 36
When it is assumed to be 0°, 1l(360-θI)='i2·θ1, and if iI+'2 is substituted into this and solved, Vrl θl = -X 360°vH. In the general formula, if the angular width is θ, then ■r θ=−8360°vH. In this way, the angle θ or θ1 has a value that does not depend on the rotational speed of the engine and only depends on the intake pressure vr, since vll can be maintained at a constant value.

この7リツプフロツプ(141)のQ出力は、抵抗(I
5)を介してトランジスター萄のベースに供給され、こ
のQ出力がハイレベルの間トランジスタ09はオンして
、角度信号Cをバイパスしてそれをアースへ短絡させる
作用をする。従って今考えているように、機関回転数が
N】より高く、吸気圧が’760mm Hgである場合
には、第4図の時間方向の中央の各波形がこれに該当し
、サイリスタ(7)のゲートには第4図(f)の波形D
2が印加される。即ち、この場合の点火時期は第1の角
度信号Aの発生位置より演算角度θ1だけ遅れた位置と
なり、点火時期特性図の$5図に示す特性Q1)の様に
、回転に対して一定の特性となる。
The Q output of this 7 lip-flop (141) is the resistance (I
5) to the base of the transistor 09, and while this Q output is at a high level, the transistor 09 is turned on and acts to bypass the angle signal C and short-circuit it to ground. Therefore, as we are currently considering, when the engine speed is higher than N] and the intake pressure is 760 mm Hg, each waveform in the center of the time direction in Fig. 4 corresponds to this, and the thyristor (7) The waveform D in Fig. 4(f) is applied to the gate of
2 is applied. That is, the ignition timing in this case is delayed by the calculated angle θ1 from the generation position of the first angle signal A, and is constant with respect to rotation, as shown in the characteristic Q1) shown in Figure $5 of the ignition timing characteristic diagram. Becomes a characteristic.

次に、機関が第5図に示す回転数N1よりも高い回転領
域において、機関の吸気圧が5だけ低くなった場合(負
圧)は、圧力信号電圧vrは第3図に見るとと<Vrz
に下がるため、演算角変θはVr2に相当する値まで小
さくなることが理解できる。以下上述したと同様の動作
となり、点火時期は機関の吸気圧に応じて制御されるこ
とになる。
Next, when the engine intake pressure is lowered by 5 (negative pressure) in the engine rotation range higher than the rotation speed N1 shown in FIG. 5, the pressure signal voltage vr becomes < Vrz
It can be understood that the calculated angle change θ is reduced to a value corresponding to Vr2. Thereafter, the operation is similar to that described above, and the ignition timing is controlled according to the intake pressure of the engine.

次に、さらに機関の吸気圧が低くなり、即ち上記演算角
度θがさらに小さくなって、第4図の(d)のB波形に
示す演算角度θ2になった場合においては、第4図の(
f)に示すD3波形からも理解できる様に、トランジス
タαjにて第2の角変信号0を演算角度θ2期間側路し
ても、その側路を完了した時はまだ第2の角度信号はサ
イリスタ(7)の導通電圧■Gに達していないため、演
算回路04)の演算結果は点火時期に寄与しなくなる。
Next, when the intake pressure of the engine becomes even lower, that is, the calculated angle θ becomes even smaller and reaches the calculated angle θ2 shown in the B waveform of FIG. 4(d),
As can be understood from the D3 waveform shown in f), even if the second angle change signal 0 is bypassed by the transistor αj for the calculation angle θ2 period, the second angle signal is still not present when the bypass is completed. Since the conduction voltage of the thyristor (7) has not reached ■G, the calculation result of the calculation circuit 04) no longer contributes to the ignition timing.

即ち、@2の角度信号Cがサイリスタ(7)の導通電圧
vGに達した時が点火時期となり、第5図に示す特性(
イ)の様になり、機関の吸気圧に対して上限が決定され
ることになる。
That is, the ignition timing occurs when the angle signal C of @2 reaches the conduction voltage vG of the thyristor (7), and the characteristics shown in Fig. 5 (
As shown in b), an upper limit is determined for the engine's intake pressure.

この動作は、機関の回転数が、Nl以下の領域について
も同じこととなる。ただ、N1以下の低速にお−ては、
第2角度信号0の直圧値は回転数が低く小さいため、機
関の吸気圧が大気圧に相当する上記演算角度θがθ1に
なってその期間第2角度信号Cを側路しても、側路を完
了した時は、まだ第2角度信号はサイリスタ(7)の導
通電圧V、に達していないだけである。上述した第2角
度信号Cが、サイリスタ(7)の導通電圧VGに達する
時期が、回転数の上昇と伴に進むことは、従来より公知
である無接点式マグネト点火装置の波形進角によるもの
である。即ち、比較的角度幅の広い点火信号出力が回転
数の上昇と伴に成長するためで、この成長は低速はど大
きいことも明らかとされている。
This operation is the same in the region where the engine rotational speed is equal to or less than Nl. However, at low speeds below N1,
Since the direct pressure value of the second angle signal 0 is small because the rotation speed is low, even if the above calculated angle θ, at which the intake pressure of the engine corresponds to atmospheric pressure, becomes θ1 and the second angle signal C is bypassed during that period, When the bypass is completed, the second angle signal has not yet reached the conduction voltage V of the thyristor (7). The reason why the time at which the second angle signal C reaches the conduction voltage VG of the thyristor (7) advances as the rotational speed increases is due to the waveform advance of the conventionally known contactless magneto ignition device. It is. That is, the ignition signal output, which has a relatively wide angular width, grows as the rotational speed increases, and it is clear that this growth is even greater at low speeds.

以上説明した如き動作により、機関の点火時期特性は第
5図の実線で示す様な特性が得られる訳である。即ち、
機関の回転数がN、以下の回転領域においては、比較的
角度幅の広い第2の角度信号Cの成長と伴に回転進角し
、機関の回転数がN1以上の回転領域においては、第1
の角度信号の発生位置(ロ)より、機関の吸気圧に応じ
て演算された演算角度θだけ遅れた位置にて点火する特
性Qυとなり、さらにこの回転領域での機関の吸気圧に
対する上限点火位置は、第2角度信号によって決定して
いる。
By the operation as described above, the ignition timing characteristics of the engine are as shown by the solid line in FIG. 5. That is,
In the rotation range where the engine rotation speed is N or less, the rotation angle advances with the growth of the second angle signal C having a relatively wide angle width, and in the rotation range where the engine rotation speed is N1 or more, 1
The characteristic Qυ is that ignition occurs at a position delayed by the calculated angle θ calculated according to the engine intake pressure from the angle signal generation position (B), and the upper limit ignition position for the engine intake pressure in this rotation range. is determined by the second angle signal.

以上の様にこの発明によれば、機関の中速から高速にか
けての回転領域においては、第1の角度信号を受けて機
関の吸気圧に応じて演算された演算結果により点火時期
を決定することができるので、機関の中速から高速にか
けての常用回転領域で、機関の加速性向上、燃費向上及
び安定な馬力性能が精度よく図れ、さらに、機関性能を
そこなう様な機関の吸気圧に対する過進角に対しては、
第2の角度信号によって上限の点火時期をおさえること
ができるので、圧力信号発生手段に圧力信号を制限する
回路機構が不要となり、さらに、ケッチン防止、始動性
向上のための回転進角のみが必要な低速回転領域におい
ては、比較的点火時期精度を必要とされないため比較的
角度幅の広い第2角度信号による波形進角にて点火時期
を決定することができるので、簡単な回路F!kWIt
で回転進角が得られる等、実情にあった機関の好適点火
時期制御が提供できるものである。
As described above, according to the present invention, in the engine rotation range from medium speed to high speed, the ignition timing is determined based on the calculation result calculated according to the intake pressure of the engine in response to the first angle signal. As a result, it is possible to accurately improve engine acceleration, fuel efficiency, and stable horsepower performance in the normal engine speed range from medium to high speeds, and to prevent excessive engine intake pressure that would impair engine performance. For the corner,
Since the upper limit of ignition timing can be suppressed by the second angle signal, there is no need for a circuit mechanism to limit the pressure signal in the pressure signal generating means, and only a rotation advance is required to prevent kicking and improve startability. In the low-speed rotation range, relatively high ignition timing accuracy is not required, and the ignition timing can be determined by advancing the waveform by the second angle signal, which has a relatively wide angle width. Therefore, a simple circuit F! kWIt
It is possible to provide suitable ignition timing control for the engine according to the actual situation, such as obtaining a rotational advance at .

【図面の簡単な説明】[Brief explanation of the drawing]

^1図はこの発明の一実施例を示す電気回路図、第2図
は第1図の実施例の要部の電気回路図、第3図は圧力信
号発生手段の出力特性図、第4図は実施例の動作を説明
する動作波形図、第5図は実施例による点火時期特性図
である。 図中、(1)は発電コイル、(5)は点火コイル、(6
)は点火プラグ、(7)は開閉手段、(8)、αOは信
号手段、α唾は調整手段、α→は演算手段、Qf19は
圧力信号発生手段である 尚、図中同一符号は同−又は相当部分を示す。 代理人 大岩増雄 第1I¥I 第6図 W、嬰回転数I 第2図 (b) (0) (d−) 第3図 第4図
^ Figure 1 is an electric circuit diagram showing one embodiment of the present invention, Figure 2 is an electric circuit diagram of the main part of the embodiment of Figure 1, Figure 3 is an output characteristic diagram of the pressure signal generating means, and Figure 4. 5 is an operation waveform diagram explaining the operation of the embodiment, and FIG. 5 is an ignition timing characteristic diagram according to the embodiment. In the figure, (1) is the power generation coil, (5) is the ignition coil, and (6) is the ignition coil.
) is the spark plug, (7) is the opening/closing means, (8), αO is the signal means, α is the adjustment means, α→ is the calculation means, and Qf19 is the pressure signal generation means. or a corresponding portion. Agent Masuo Oiwa No. 1 I¥I Fig. 6 W, child rotational speed I Fig. 2 (b) (0) (d-) Fig. 3 Fig. 4

Claims (1)

【特許請求の範囲】[Claims] 機関回転に同期して第1の角変信号を発生する信号手段
、同じく機関回転に同期して上記第1の角度信号から遅
れて比較的角度幅の広い第2の角度信号を発生する信号
手段、上記@2の角度信号が所定値に達した時に動作し
点火コイルへの通電電流を変化させて点火電圧を発生さ
せる開閉手段、機関の吸気圧に応じた圧力信号を発生す
る手段、上記第1の角変信号と圧力信号とを受は上記第
1の角度信号の発生時点から上記圧力信号に応じた時間
幅の圧力時間幅信号を発生する演算手段、及び上記圧力
時間幅信号を受けてこの圧力時間幅信号の持続時間中上
記第2の角度信号を調整し上記開閉手段の動作時点を調
整する調整手段を備えた内燃機関点火装置。
A signal means for generating a first angle change signal in synchronization with the engine rotation, and a signal means for generating a second angle signal having a relatively wide angle width and delayed from the first angle signal in synchronization with the engine rotation. , an opening/closing means that operates when the angle signal @2 reaches a predetermined value and changes the current flowing to the ignition coil to generate an ignition voltage; a means that generates a pressure signal according to the intake pressure of the engine; Receiving the first angle change signal and the pressure signal, the calculating means generates a pressure time width signal having a time width corresponding to the pressure signal from the time point at which the first angle signal is generated, and a calculation means that receives the pressure time width signal. An internal combustion engine ignition device comprising adjusting means for adjusting the second angle signal during the duration of the pressure duration signal and adjusting the operating point of the opening/closing means.
JP9275183A 1983-05-24 1983-05-24 Ignition device for internal-combustion engine Pending JPS59215963A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9275183A JPS59215963A (en) 1983-05-24 1983-05-24 Ignition device for internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9275183A JPS59215963A (en) 1983-05-24 1983-05-24 Ignition device for internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS59215963A true JPS59215963A (en) 1984-12-05

Family

ID=14063117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9275183A Pending JPS59215963A (en) 1983-05-24 1983-05-24 Ignition device for internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS59215963A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7433774B2 (en) * 2003-02-07 2008-10-07 Honda Motor Co., Ltd. Control system for cylinder cut-off internal combustion engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5644461A (en) * 1979-09-18 1981-04-23 Mitsubishi Electric Corp Engine ignition device
JPS56151266A (en) * 1980-04-23 1981-11-24 Mitsubishi Electric Corp Control device for timing of ignition of engine
JPS57360A (en) * 1980-05-30 1982-01-05 Mitsubishi Electric Corp Igniter in internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5644461A (en) * 1979-09-18 1981-04-23 Mitsubishi Electric Corp Engine ignition device
JPS56151266A (en) * 1980-04-23 1981-11-24 Mitsubishi Electric Corp Control device for timing of ignition of engine
JPS57360A (en) * 1980-05-30 1982-01-05 Mitsubishi Electric Corp Igniter in internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7433774B2 (en) * 2003-02-07 2008-10-07 Honda Motor Co., Ltd. Control system for cylinder cut-off internal combustion engine

Similar Documents

Publication Publication Date Title
JPS60195378A (en) Ignition timing controlling device for internal-combustion engine
US4284046A (en) Contactless ignition system for internal combustion engine
US4441478A (en) Contactless magneto ignition system
US4643150A (en) Ignition timing control system for internal combustion engines
US4292942A (en) Ignition system for internal combustion engines
US4809661A (en) Ignition system for internal combustion engine
US4624234A (en) Electronic ignition timing adjusting system for internal combustion engines
JPS6221990B2 (en)
JPS59215963A (en) Ignition device for internal-combustion engine
JPS59705B2 (en) internal combustion engine ignition system
JPS6217670B2 (en)
JPS58135363A (en) Ignition timing controlling apparatus for internal-combustion engine
JPS6124697Y2 (en)
JPS6231670Y2 (en)
JPS6056269B2 (en) magneto igniter
JPS6316867Y2 (en)
JPS6149503B2 (en)
JPS5923071A (en) Igniting apparatus for internal combustion engine
JPS6237227B2 (en)
JPS6316868Y2 (en)
JPH0450460Y2 (en)
JP2822693B2 (en) Ignition device for internal combustion engine
JPS61118564A (en) Ignition timing control device
JPH0338456Y2 (en)
JPH0737790B2 (en) Ignition device for internal combustion engine