JPS59215951A - Air-fuel ratio control device for gas engine - Google Patents
Air-fuel ratio control device for gas engineInfo
- Publication number
- JPS59215951A JPS59215951A JP58091846A JP9184683A JPS59215951A JP S59215951 A JPS59215951 A JP S59215951A JP 58091846 A JP58091846 A JP 58091846A JP 9184683 A JP9184683 A JP 9184683A JP S59215951 A JPS59215951 A JP S59215951A
- Authority
- JP
- Japan
- Prior art keywords
- air
- fuel ratio
- gas
- fuel
- engine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 61
- 238000002485 combustion reaction Methods 0.000 claims abstract description 13
- 239000007789 gas Substances 0.000 abstract description 28
- 230000003247 decreasing effect Effects 0.000 abstract description 4
- 239000002737 fuel gas Substances 0.000 abstract description 4
- 239000000203 mixture Substances 0.000 abstract description 2
- 238000009841 combustion method Methods 0.000 description 11
- 239000003054 catalyst Substances 0.000 description 5
- 238000001514 detection method Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 230000001351 cycling effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- WRRSFOZOETZUPG-FFHNEAJVSA-N (4r,4ar,7s,7ar,12bs)-9-methoxy-3-methyl-2,4,4a,7,7a,13-hexahydro-1h-4,12-methanobenzofuro[3,2-e]isoquinoline-7-ol;hydrate Chemical group O.C([C@H]1[C@H](N(CC[C@@]112)C)C3)=C[C@H](O)[C@@H]1OC1=C2C3=CC=C1OC WRRSFOZOETZUPG-FFHNEAJVSA-N 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 230000010349 pulsation Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M21/00—Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
- F02M21/02—Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
- F02M21/0218—Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
- F02M21/0284—Arrangement of multiple injectors or fuel-air mixers per combustion chamber
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D19/00—Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
- F02D19/02—Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
- F02D19/021—Control of components of the fuel supply system
- F02D19/023—Control of components of the fuel supply system to adjust the fuel mass or volume flow
- F02D19/024—Control of components of the fuel supply system to adjust the fuel mass or volume flow by controlling fuel injectors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M21/00—Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
- F02M21/02—Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
- F02M21/0218—Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
- F02M21/0248—Injectors
- F02M21/0278—Port fuel injectors for single or multipoint injection into the air intake system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M21/00—Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
- F02M21/02—Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
- F02M21/04—Gas-air mixing apparatus
- F02M21/047—Venturi mixer
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/0025—Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
- F02D41/0047—Controlling exhaust gas recirculation [EGR]
- F02D41/005—Controlling exhaust gas recirculation [EGR] according to engine operating conditions
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/30—Use of alternative fuels, e.g. biofuels
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、機関の負荷状LK応じて空燃比を切換えるガ
ス機関の空燃比制御装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air-fuel ratio control device for a gas engine that switches the air-fuel ratio in accordance with the load condition LK of the engine.
まず、ガス機関における横動燃焼方式と輝部空燃比燃焼
方式のそれぞれの燃焼特性について説明する。第1図は
空燃比、すなわち空気過剰率^−1,4の場合と、λ=
1.0の場合の出力に対する熱効率の関係の一例を示し
たものであり、^−1,4の場合を実線で、λ−1,0
の場合を破線で示しである。First, the combustion characteristics of the transverse motion combustion method and the bright air-fuel ratio combustion method in a gas engine will be explained. Figure 1 shows the air-fuel ratio, that is, the case of excess air ratio ^-1,4, and the case of λ=
This shows an example of the relationship between thermal efficiency and output in the case of λ-1,4, with the solid line showing the case of λ-1,0.
The case is shown by the broken line.
同一回転数について比較すると、いずれもλ−1,4の
場合にV!:、熱効率は高いが最大出力が低く、λ−1
,0の場合には熱効率は低いが最大出力が高いという相
反する長所と短所を持っていることがわかる。また、第
2図は空気過剰率に対する排気エミッションや熱効率等
の関係の一例を示したものであり、この図から#薄燃焼
の方が排気エミッションは低くなり、λ−1,0付近で
は高くなることがわかる。しかし、λ−1,0付近でも
三元触媒を用いてこれを有効に作用させれば、排気エミ
ッションを低く抑えることが可能であるから、排気エミ
ッションについては両方式とも同程度であると考えるこ
とができる。Comparing the same rotation speed, V! for λ-1 and 4 in both cases. :, thermal efficiency is high but maximum output is low, λ-1
, 0 has contradictory advantages and disadvantages, such as low thermal efficiency but high maximum output. In addition, Figure 2 shows an example of the relationship between exhaust emissions and thermal efficiency with respect to excess air ratio. From this figure, #exhaust emissions are lower in lean combustion, and higher near λ-1,0. I understand that. However, if you use a three-way catalyst and make it work effectively even around λ-1,0, it is possible to keep the exhaust emissions low, so the exhaust emissions can be considered to be the same for both types. I can do it.
このような点に着目し、希薄燃焼方式とPl!論空論比
燃比燃焼方式荷量に応じて選択できるようにし、出力が
小さくてよい低負荷時には熱効率の高い希薄燃焼方式に
切換え、大きな出力の必要な高負荷時には最大出力が高
い理論空燃比燃焼方式に切換え、各方式の長所を活かし
てガス機関を効果的に運転することが考えられる。Focusing on these points, we developed the lean burn system and Pl! The stoichiometric combustion method can be selected depending on the load. At low loads, where a small output is required, the combustion method switches to a lean combustion method with high thermal efficiency. At high loads, when a large output is required, the stoichiometric air-fuel ratio combustion method provides a high maximum output. It is conceivable that the gas engine could be operated effectively by switching to the two methods and taking advantage of the advantages of each method.
このためには、例えば排ガス中の酸素濃度に応じてガス
インジェクタから所定量の燃料を追加供給すること釦よ
り、空燃比の小さい領域での燃焼を行なわせる空燃比制
御手段を設け、予め機関回転数に応じて設定されたスロ
ットル弁開度をしきい値として前記空燃比制御手段の作
動をオンオフすることにより、負荷に応じて空燃比の切
換えを行なうようKすればよいのであるが、このように
した場合処は、低速回転時のλ−1,4からλ−1,0
への切換えが円滑に行なわれず、最悪の場合には機関が
停止してし捷うという可能性がある。これは、酸素濃度
を検出する0□センサの出力に遅れがあるため切換え直
後にすぐには燃料がリッチな状態になったという検出出
力が得られず、空燃比制御手段が過剰に反応してガスイ
ンジェクタのデユーティが100%になり、スロットル
弁開度が小さい低速回転時には混合気に対する燃料追加
用が相対的に大きくなり過ぎ、実際の空燃比が1.0を
通り越して過濃になってしまうためである。To do this, for example, an air-fuel ratio control means is provided that allows combustion to occur in a region where the air-fuel ratio is low by using a button that additionally supplies a predetermined amount of fuel from a gas injector depending on the oxygen concentration in the exhaust gas, and The air-fuel ratio may be switched according to the load by turning on/off the operation of the air-fuel ratio control means using the throttle valve opening set according to the number as a threshold value. In the case of λ-1,4 to λ-1,0 at low speed rotation.
In the worst case scenario, there is a possibility that the engine will stop and fail. This is because there is a delay in the output of the 0□ sensor that detects oxygen concentration, so a detection output indicating that the fuel is in a rich state cannot be obtained immediately after switching, and the air-fuel ratio control means overreacts. When the duty of the gas injector becomes 100% and the throttle valve opening is small and the engine rotates at low speeds, the amount of fuel added to the air-fuel mixture becomes relatively large, causing the actual air-fuel ratio to exceed 1.0 and become excessively rich. It's for a reason.
本発明はこの点に着目し、空燃比の切換えを円滑且つ速
やかに行なうことのできるガス機関の空燃比制御装置を
pド供することを目的として々されたものであり、前述
したよりな空燃比制御手段と、との空燃比制御手段の作
動をオンオフする空燃比切換え手段上を備え、負荷に応
じて空燃比の切換えを行なうようにしたガス機関におい
て、機関回転数とインジェクタデユーティの制限値との
関係を数表の形で記憶する記憶手段と、空燃比減少方向
への切換え時に、インジェクタデユーティの増加率を定
常動作時よりも高く設定するとともに、インジェクタデ
ユーティを前記記憶手段に記憶された制限値に制限する
ような制御出力を出す演算手段とを備えたことを特徴と
している。インジェクタデユーティの制限値は、機関の
型式ごと例予め試験を行なって各機関回転数に対する適
正値を求めておけばよい。The present invention has focused on this point, and has been devised for the purpose of providing an air-fuel ratio control device for a gas engine that can smoothly and quickly switch the air-fuel ratio. In a gas engine that is equipped with a control means and an air-fuel ratio switching means for turning on and off the operation of the air-fuel ratio control means, the air-fuel ratio is switched according to the load, and the limit values for engine speed and injector duty are provided. storage means for storing the relationship between the two in the form of a numerical table; and a storage means for setting an increase rate of the injector duty higher than during steady operation when switching to a direction of decreasing air-fuel ratio, and storing the injector duty in the storage means. and arithmetic means for outputting a control output to limit the limit value to the specified limit value. The limit value of the injector duty may be determined by conducting a test in advance for each type of engine to find an appropriate value for each engine speed.
従って、本発明によれば、空燃比減少方向への切換え時
にインジェクタデユーティを速やかに増大させるととも
に、機関回転数に対応した適正値以上に壕で不必要に増
大させることがなく、空燃比を適正値に保って、空燃比
の切換えを円滑且つ速やかに行なうことが可能となるの
であり、運転負荷の全域にわたって排気エミッションを
低減し、且つ高B熱効率と最大出力を確保することので
きるガス機関の実用性が大幅に向上されるのである。Therefore, according to the present invention, the injector duty is quickly increased when switching to the direction of decreasing the air-fuel ratio, and the air-fuel ratio is not increased unnecessarily beyond the appropriate value corresponding to the engine speed. By keeping the air-fuel ratio at an appropriate value, it is possible to smoothly and quickly switch the air-fuel ratio, reducing exhaust emissions over the entire operating load, and creating a gas engine that can ensure high B thermal efficiency and maximum output. The practicality of the system is greatly improved.
以下、図示の一実施例により本発明を具体的に説明する
〇
@3図は概念系統図であシ、(!)はガス機関、(2)
はミキサー、(3)はスロットル弁、(4)はガバナ、
(5)はスロットル弁(3)の開度検出器、(6)はガ
スインジェクタ、(7)は排気管、(8)は三元触媒、
f91tj:Oxセンサ、f+o) it EGR制徊
]用のtl−ガス循環通路(!すに設けられたEGR弁
、(I2)は回転数センサ、θ□□□はマイクロコンピ
ュータである。The present invention will be specifically explained below with reference to an illustrated example.〇@3 Figure is a conceptual system diagram, (!) is a gas engine, (2)
is the mixer, (3) is the throttle valve, (4) is the governor,
(5) is the opening detector of the throttle valve (3), (6) is the gas injector, (7) is the exhaust pipe, (8) is the three-way catalyst,
f91tj: Ox sensor, f+o) it EGR control] tl-gas circulation passage (! EGR valve installed in the EGR valve, (I2) is a rotation speed sensor, and θ□□□ is a microcomputer.
燃料ガス(15)と空気(1G)はミキサー(2)で混
合された徒、スロットル弁(3)を経て機関f1+に供
給され、排気管(7)にV;−出された排ガス(17)
は三元触媒(8)を経て排気される。スロットル弁(3
)けガバナ(4)により開度制御され、弁開度は開度検
11器(5)によって検出され、その出力はマイクロコ
ンピュータ03)に送られる00!センサ(9)は排ガ
ス(I7)中の酸素濃度を検出し、その出力がマイクロ
コンピュータO■に送うれ、ガスインジェクタ(6)を
制御して燃料ガス(18+がミキサー(2)に追加供給
される。回転数センサ02)は機関fi+の回転数を検
出し、その出力はマイクロコンピュータ0萄に送られる
。The fuel gas (15) and air (1G) are mixed in the mixer (2), then supplied to the engine f1+ via the throttle valve (3), and the exhaust gas (17) is discharged into the exhaust pipe (7).
is exhausted through a three-way catalyst (8). Throttle valve (3
) The valve opening is controlled by the valve governor (4), and the valve opening is detected by the opening detector (5), the output of which is sent to the microcomputer 03). The sensor (9) detects the oxygen concentration in the exhaust gas (I7), and its output is sent to the microcomputer O■, which controls the gas injector (6) to additionally supply fuel gas (18+) to the mixer (2). The rotation speed sensor 02) detects the rotation speed of the engine fi+, and its output is sent to the microcomputer 0.
マイクロコンピュータ0(6)は、CPU 12])、
RO八((財)、RAM(転))、I10インターフェ
ース伐4)、システムバスライン値5)等を備えておシ
、例えばポテンショメークを用いた開度検出器(5)の
出力け、マルチプレク’/−A/Dコンバータ(26+
でデジタル量に変換されテマイクロコンピュータ03)
に入力され、また例えばパルス検出器からなる回転数セ
ンサ(I2)の出力は、パルス数をカクンタ(27)で
カクントしてマイクロコンピュータ0′4に入力される
。ROM(2’3には、演算制御用のプログラムや、機
関回転数に対するスロットル弁開度を数表の形で記憶さ
せてあ沙、CPUり1)は回転数センサ02)で検出さ
れた機関回転数釦見合ったスロットル弁開度の数表値θ
nを読み出し、開度検出器(5)で検出されたスロット
ル弁開度の検出値θmと比較する。そして、検出値θ。Microcomputer 0 (6) is CPU 12]),
The system is equipped with RO8 ((Foundation), RAM (Transfer)), I10 interface (4), system bus line value (5), etc. Prec'/-A/D converter (26+
It is converted into a digital quantity by the microcomputer 03)
The output of a rotational speed sensor (I2) consisting of, for example, a pulse detector is inputted to the microcomputer 0'4 after the number of pulses is decremented by a decoder (27). The ROM (2'3) stores calculation control programs and the throttle valve opening relative to the engine speed in the form of a numerical table.The CPU 1) stores the engine speed detected by the engine speed sensor 02). Numerical value θ of throttle valve opening corresponding to rotation speed button
n is read out and compared with the detected value θm of the throttle valve opening detected by the opening detector (5). And the detected value θ.
が数表値θ。より小さい時には、負荷量が小さく希薄燃
焼が望ましい状態であると判定し、I10インターフェ
ース(241から出力を出し、パワートランジスタアレ
イ(2杓からの信号によってEGR弁(10)を開く。is the numerical value θ. When it is smaller, it is determined that the load is small and lean combustion is desirable, an output is output from the I10 interface (241), and the EGR valve (10) is opened by a signal from the power transistor array (241).
ミキサー(2)は予め希薄燃焼するよう領空燃比をS、
+1整してあシ、機関(1)は例えばλ−1,4の希薄
燃焼方式で、且つEGR制御がかけられた状態で運転さ
れる。また、検出値θmが数表値θつより大きい場合に
は、負荷量が大きく理論空燃比燃焼が望ましい状態であ
ると判定し、パワートランジスタアレイ(ハ)からの信
号によってEGR弁(10)を閉じ、またマルチプレク
サA/Dコンパータレ6)を介して入力されるO、セン
サ(9)の検出値に応じた出力をI10インターフェー
スレ4)から出力し、パワートランジスタアレイ(2句
からの信号によってガスインジェクタ(6)を操作して
入=1.0となるように空燃比を制御し、機関flll
d:理論空燃比燃焼方式で運転される。この時には前述
のように排気エミッションが高くなる傾向があるが、三
元触媒(8)の作用によって実際の排ガス中に含まれる
排気エミッションは低く抑えられる。wJ4図は上述し
た動作についての制御フローチャートを示すものである
。The mixer (2) sets the air fuel ratio to S in advance to achieve lean combustion.
With +1 adjustment, the engine (1) is operated, for example, in a lean burn mode of λ-1.4, and under EGR control. If the detected value θm is larger than the numerical value θ, it is determined that the load is large and stoichiometric air-fuel ratio combustion is desirable, and the EGR valve (10) is activated by a signal from the power transistor array (c). The output corresponding to the detected value of the sensor (9), which is input via the multiplexer A/D comparator (6), is output from the I10 interface (4), and the gas is controlled by the signal from the power transistor array (2). Operate the injector (6) to control the air-fuel ratio so that the input is 1.0, and the engine full
d: Operated using stoichiometric air-fuel ratio combustion method. At this time, as described above, the exhaust emissions tend to increase, but the action of the three-way catalyst (8) keeps the exhaust emissions contained in the actual exhaust gas low. Figure wJ4 shows a control flowchart for the above-mentioned operation.
ところで、上述の説明は原理的な説明であり、実際に第
4図に示すようなフローチャートによって制御した場合
−け、例えば負荷量が増大して理論空燃比燃焼方式に切
換っても、スロットル弁(3)の脈動などによって希薄
燃焼方式に戻ってしまい、サイクリング現象を生ずる可
能性がある。そこで、実際には、希薄燃焼方式から理論
空燃比燃焼方式に切換える時のしきい値となるスロット
ル開度の数表値θn1と、逆に切換える時のしきい値と
なる数表値θn2とに若干の差を設けてθn1ンθlと
々るように設定し、切換え動作にヒステリシスを持たせ
である。第5図はこのようにした場合の制御フローチャ
ートであり、左側のステップ1では、検出値θ工と数表
値θn1とを比較して理論空燃比燃焼方式に切換えるか
どうかの判定と切換え動作を行ない、右側のステップ2
では、検出値θ、と数表値θlとを比較して希薄燃焼方
式に切換えるかどうかの判定と切換え動作を行なうよう
にしている。従って、検出値θ5が01111 >θ□
〉θlの関係にある時には切換えが行なわれず、その時
の状態がそのま′−j!維持されるから、サイクリング
現象は防止され、安定した動作が得られるのである。By the way, the above explanation is a theoretical explanation, and if the control is actually performed according to the flowchart shown in Fig. 4, for example, even if the load increases and the combustion mode is switched to the stoichiometric air-fuel ratio combustion method, the throttle valve There is a possibility that the pulsation in (3) causes the engine to return to the lean burn mode, resulting in a cycling phenomenon. Therefore, in reality, the numerical value θn1 of the throttle opening is the threshold when switching from the lean burn system to the stoichiometric air-fuel ratio combustion system, and the numerical value θn2 is the threshold when switching vice versa. The setting is made such that θn1 and θl jump with a slight difference, thereby providing hysteresis in the switching operation. Fig. 5 is a control flowchart in this case, and in step 1 on the left side, the detected value θf and the numerical value θn1 are compared to determine whether to switch to the stoichiometric air-fuel ratio combustion method and to perform the switching operation. Do, step 2 on the right
In this case, the detected value θ is compared with the numerical value θl to determine whether to switch to the lean burn system and to perform the switching operation. Therefore, the detected value θ5 is 01111 >θ□
〉θl, no switching is performed and the state at that time remains '-j! Since this is maintained, cycling phenomenon is prevented and stable operation is obtained.
々お、ステップ1とステップ2とは、例えばソフトフェ
アタイマによって一定の時間ごとに交互に行なうように
したり、あるいけ割込み信号を待つて適宜のステップを
行なうなどの方式で実施することができる。Furthermore, steps 1 and 2 can be performed alternately at regular intervals using a software timer, or by waiting for an interrupt signal and performing the appropriate steps.
次に示す付表−11d、上述の制御を折力う場合の数表
の一例を示すものであり、スロットル開度は無次元数で
ある。The following Appendix Table 11d shows an example of a numerical table when the above-mentioned control is applied, and the throttle opening is a dimensionless number.
〔付表−1〕
上述のようなガスインジェクタ(6)からの燃料の追加
供給による空燃比制御は、基本的には第6図に示すサブ
ルーチンの制御フローチャートのウチ、破線で囲まれて
いない部分を割込みルーチンとして用いることにより実
現される。すなわち、0.センサ(9)からの検出信号
を適当な基準値と比較して得たリッチ(RICI(、)
/リーン(LEAN )信号に基づいて、PWM (パ
ルス幅変m)方式で駆動されるガスインジェクタ(6)
への印加電圧のデユーティを、リッチの場合には減少し
、リーンの場合には増加するようにステップ3で制御す
るのである。第7図(a)はこのような制御において、
希薄燃焼方式から理論空燃比燃焼方式に切換った場合の
一般的な制御タイムチャートを示すものであり、時刻t
。[Appendix Table 1] The air-fuel ratio control by additional supply of fuel from the gas injector (6) as described above is basically performed by following the portions of the subroutine control flowchart shown in Figure 6 that are not surrounded by broken lines. This is achieved by using it as an interrupt routine. That is, 0. Rich (RICI) obtained by comparing the detection signal from the sensor (9) with an appropriate reference value
/ Gas injector (6) driven by PWM (pulse width variable m) method based on the LEAN signal
In step 3, the duty of the applied voltage is controlled in such a way that it decreases in the case of richness and increases in the case of leanness. FIG. 7(a) shows that in such control,
This shows a general control time chart when switching from the lean burn method to the stoichiometric air-fuel ratio combustion method, and the time t
.
で切換えが行なわれてインジェクタデユーティが一定レ
ベルにまで増加する。そしてこのレベルを中心として一
定範囲の増減が繰返され、空燃比はλ−1,0を中心と
して変動しながらマクロ的にλ=1、OK制御されるの
である。Switching is performed at , and the injector duty increases to a certain level. Then, increases and decreases within a certain range are repeated around this level, and the air-fuel ratio is macroscopically controlled to λ=1 while changing around λ-1 and 0.
上記の作動は定常的には何ら問題はないのであるが、空
燃比が切換った直後、すなわち理論空撚比制御がオンさ
れた直後において、インジェクタデユーティを定常状態
と同じ変化割合で操作していたのでは、時刻t1にλ−
1,0になるまでに図示のように−の時間を要し、速や
かな切換えが行なわれないので、本発明においては、第
6図の破線内の制御を行ない、ステップ5にID −I
D+10として示すように切換え直後のインジェクタデ
ユーティの変化割合、すなわち増加率を定常動作時より
大きくしている。これによって空燃比がλ−1,0にな
る時刻tfが早くなり、所要時間−′は第7図(b)に
示すように時間jslc比べて大幅に短縮されるのであ
る。There is no problem with the above operation in a steady state, but immediately after the air-fuel ratio is switched, that is, immediately after the stoichiometric air-twist ratio control is turned on, the injector duty is operated at the same rate of change as in the steady state. Therefore, at time t1, λ-
As shown in the figure, it takes -time for the values to become 1 and 0, and prompt switching is not performed. Therefore, in the present invention, the control within the broken line in FIG.
As shown as D+10, the rate of change in the injector duty immediately after switching, that is, the rate of increase, is greater than that during steady operation. As a result, the time tf at which the air-fuel ratio becomes λ-1,0 becomes earlier, and the required time -' is significantly shortened compared to the time jslc, as shown in FIG. 7(b).
一方、低速回転の場合にインジェクタデユーティの増加
率を大きくすると、0□センサ(9)の応答遅れなどに
より、前述したように0□センサ(9)の検出信号がリ
ッチになる前に実際の空燃比が過濃になって機関停止な
どの不都合が生ずるので、本発明においては、機関回転
数に応じてインジェクタデユーティを制限するようKし
ている。この制限は、試駆によって実際の空燃比がλ−
1,0となる最高値を各機関回転数ごとに確認し、これ
を制限値■馬として機関回転数に対する数表の形でRO
M (24に配位させておき、第6図におけるステップ
4でこの制限値ID、と実際のインジェクタデユーティ
IDとを比較し、インジェクタデユーティの増加を制
限すること釦よって行なわれる。これKよってインジェ
クタデユ−ティは、第7図(b) K示すようKその時
の機関回転数KM応した制限値IDnまでは速やかに増
加し、しかも制限値を越えて破線の矢符のよう妬必要以
上に増加することはなくなり、機関停止などの事態は防
止されて円滑且つ速やかな切換えが行なわれるととKな
るのである。On the other hand, if the increase rate of the injector duty is increased in the case of low speed rotation, the response delay of the 0□ sensor (9) will cause the actual detection signal to become rich before the detection signal of the 0□ sensor (9) becomes rich as described above. Since the air-fuel ratio becomes excessively rich, causing problems such as engine stoppage, the present invention limits the injector duty according to the engine speed. This limit is due to the fact that the actual air-fuel ratio is λ−
Check the maximum value of 1, 0 for each engine speed, and set this as the limit value ■ RO in the form of a numerical table for the engine speed.
M (24), and in step 4 in FIG. 6, this limit value ID is compared with the actual injector duty ID to limit the increase in the injector duty.This is done using the K button. Therefore, the injector duty increases rapidly up to the limit value IDn corresponding to the engine speed KM at that time, as shown in Fig. 7(b), and exceeds the limit value more than necessary as shown by the dashed arrow. This means that the engine speed will not increase, and situations such as engine stoppage will be prevented and smooth and prompt switching will be performed.
次に示す付表−2は、機関回転数2インジエクタデユー
テイの制限値との関係を示す数表の一例である。Attached Table 2 shown below is an example of a numerical table showing the relationship between engine speed 2 and the limit value of injector duty.
以上のような切換えを円滑且つ速やかに行なうだめの制
御は、希薄燃焼方式から理論空燃比燃焼方式への切換え
直後に実施されるのであり、マイクロコンピュータ(1
3)が空燃比切換え直後ということを判断するために定
常フラグを設け、第5図に示すメインルーチンにおいて
、ステップ1の0.センサとガスインジェクタによる理
論空燃比制御オンの前で定常フラグをリセットし、また
第6図の破線内に示すように、0□センサ(9)の検出
信号がリッチになった直後釦定常フラグをプリセットす
るようにしである。The control to smoothly and quickly perform the above-mentioned switching is carried out immediately after switching from the lean burn method to the stoichiometric air-fuel ratio combustion method.
A steady state flag is provided to determine that 0.3) is immediately after an air-fuel ratio switch, and in the main routine shown in FIG. The steady state flag is reset before the stoichiometric air-fuel ratio control by the sensor and gas injector is turned on, and the button steady state flag is reset immediately after the detection signal of the 0□ sensor (9) becomes rich, as shown within the broken line in Figure 6. It is recommended to preset it.
以上の実施例の説明から明らかなように、零発明け、例
えば希薄燃焼方式と理論空燃比燃焼方式を負荷量に応じ
て切換え、熱効率が高いという希薄燃焼方式の長所と最
大出力が高いという理論空燃比燃焼方式の長所の両方を
活かして、運転負荷全域での高い熱効率と最大出力とを
確保しながら運転を行なうとともK、排気エミッション
の低減や機関の小容量化をはかることを目的としたガス
機関において、空燃比減少方向への切換え時にインジエ
クタデューテイを機関回転数VCL=じた制限値まで速
やかに増大させ、空燃比切換えを円滑且つ速やかに行な
うことができるのである。As is clear from the explanation of the above embodiments, zero inventions, for example, switch between lean burn mode and stoichiometric air-fuel ratio combustion mode depending on the load, and the advantage of lean burn mode is that it has high thermal efficiency, and the theory that the maximum output is high. The aim is to take advantage of both the advantages of the air-fuel ratio combustion system and operate while ensuring high thermal efficiency and maximum output over the entire operating load range, as well as reduce exhaust emissions and reduce engine capacity. In such a gas engine, the injector duty can be quickly increased to a limit value equal to the engine rotational speed VCL when switching in the direction of decreasing the air-fuel ratio, and the air-fuel ratio can be switched smoothly and quickly.
@1図は本発明に係るガス機関の出力に対する熱効率の
関係を示す特性図の一例、第2図は空気過剰率に対する
排気エミッション等の関係を示す特性図の一例である。
第3図以降は本発明の一実施例を示す本ので、第3図は
概念系統図、第4図は基本的な制御フローチャート、第
5図は実際的なメインルーチンの制御フローチャート、
第6図はサブルーチンの制御フローチャート、第7図(
a)は一般的な制御の場合のタイムチャート、第7図(
b)は本発明による改良を加えた制御の場合のタイムチ
ャートである。
fl)・・・ガス機関、(2)・・・ミキサー、【3)
・・・スロットル弁、(5)・・・開度検出器、(6)
・・・ガスインジェクタ、(8)・・・三元触媒、(9
)・・・02センサ、(101・・・EGR弁、(11
)・・・排ガス循環通路、(I2)・・・回転数センサ
、幀・・・マイクロコンビニーり、 (2t+・・・C
PtJ 、(3)・・・ROM 0(0ん) jテ
q4 ルジ ←Figure 1 is an example of a characteristic diagram showing the relationship between thermal efficiency and output of the gas engine according to the present invention, and Figure 2 is an example of a characteristic diagram showing the relationship between excess air ratio and exhaust emissions. Figure 3 and subsequent figures are a book showing one embodiment of the present invention, so Figure 3 is a conceptual system diagram, Figure 4 is a basic control flowchart, Figure 5 is a practical main routine control flowchart,
Figure 6 is a control flowchart of the subroutine, Figure 7 (
a) is a time chart for general control, Figure 7 (
b) is a time chart in the case of the improved control according to the present invention. fl)...Gas engine, (2)...Mixer, [3)
... Throttle valve, (5) ... Opening degree detector, (6)
...Gas injector, (8) ...Three-way catalyst, (9
)...02 sensor, (101...EGR valve, (11
)...Exhaust gas circulation passage, (I2)...Rotation speed sensor, Gate...Micro convenience store, (2t+...C
PtJ, (3)...ROM 0 (0n) jte
q4 Ruji ←
Claims (1)
ることによシ、空燃比の小さい領域での燃焼を行なわせ
る空燃比制御手段と、予め機関回転数に応じて設定され
たスロットル弁囲度をしきい値として前記空燃比制御手
段の作動をオンオフすることにより、負荷に欝して空燃
比の切換えを行なう空燃比切換え手段とを備えたガス機
関において、 機関回転数とインジェクタデユーティの制限値との関係
を数表の形で記憶する記憶手段と、空燃比減少方向への
切換え時に、インジェクタデユーティの増加率を定常動
作時よりも高く設定するとともに、インジェクタデユー
ティを前記記憶手段に記憶された制限値に制限するよう
な制御出力を出す演算手段、 とを備えたことを特徴とするガス機関の空燃比制御装置
。[Claims] (11) An air-fuel ratio control means for performing combustion in a low air-fuel ratio region by additionally supplying a predetermined amount of fuel from a gas injector; and an air-fuel ratio switching means for switching the air-fuel ratio depending on the load by turning on and off the operation of the air-fuel ratio control means using the throttle valve range set as a threshold value, the engine speed and A storage means for storing the relationship with the limit value of the injector duty in the form of a numerical table; An air-fuel ratio control device for a gas engine, comprising: arithmetic means for outputting a control output to limit the amount of the fuel to a limit value stored in the storage means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58091846A JPS59215951A (en) | 1983-05-24 | 1983-05-24 | Air-fuel ratio control device for gas engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58091846A JPS59215951A (en) | 1983-05-24 | 1983-05-24 | Air-fuel ratio control device for gas engine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59215951A true JPS59215951A (en) | 1984-12-05 |
Family
ID=14037934
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58091846A Pending JPS59215951A (en) | 1983-05-24 | 1983-05-24 | Air-fuel ratio control device for gas engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59215951A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6194411A (en) * | 1984-10-15 | 1986-05-13 | Clarion Co Ltd | Variable band surface acoustic wave filter |
US5009210A (en) * | 1986-01-10 | 1991-04-23 | Nissan Motor Co., Ltd. | Air/fuel ratio feedback control system for lean combustion engine |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57124051A (en) * | 1981-01-26 | 1982-08-02 | Nippon Denso Co Ltd | Optimum control method of internal combustion engine |
-
1983
- 1983-05-24 JP JP58091846A patent/JPS59215951A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57124051A (en) * | 1981-01-26 | 1982-08-02 | Nippon Denso Co Ltd | Optimum control method of internal combustion engine |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6194411A (en) * | 1984-10-15 | 1986-05-13 | Clarion Co Ltd | Variable band surface acoustic wave filter |
JPH0582768B2 (en) * | 1984-10-15 | 1993-11-22 | Clarion Co Ltd | |
US5009210A (en) * | 1986-01-10 | 1991-04-23 | Nissan Motor Co., Ltd. | Air/fuel ratio feedback control system for lean combustion engine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6116023A (en) | Internal combustion engine with NOx absorbent catalyst | |
US6766640B2 (en) | Engine exhaust purification device | |
JPS59215951A (en) | Air-fuel ratio control device for gas engine | |
JPH0213150B2 (en) | ||
JPS6158912A (en) | Exhaust cleaning apparatus of engine | |
JPH01113565A (en) | Air-fuel ratio control device for spark-ignition engine | |
JP2004060613A (en) | Air-fuel ratio control device for internal combustion engine | |
JPS58210311A (en) | Exhaust gas purifier | |
JP2526570B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JP2590901B2 (en) | Air-fuel ratio control device for internal combustion engine | |
GB2380425A (en) | A method and system for controlling an internal combustion engine. | |
JP2518243B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JPS6019939A (en) | Electronically-controlled fuel injector | |
JPH0329982B2 (en) | ||
JPH0494410A (en) | Exhaust purifier for internal combustion engine | |
JP2596009B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JPS5848742A (en) | Apparatus for controlling air-fuel ratio of internal- combustion engine | |
JP2556002B2 (en) | Air-fuel ratio control device | |
JP2560309B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JPH11117789A (en) | Exhaust emission control device for internal combustion engine | |
JPH0337349A (en) | Starter for internal combustion engine | |
JPH07113337B2 (en) | Electronic fuel control system for internal combustion engine | |
JPS6183465A (en) | Preventing method of icing in internal-combustion engine | |
JPS6238864A (en) | Exhaust-gas purifying system for gas engine | |
JPS61192828A (en) | Air-fuel ratio controller for internal-combustion engine |