JPS592156B2 - High frequency heating device - Google Patents

High frequency heating device

Info

Publication number
JPS592156B2
JPS592156B2 JP51141495A JP14149576A JPS592156B2 JP S592156 B2 JPS592156 B2 JP S592156B2 JP 51141495 A JP51141495 A JP 51141495A JP 14149576 A JP14149576 A JP 14149576A JP S592156 B2 JPS592156 B2 JP S592156B2
Authority
JP
Japan
Prior art keywords
frequency
heating
circuit
heat
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51141495A
Other languages
Japanese (ja)
Other versions
JPS5366034A (en
Inventor
淳三 田中
寛 寺崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP51141495A priority Critical patent/JPS592156B2/en
Publication of JPS5366034A publication Critical patent/JPS5366034A/en
Publication of JPS592156B2 publication Critical patent/JPS592156B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/02Means for indicating or recording specially adapted for thermometers
    • G01K1/024Means for indicating or recording specially adapted for thermometers for remote indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K2207/00Application of thermometers in household appliances
    • G01K2207/02Application of thermometers in household appliances for measuring food temperature
    • G01K2207/06Application of thermometers in household appliances for measuring food temperature for preparation purposes

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Control Of High-Frequency Heating Circuits (AREA)
  • Control Of Temperature (AREA)

Description

【発明の詳細な説明】 この発明は加熱用高周波発振装置の出力制御を感熱装置
の発射する電波を受信して行うと共に感熱装置の電源と
して加熱用高周波電波を受信して電源とする高周波加熱
装置に関する。
Detailed Description of the Invention The present invention provides a high-frequency heating device that controls the output of a high-frequency oscillator for heating by receiving radio waves emitted by a heat-sensitive device, and receives the high-frequency radio waves for heating as a power source for the heat-sensitive device. Regarding.

一般に、高周波エネルギを利用し一定温度まで加熱室内
部の被加熱物を加熱する場合、被加熱物の量、質が一定
であれば、あらかじめ一定温度に加熱されるまでに要す
る時間を計測し、その時得られた時間だけ高周波エネル
ギを照射させるようにしておけばよく、この場合は高周
波加熱装置の動作に必要なだけ時限設定装置の設定時間
を調整することによりこの目的を達成できる。
Generally, when heating an object inside a heating chamber to a certain temperature using high-frequency energy, if the quantity and quality of the object are constant, the time required to heat it to a certain temperature is measured in advance. It is only necessary to irradiate the high-frequency energy for the time obtained at that time. In this case, this purpose can be achieved by adjusting the set time of the time setting device as much as necessary for the operation of the high-frequency heating device.

しかし、被加熱物の量、質は一般に不特定の場合が大半
で、この場合設定する時間を加減するものごとに変える
必要がある訳だが、この時各々についての最適な加熱時
間をあらかじめ設定することは無理な訳で、逆に言えば
大半の被加熱物は1度時間設定をするだけで、希望する
温度まで加熱することは、ぱなはだ困難であるとゆうこ
とである。
However, in most cases, the quantity and quality of the material to be heated are unspecified, and in this case it is necessary to change the setting time for each item. This is impossible, and conversely, it is extremely difficult to heat most objects to the desired temperature just by setting the time once.

そのため従来より被加熱物に感熱素子を接触させ、直接
被加熱物の温度を測定しながら高周波エネルギの照射を
行ない、感熱素子の出す信号を高周波エネルギの照射制
御装置に受け高周波エネルギの制御を行なう。
Therefore, traditionally, a heat-sensitive element is brought into contact with the object to be heated, and high-frequency energy is irradiated while directly measuring the temperature of the object, and the signal output from the heat-sensitive element is received by a high-frequency energy irradiation control device to control the high-frequency energy. .

すなわち、希望の温度で加熱を停止する等の方法がとら
れてきたが、この場合加熱室内部に設けられた感熱素子
と、外部に設けられた高周波エネルギの照射制御装置は
有線にて結合されており、実際に使用した場合使い方の
便利さの点に種々の問題を生じた。すなわち、被加熱物
は一般に容器の中に入れて加熱されるがこの場合被加熱
物によつては蓋をして被加熱物からの水蒸気の蒸発を防
ぐ必要がある場合がある。その時、有線式の感熱装置で
は被加熱物に直接接触することができなくなる。そのた
め、これらの被加熱物にあつては、感熱装置による出力
制御すなわち加熱の度合をコントロールすることが出き
なかつた。また、近年、加熱ムラを防止するという目的
で被加熱物を回転するいわゆるターンテーブル方式のも
のが主流となつてきたが、この方式のものに前記の感熱
装置は使用できないのである。すなわち感熱装置は被加
熱物とともに加熱室内を回転するが高周波エネルギの照
射制御装置は固定しているため、結合しているリード線
等は次第によじれて感熱装置が被加熱物よりはずれたわ
、りード線が切れたりする欠点がある。また、感熱装置
に電池を必要とし取扱いに不便な欠点があつた。この発
明は従来の欠点を除去し、制御接続線のよじれのない、
感熱装置に電源を内蔵しない、感に頼らず加熱時間が設
定でき、加熱時間の設定ミスのない、正確な制御ができ
る高周波加熱装置を得ることを目的とする。この発明を
図面に基いて説明する。
In other words, methods such as stopping heating at a desired temperature have been used, but in this case, the heat-sensitive element installed inside the heating chamber and the high-frequency energy irradiation control device installed outside are connected by wire. However, when actually used, various problems arose regarding the convenience of use. That is, the object to be heated is generally placed in a container and heated, but in this case, depending on the object to be heated, it may be necessary to cover the container to prevent water vapor from evaporating from the object. At that time, the wired heat-sensitive device cannot directly contact the object to be heated. Therefore, for these objects to be heated, it has not been possible to control the output by the heat-sensitive device, that is, to control the degree of heating. Furthermore, in recent years, a so-called turntable system in which the object to be heated is rotated has become mainstream in order to prevent uneven heating, but the above-mentioned heat-sensitive device cannot be used with this system. In other words, the heat-sensitive device rotates in the heating chamber together with the object to be heated, but the high-frequency energy irradiation control device is fixed, so the connected lead wires etc. gradually become twisted and the heat-sensitive device becomes detached from the object to be heated. The disadvantage is that the wires may break. Another disadvantage was that the heat-sensitive device required a battery, making it inconvenient to handle. This invention eliminates the drawbacks of the prior art and eliminates kinks in the control connection lines.
To provide a high-frequency heating device that does not have a built-in power source in the heat-sensitive device, can set the heating time without relying on sensation, and can accurately control the heating time without setting mistakes. This invention will be explained based on the drawings.

第1図はこの発明の構成を示す。FIG. 1 shows the configuration of this invention.

本体1の内部に加熱室2が設けられ、加熱室2の中には
容器3および蓋4によジ包み込まれた被加熱物5がドア
6を開閉して設置されている。そして被加熱物5には感
熱部7を挿入した感熱装置8が設けられている。加熱室
2の上部は誘電材よりなる仕切板9で仕切られ、この空
間内に高周波エネルギを発射するマグネトロン10のア
ンテナAllが突出する。アンテナAllの周囲には風
力により回転するスタラ一はね13がスタラ軸13−1
によジ軸支されている。一方マグネトロン10が取付け
られている加熱室壁12の一部にはマグネトロン10か
ら発射される高周波エネルギのもつ波長に同調したチヨ
ークを介して加熱室2に突出せるアンテナBl4が設け
られている。このアンテナBl4の出力は受信装置15
11Cより増幅検波される。受信装置15の出力はマグ
ネトロン10より発射される高周波エネルギの照射量を
制御する照射制御装置16に接続される。この照射制御
装置16は受信装置15の出力に対応してマグネトロン
10の入力電力を変える動作を行なつている。また本体
1のドア6の上方には操作パネル17を設けこの操作パ
ネル17の一部には温度設定用のつまみ18とこのつま
み18の回転角により抵抗値が変化する可変抵抗器19
(後述のVRl)が取付けられている。本装置を駆動す
る電力を取り入れる電源ケーブル20を本体1後部に設
ける。第2図は感熱部7を具備する感熱装置8の要部詳
細図である。イ図は断面図、口図は回路図、を示す。図
において、外殻21は金属製で、高周波エネルギが内部
を照射するのを防止する。この外殻21の上下に中空の
突起部22,23を設ける。一方の突起部22の内部に
は、前記マグネトロン10のアンテナAllより発射さ
れる高周波エネルギの波長にマツチングするチヨーク部
24を設け、該チヨーク部24中を通してアンテナC2
5が外殻21より外部へ突出する。また、他方の中空の
突起部23には感熱部7を設けている。本装置では温度
と抵抗値の関係が負で、しかもほぼ直線的に変化するサ
ーミスタ26を感熱素子として用いる。一方外殻21内
には高周波発振回路27と高周波発振回路27にサーミ
スタ26の抵抗値に対応して周波数変調をかけるための
低周波変調回路28を設ける。
A heating chamber 2 is provided inside the main body 1, and a container 3 and an object to be heated 5 wrapped in a lid 4 are placed in the heating chamber 2 by opening and closing a door 6. The object to be heated 5 is provided with a heat sensing device 8 into which a heat sensing portion 7 is inserted. The upper part of the heating chamber 2 is partitioned by a partition plate 9 made of a dielectric material, and an antenna All of a magnetron 10 that emits high frequency energy projects into this space. Around the antenna All, a starrer blade 13 that rotates due to wind power is attached to a starrer shaft 13-1.
It is supported by a screw. On the other hand, on a part of the heating chamber wall 12 to which the magnetron 10 is attached, there is provided an antenna B14 which can protrude into the heating chamber 2 via a chiyoke tuned to the wavelength of the high frequency energy emitted from the magnetron 10. The output of this antenna Bl4 is the receiving device 15
The signal is amplified and detected from 11C. The output of the receiving device 15 is connected to an irradiation control device 16 that controls the amount of high-frequency energy emitted from the magnetron 10. The irradiation control device 16 operates to change the input power of the magnetron 10 in response to the output of the receiving device 15. Further, an operation panel 17 is provided above the door 6 of the main body 1, and a part of this operation panel 17 includes a temperature setting knob 18 and a variable resistor 19 whose resistance value changes depending on the rotation angle of this knob 18.
(VRl to be described later) is attached. A power cable 20 is provided at the rear of the main body 1 to take in electric power to drive the device. FIG. 2 is a detailed view of the main parts of the heat-sensitive device 8 including the heat-sensitive section 7. As shown in FIG. The figure A shows a sectional view, and the figure A shows a circuit diagram. In the figure, the outer shell 21 is made of metal and prevents high frequency energy from irradiating the interior. Hollow protrusions 22 and 23 are provided on the top and bottom of this outer shell 21. Inside one of the projections 22, there is provided a chiyoke part 24 that matches the wavelength of the high frequency energy emitted from the antenna All of the magnetron 10, and the antenna C2 is passed through the chiyoke part 24.
5 protrudes from the outer shell 21 to the outside. Further, the other hollow protrusion 23 is provided with a heat sensitive section 7. In this device, a thermistor 26 whose resistance value has a negative relationship with temperature and which changes almost linearly is used as a heat-sensitive element. On the other hand, inside the outer shell 21, a high frequency oscillation circuit 27 and a low frequency modulation circuit 28 for frequency modulating the high frequency oscillation circuit 27 in accordance with the resistance value of the thermistor 26 are provided.

そして、本実施例においては高周波発振回路27と、低
周波変調回路28の駆動電源として、整流器30を直列
に介在させたアンテナD3lを外殻21外に設け整流器
30の一端は外殻に接続し他方の端子側にあられれる加
熱用高周波のマグネトロン10による電圧をアンテナC
25と同じチヨーク24を介して外殻21内に導き、さ
らに安定化回路を通して得られた直流電圧を用いた。こ
の回路は次のように動作を行なう。まず感熱装置8が加
熱室2内に設置されマグネトロン10のアンテナAll
より発射されると同時に、アンテナD3lに電流を生じ
る。そしてこの電流は、整流器30の介在により一方向
に制限されコンデンサCを充電する。この電荷は、安定
化回路29により被加熱物5の量●質のいかんにより感
熱装置の位置スタラ一はね13の状態等により変化する
アンテナD3lの電流によりコンデンサCに発生する変
動の大きな電圧を常に一定電圧に安定化するものでコン
デンサ、抵抗による平滑(積分)回路32および、ゼナ
ーダイオードZDよりなつている。こうしてこの出力端
、すなわちゼナーダイオードZDの両端にはマグネトロ
ン10が発射している間常に一定の電圧を発生すること
になる。この電圧を高周波発振回路27および、低周波
変調回路28の電源端子に接続し電源としたのである。
なお、この安定化回路29は感熱部を電池にて動作させ
る場合であつても有効であることを附記しておく。
In this embodiment, as a driving power source for the high frequency oscillation circuit 27 and the low frequency modulation circuit 28, an antenna D3l with a rectifier 30 interposed in series is provided outside the outer shell 21, and one end of the rectifier 30 is connected to the outer shell. The voltage generated by the heating high-frequency magnetron 10 that is applied to the other terminal side is transferred to the antenna C.
The DC voltage was introduced into the outer shell 21 through the same chain yoke 24 as 25, and was obtained through a stabilizing circuit. This circuit operates as follows. First, the heat sensitive device 8 is installed in the heating chamber 2, and the antennas of the magnetron 10 are all connected to each other.
At the same time, a current is generated in the antenna D3l. This current is limited in one direction by the interposition of the rectifier 30 and charges the capacitor C. This charge is controlled by a stabilizing circuit 29 to reduce the large fluctuation voltage generated in the capacitor C by the current of the antenna D3l, which changes depending on the quantity and quality of the heated object 5, the position stirrer of the heat sensitive device, the state of the spring 13, etc. The voltage is always stabilized at a constant level, and consists of a smoothing (integration) circuit 32 made up of a capacitor and a resistor, and a zener diode ZD. In this way, a constant voltage is always generated at the output end, that is, at both ends of the Zener diode ZD, while the magnetron 10 is firing. This voltage was connected to the power terminals of the high frequency oscillation circuit 27 and the low frequency modulation circuit 28 to serve as a power source.
It should be noted that this stabilizing circuit 29 is effective even when the heat sensitive section is operated by a battery.

すなわち電池電圧は使用するにしたがい次第に発生電圧
を低下させる。それに伴ない高周波発振回路27、低周
波変調回路28の動作点が変化し、各々の発振周波数を
かえしてしまい誤動作の原因となるからである。この発
明による被加熱物5に対する加熱制御をワイアレスにて
任意に行なう動作を第2図口図の回路により説明する。
That is, the battery voltage gradually decreases as the battery is used. This is because the operating points of the high frequency oscillation circuit 27 and the low frequency modulation circuit 28 change accordingly, causing their respective oscillation frequencies to change, causing malfunctions. The operation of arbitrarily performing wireless heating control on the object to be heated 5 according to the present invention will be explained with reference to the circuit shown in FIG. 2.

感熱装置8は前述のごとき安定化回路29を具備するた
め、加熱室内に設置し、マグネトロン10が電波を発射
し、被加熱物5の加熱を始めると同時にTRlおよびP
UTl(Nゲートサイリスタ)に電圧が印加される。
Since the heat sensitive device 8 is equipped with the stabilizing circuit 29 as described above, it is installed in the heating chamber, and at the same time the magnetron 10 emits radio waves and starts heating the object 5 to be heated, TRl and P
A voltage is applied to UTl (N-gate thyristor).

TRlのコレクタにはアンテナC25を含む共振回路が
負荷として接続され、また下部はエミツタへC1および
TRlのC−E間容量を介して接続されているため、正
帰還がかかシ略f1=?(Hz)2πV口]翻 (ここに、CO=C1+C2+C3C3−TRlのもつ
C−E間容量)なる周波数で発振を始める。
A resonant circuit including antenna C25 is connected to the collector of TRl as a load, and the lower part is connected to the emitter via the C-E capacitance of C1 and TRl, so positive feedback is applied. Oscillation starts at a frequency of (Hz) 2πV] (here, CO=C1+C2+C3C3-TRl's C-E capacitance).

(アンテナC25がリアクタンスをもたない値にC4に
より調整されている場合。)この出力はアンテナC25
より空中へ放射される。同時にPUTlを含む低周波変
調回路28も動作を始める。PUTlはNゲートサイリ
スタで設定されたゲート電圧よりもアノード電圧が高く
なると瞬時にアノード−カソード間が導通状態となる特
性をもつものでこのアノード−カソード間にコンデンサ
C5を接続しておくと次のごとき発振を行なうようにな
る。まずコンデンサC5はサーミスタ26と感度補正抵
抗R1とを介して充電され、充電電圧がゲート電圧より
若干高くなるとPUTlが導通状態とな夕同時にコンデ
ンナC5の電荷を放電する。そのためPUTlは再び0
FF状態となる。コンデンサC5は再度充電を開始する
。すなわちこのPUTlのアノード電圧はゼナーダイオ
ードZDのアノード端子に対し正の鋸歯状波形を示す発
振を生じることになる。同時にゲート電圧もPUTlが
導通状態のときのみほぼゼナーダイオードZDのアノー
ド端子電圧に等しくなるパルスを発生する。そしてこの
パルスの繰返えしの周期、すなわち、発振周波数はサー
ミスタ26の温度変化により変化する。すなわちサーミ
スタ26の抵抗が大きいと、C5に充電する電流が小さ
くなりコンデンサC5の充電電圧がゲート電圧を越すま
でに多くの時間を必要とし、逆にサーミスタ26抵抗が
小さくなるとコンデンサC5の充電電流が多くなり速か
にゲート電圧を越すことになり繰返えし周期が早くなる
。ゲートに生じるパルスの周期も同様である。以上のこ
とより感熱部7を被加熱物5に差込むと被加熱物5の温
度に対応してサーミスタ26の抵抗値が変化しゲートに
生じるパルスの周期が被加熱物の温度が低ければ、遅い
周期となD高い温度になると早い周期で繰返えしパルス
を発生する。本低周波変調回路28では、被加熱物の温
度が20℃のとき1KHz、90℃で8KHzとなるよ
うに設定した。なほ前記の高周波発振回路27はアンテ
ナをつけた状態でf1=70MHzとなるように設定し
ている。このゲート電圧をコンデンサC6によりTRl
のエミツタに抵抗R2を介して加える。こうするとTR
lのエミツタ電圧がPUTlのゲート電圧に対応して励
振される。この時TRlはそのバイアス電圧が変化した
ことになD動作点が変化する。動作点が変化すると、そ
れに対応してコレクタ、エミツタ間の容量C3が変化す
る。すなわち前述の高周波発振回路27のf1はCOが
変化することになり周波数の遷移を生じ周波数変調が行
なわれる。以上の結果この感熱部は被加熱物5の温度に
対応して70MHzの中心周波数で、数KHzの低周波
により周波数変調された電波が加熱室内に放射される。
(If antenna C25 is adjusted by C4 to a value that has no reactance.) This output is
radiated into the air. At the same time, the low frequency modulation circuit 28 including PUT1 also starts operating. PUTl has the characteristic that when the anode voltage becomes higher than the gate voltage set by the N-gate thyristor, the anode and cathode become conductive instantly.If a capacitor C5 is connected between this anode and cathode, the following will occur. It starts to oscillate like this. First, the capacitor C5 is charged via the thermistor 26 and the sensitivity correction resistor R1, and when the charging voltage becomes slightly higher than the gate voltage, PUT1 becomes conductive and the charge in the capacitor C5 is discharged at the same time. Therefore PUTl is 0 again
The state becomes FF. Capacitor C5 starts charging again. That is, the anode voltage of PUT1 causes oscillation exhibiting a positive sawtooth waveform to the anode terminal of the Zener diode ZD. At the same time, the gate voltage also generates a pulse that is approximately equal to the anode terminal voltage of the Zener diode ZD only when PUT1 is in a conductive state. The repetition period of this pulse, that is, the oscillation frequency, changes depending on the temperature change of the thermistor 26. In other words, if the resistance of the thermistor 26 is large, the current charging C5 will be small and it will take a long time for the charging voltage of capacitor C5 to exceed the gate voltage. Conversely, if the resistance of the thermistor 26 is small, the charging current of capacitor C5 will be As the voltage increases, the gate voltage is quickly exceeded, and the repetition period becomes faster. The period of the pulse generated at the gate is also similar. From the above, when the heat sensitive part 7 is inserted into the object to be heated 5, the resistance value of the thermistor 26 changes in accordance with the temperature of the object to be heated, and the period of the pulse generated at the gate changes as long as the temperature of the object to be heated is low. When the temperature becomes high, pulses are generated repeatedly at a slow cycle. The low frequency modulation circuit 28 was set to have a frequency of 1 KHz when the temperature of the object to be heated was 20° C. and 8 KHz when the temperature of the object to be heated was 90° C. The above-mentioned high frequency oscillation circuit 27 is set so that f1=70 MHz with the antenna attached. This gate voltage is connected to TRl by capacitor C6.
is applied to the emitter of via resistor R2. This way, TR
The emitter voltage of PUTl is excited in response to the gate voltage of PUTl. At this time, the D operating point of TRl changes due to the change in its bias voltage. When the operating point changes, the capacitance C3 between the collector and emitter changes accordingly. That is, in f1 of the high frequency oscillation circuit 27 described above, CO changes, causing a frequency transition and frequency modulation. As a result of the above, this heat sensitive section emits radio waves frequency modulated by a low frequency of several kHz with a center frequency of 70 MHz corresponding to the temperature of the object to be heated 5 into the heating chamber.

もちろん前述のごとく感熱装置8はマグネトロン10よ
り発射されるマイクロ波電界中で動作する訳で、内部素
子自体のマイクロ波による加熱やそれに伴なう誤動作を
防止するためアンテナC25の外殻21外への突出部に
はマイクロ波に同調したチヨーク24を設け、マイクロ
波の内部への流入を防止している。一方加熱室2の中に
発射される高周波発振回路27の高周波はアンテナBl
4により前述と同様のチヨーク構造を介して受信装置1
5に導びかれる。
Of course, as mentioned above, the heat-sensitive device 8 operates in the microwave electric field emitted from the magnetron 10, so in order to prevent the heating of the internal elements themselves by the microwaves and the resulting malfunction, the heat-sensitive device 8 is placed outside the outer shell 21 of the antenna C25. A cheese yoke 24 tuned to microwaves is provided on the protrusion to prevent microwaves from flowing into the interior. On the other hand, the high frequency of the high frequency oscillation circuit 27 emitted into the heating chamber 2 is transmitted by the antenna Bl.
4, the receiving device 1 is
5.

受信装置15は高周波発振回路27の高周波の中心周波
数に同調する。受信装置15の高周波増幅検波回路はす
でに一般に市販されている周知のものであるので説明を
略す。受信装置15の比検波出力は低周波変調回路28
のゲート電圧波形が発生する。
The receiving device 15 is tuned to the center frequency of the high frequency of the high frequency oscillation circuit 27. The high-frequency amplification and detection circuit of the receiving device 15 is a well-known circuit that is already commercially available, so a description thereof will be omitted. The ratio detection wave output of the receiving device 15 is transmitted to the low frequency modulation circuit 28.
A gate voltage waveform of is generated.

この低周波は第3図に示すTR2により感熱装置8から
出てくる電波の中の低周波分の強弱の変化をなくすため
また、波形成形のためのもので、飽和型の増幅回路であ
る。このTR2のコレクタ出力波形はPUTlゲート電
圧の変化分の極性が反転したものでそのピーク値が一定
である。そのためこのコレクタ抵抗R3と並列に設けた
R4,C7による積分回路の出力電圧は低周波変調回路
28が発振する低周波の周波数に比例することになる。
つまり被加.熱物5の温度が高い場合にはこのコンデン
サC7の両端電圧は高くなり逆に温度が低い場合にはコ
ンデンサC7の両端電圧は低くなる。この積分回路の出
力はTR3,TR4よりなる比較回路の一方のTR3ベ
ースに入る。TR3,TR4よりなる回路は差動増幅器
Aである。今TR4を一定動作点に設定して卦く。TR
3の入力が大きくなりTR3のペース電圧がエミツタ電
圧よりも高くなるとTR3が順方向にバイアスされTR
3に電流を生じる。この電流はエミツタ抵抗R5の電圧
を上げる。TR4はベース電圧は途中では変化しないた
めついには逆バイアスとなり0FFとなる。さらにTR
3のベース電圧が上がるとそのためTR4のコレクタ電
圧は電源電圧まで上昇してしまう。TR4のベース電圧
をかえることにより、TR4が0FFになる電圧は任意
に選択できるわけで、すなわち、TR3の入力電圧が任
意の希望する値になつたときTR4を0FFとすること
ができる。可変抵抗器VRlはこのTR4ベース電圧を
可変とするものである。このTR4のコレクタ出力はT
R5,TR6からなるシユミツト回路Sに接続されてい
る。そのために、TR4が0FFとなるとTR5は0N
,TR6は0FFとなる。このシユミツト回路Sは後述
のリレー33のチヤタリングを防止するもので、リレー
33のコイル電流の0N,0FFを明確にするとともに
、その入力レベルに変動に対してTR5が0FFから0
Nへ変化する場合と、0Nから0FFへ変化する場合の
電圧レベルに差をもつ、いわゆるヒステリシス特性から
、常時出力が変動するTR4の出力に対し、ある一定電
圧で一度TR5が0Nになると、TR4の電圧がTR5
の0N電圧よりも若干低下しても、TR5の0Nから0
FFの電圧レベル以上の値であれば、TR5は0Nを続
ける。このことからリレー31のコイルに流れる電流は
TR4の常時変動する出力にそのまま対応せず、チャタ
リングはなくなる。ところで、TR6のコレクタ出力は
、TR7により増幅されリレー33のコイルに流れる電
流を断続する。そしてこのリレー33の常開接点Rbは
、マグネトロン10の高周波の照射制御装置をなしてお
り、マグネトロン10の入力を切換るように昇圧トラン
ス34の2次回路に設けられた倍電圧整流用コンデンサ
C8,C9のうちC8を回路より断続するようにしてい
る。そしてこのコンデン+)′C8,C9はこの接点が
閉じたとき定格の第1の高周波の出力が出せるように、
そしてこの接点が開いたときも動作するC9は、マグネ
トロン10の高周波が被加熱物に対しては、ほとんど影
響を伝えない低い出力を出すようにC8にくらべ小さな
容量をもつものである。この発明の高周波加熱装置の動
作は次の通りである。
This low frequency wave is used to eliminate variations in the strength of the low frequency component of the radio waves output from the thermal device 8 by the TR2 shown in FIG. 3, and also for waveform shaping, and is a saturation type amplifier circuit. This collector output waveform of TR2 has the polarity reversed for the change in the PUTl gate voltage, and its peak value is constant. Therefore, the output voltage of the integrating circuit formed by R4 and C7 provided in parallel with collector resistor R3 is proportional to the frequency of the low frequency oscillated by the low frequency modulation circuit 28.
In other words, it is added. When the temperature of the hot object 5 is high, the voltage across the capacitor C7 becomes high, and when the temperature is low, the voltage across the capacitor C7 becomes low. The output of this integrating circuit is input to the TR3 base of one of the comparison circuits consisting of TR3 and TR4. The circuit consisting of TR3 and TR4 is a differential amplifier A. Now set TR4 to a constant operating point and repeat. T.R.
When the input of 3 becomes large and the pace voltage of TR3 becomes higher than the emitter voltage, TR3 becomes forward biased and the TR
A current is generated in 3. This current increases the voltage across emitter resistor R5. Since the base voltage of TR4 does not change during the process, it eventually becomes reverse biased and becomes 0FF. Further TR
When the base voltage of TR 3 increases, the collector voltage of TR 4 increases to the power supply voltage. By changing the base voltage of TR4, the voltage at which TR4 becomes 0FF can be arbitrarily selected. That is, when the input voltage of TR3 reaches any desired value, TR4 can be set to 0FF. The variable resistor VRl makes this TR4 base voltage variable. The collector output of this TR4 is T
It is connected to a Schmitt circuit S consisting of R5 and TR6. Therefore, when TR4 becomes 0FF, TR5 becomes 0N.
, TR6 becomes 0FF. This Schmitt circuit S prevents the chatter of the relay 33, which will be described later, and makes it clear whether the coil current of the relay 33 is 0N or 0FF, and also allows TR5 to change from 0FF to 0 when the input level fluctuates.
Due to the so-called hysteresis characteristic, which has a difference in the voltage level when changing to N and when changing from 0N to 0FF, TR4's output constantly fluctuates, but once TR5 becomes 0N at a certain voltage, TR4 The voltage of TR5
Even if the voltage drops slightly below the 0N voltage of TR5, the voltage from 0N to 0 of TR5
If the value is equal to or higher than the FF voltage level, TR5 continues to be 0N. Therefore, the current flowing through the coil of the relay 31 does not directly correspond to the constantly fluctuating output of the TR4, and chattering is eliminated. By the way, the collector output of TR6 is amplified by TR7, and the current flowing through the coil of relay 33 is interrupted. The normally open contact Rb of this relay 33 constitutes a high-frequency irradiation control device for the magnetron 10, and a voltage doubler rectifier capacitor C8 is provided in the secondary circuit of the step-up transformer 34 to switch the input of the magnetron 10. , C9, C8 is intermittent by the circuit. And these capacitors +)'C8 and C9 are set so that the rated first high frequency output can be output when this contact is closed.
C9, which operates even when this contact is open, has a smaller capacity than C8 so that the high frequency of the magnetron 10 outputs a low output that has almost no effect on the heated object. The operation of the high frequency heating device of this invention is as follows.

前述のようにTR3のベースには被加熱物5の温度が低
いときは低い電圧が、高いときには高い電圧が発生する
。いま可変抵抗器VRlを前記可変抵抗器19とする。
いま、つまみ18を回転し可変抵抗器19の角度を変え
ると、TR4のベース電圧が設定される。電源スイツチ
SWを入れた時点で受信装置15、照射制御装置16が
動作を開始しTR4,TR6,TR7は0Nとなりリレ
ー33はコイルに電流が流がれその常開接点Rbは閉じ
マグネトロン10に定格電力が供給されマグネトロン1
0の加熱用高周波すなわちマイクロ波が発射される。被
加熱物5の温度は次第に上昇して行く。このとき、被加
熱物の温度上昇に伴い感熱部7の抵抗の減少にしたがい
変調周波数が次第に上昇してくる。受信装置15の検波
出力に表われたこの低周波は積分回路(R4,C7)の
C7を充電し、TR3を順方向にバイアスする。被加熱
物5の温度が上昇してC7の両端電圧がTR4のベース
電圧よりも高くなると、TR4が0Nから0FFの方向
え動作点が移動しTR3のベース電圧がTR4のベース
電圧より1V高くならない間に、TR4は0FFとなつ
てしまう。この間にTR6,TR7が0FFとなり、リ
レー33のコイル電流がOとなりその接点Rbはひらく
。この時マグネトロン10への電力の供給が前述のよう
に被加熱物を加熱しない程度の低い出力を出す値となり
マグネトロン10からの加熱用高周波の発射量が少なく
なる。ここでなぜマグネトロン10の加熱用高周波を完
全に0FFとしてしまわないかについて言及する。
As mentioned above, a low voltage is generated at the base of the TR 3 when the temperature of the object to be heated 5 is low, and a high voltage is generated when the temperature of the heated object 5 is high. Let variable resistor VRl be the variable resistor 19.
Now, by rotating the knob 18 and changing the angle of the variable resistor 19, the base voltage of TR4 is set. When the power switch SW is turned on, the receiving device 15 and the irradiation control device 16 start operating, and TR4, TR6, and TR7 become 0N, current flows through the coil of the relay 33, and its normally open contact Rb closes and is rated for the magnetron 10. Power is supplied to magnetron 1
0 heating high frequency waves, ie microwaves, are emitted. The temperature of the object to be heated 5 gradually rises. At this time, the modulation frequency gradually increases as the resistance of the heat sensitive section 7 decreases as the temperature of the object to be heated increases. This low frequency appearing in the detection output of the receiver 15 charges C7 of the integrating circuit (R4, C7) and biases TR3 in the forward direction. When the temperature of the heated object 5 rises and the voltage across C7 becomes higher than the base voltage of TR4, the operating point of TR4 moves from 0N to 0FF, and the base voltage of TR3 does not become 1V higher than the base voltage of TR4. In the meantime, TR4 becomes 0FF. During this time, TR6 and TR7 become 0FF, and the coil current of the relay 33 becomes O, and its contact Rb opens. At this time, as described above, the power supplied to the magnetron 10 is set to a value that provides a low output that does not heat the object to be heated, and the amount of heating high frequency waves emitted from the magnetron 10 is reduced. Here, we will discuss why the heating high frequency of the magnetron 10 is not completely set to 0FF.

前述のごとく感熱装置8はこのマグネトロン10の加熱
用高周波を1駆動源としている。
As mentioned above, the heat sensitive device 8 uses the high frequency heating wave of the magnetron 10 as one driving source.

この感熱装置8の必要電力は約10mw程度で受電装置
すなわちダイオード30をもつアンテナ31および安定
化回路の幼率のトータルが数%台であるため、この感熱
装置を常時動作させるためには常時数w程度の高周波が
この加熱室2内に発射されていなければならない訳であ
る。ただこの数Wの高周波出力は被加熱物に対してはほ
とんどの加熱幼果をもたらさない。これらの点より本実
施例では、リレー33の接点Rbを開いても加熱に影響
しない程度の出力を常時発射する。前述により被加熱物
の温度は同時に低下をはじめる。
The power required for this heat-sensitive device 8 is about 10 mW, and the total power consumption of the power receiving device, that is, the antenna 31 with the diode 30, and the stabilizing circuit is on the order of several percent. This means that a high frequency wave of about 200 m has to be emitted into the heating chamber 2. However, this high frequency output of several watts does not cause much heating of the object to be heated. From these points, in this embodiment, even if the contact Rb of the relay 33 is opened, an output that does not affect heating is always emitted. As a result of the above, the temperature of the object to be heated simultaneously begins to decrease.

前述のようにシユミツト回路Sを設けたことで、この間
リレー33は断続を繰返さず変調周波数も同時に低下す
るためC7の充電電圧も低下しTR3のベース電圧以下
になると再度TR3は0FF,.TR4は0N,.TR
6,TR7が0Nとなり、リレー33の接点Rbが0N
となりマグネトロン10より高周波エネルギーを発射す
る。このサイクルを繰返えす。前述のように本発明によ
れば可変抵抗器VRlの抵抗値と被加熱物5の温度との
対応を一度設定してやればいかなる量質のものであつて
も、希望の温度に被加熱物の温度を保つことができるよ
うになつた。本実施例では感熱装置の変調方式として周
波数変調を用いたが当然のこととしてAM,PWMなど
の変調方式を行なつてもそれに対する検波回路さえ適当
に選択すれば良いことはゆうまでもない。
By providing the Schmitt circuit S as described above, the relay 33 does not repeat intermittent connections during this time and the modulation frequency also decreases at the same time, so the charging voltage of C7 also decreases and when it becomes below the base voltage of TR3, TR3 becomes 0FF, . TR4 is 0N, . T.R.
6. TR7 becomes 0N, and contact Rb of relay 33 becomes 0N.
Then, the magnetron 10 emits high frequency energy. Repeat this cycle. As described above, according to the present invention, once the correspondence between the resistance value of the variable resistor VRl and the temperature of the heated object 5 is set, the temperature of the heated object can be adjusted to the desired temperature regardless of the quantity or quality. Now I can keep it. In this embodiment, frequency modulation is used as the modulation method of the thermosensitive device, but it goes without saying that even if a modulation method such as AM or PWM is used, it is only necessary to appropriately select a detection circuit for the modulation method.

この発明は前記の構成に基いて次のような作用効果を生
じる。1)ターンテーブル上の被加熱物でも容器に包み
こんだ被加熱物であれリード線等にて本体と接続結合す
ることがないのでリード線のねじれも生せず、温度を制
御して希望する温度まで加熱しかつ温度を保つことがで
きる。
The present invention produces the following effects based on the above configuration. 1) Whether the heated object is on a turntable or wrapped in a container, it is not connected to the main body with lead wires, etc., so there is no twisting of the lead wires, and the temperature can be controlled as desired. It can be heated up to temperature and maintained at that temperature.

2)すべての被加熱物に対し感に頼つた加熱時間の設定
を行う必要がなく、加熱時間の設定ミスがなくなつた。
2) It is no longer necessary to set the heating time for each object to be heated based on feeling, and errors in setting the heating time are eliminated.

3)感熱装置の電源にマグネトロンの加熱用高周波発振
装置を利用したので電池を使用する場合に生ずる不安全
性また使い勝手の悪るさをなくすることができる。
3) Since a magnetron heating high-frequency oscillation device is used as a power source for the heat-sensitive device, it is possible to eliminate the safety and inconvenience that occur when batteries are used.

すなわち(1)電池の消耗により感熱装置が動作せず、
被加熱物が一定温度になつても、受信装置の積分回路に
は電圧を発生せずマグネトロンの定格出力のまま動作さ
せ被加熱物の過加熱、あるいは撓損のため火災を生ずる
などの危険を除くことができる、()電池を取替える手
間訃よび装置自体を収納、出し入れの構造とする必要が
なくなる。4)正確な温度制御ができる。
In other words, (1) the thermal device does not operate due to battery consumption;
Even if the heated object reaches a certain temperature, no voltage is generated in the receiver's integrating circuit, and the magnetron is operated at its rated output to avoid the danger of overheating the heated object or causing a fire due to bending damage. (2) The trouble of replacing batteries and the need for a structure for storing and taking out the device itself are eliminated. 4) Accurate temperature control is possible.

5)煮込み調理を行う場合幼果がある。5) When cooking by stewing, there are young fruits.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの本発明の高周波加熱装置の断面図、第2図
は感熱装置、感熱部の要部詳細図、イ図は断面図と口図
は回路図、第3図は受信装置、照射制御装置、加熱用高
周波発振装置、電源回路を含むこの発明の高周波加熱装
置の回路図、を示す。 1・・・・・・加熱室本体、2・・・・・・加熱室、5
・・・・・・被加熱物、7・・・・・・感熱部、8・・
・・・・感熱装置、10・・・・・・加熱用高周波発振
装置であるマグネトロン、11・・・・・・アンテナA
ll4・・・・・・アンテナBll5・・・・・・受信
装置、16・・・・・・照射制御装置、19・・・・・
・可変抵抗器、20・・・・・・ケーブル、21・・・
・・・金属性外殻、24・・・・・・チヨーク部、25
・・・・・・アンテナCl26・・・・・・サーミスタ
、27・・・・・・高周波発振回路、28・・・・・・
低周波変調回路、ZD・・・・・・ゼナーダイオード、
PUTl・・・・・・Nゲートサイリスタ、TRl〜T
R7・・・・・・トランジスタ、R3〜R5・・・・・
・抵抗、C7〜C,・・・・・・コンデンサ、S・・・
・・・シユミツト回路、33・・・・・・リレー、Rb
・・・・・・接点、34・・・・・・昇圧トランス。
Figure 1 is a cross-sectional view of the high-frequency heating device of the present invention, Figure 2 is a detailed view of the heat-sensitive device and the main parts of the heat-sensitive part, Figure A is a cross-sectional view, and Figure 3 is a circuit diagram, and Figure 3 is a receiving device and irradiation device. A circuit diagram of a high-frequency heating device of the present invention including a control device, a high-frequency oscillation device for heating, and a power supply circuit is shown. 1...Heating chamber main body, 2...Heating chamber, 5
... Heated object, 7 ... Heat sensitive part, 8 ...
...Thermal device, 10... Magnetron, which is a high frequency oscillation device for heating, 11... Antenna A
ll4... Antenna Bll5... Receiving device, 16... Irradiation control device, 19...
・Variable resistor, 20... Cable, 21...
...Metallic outer shell, 24...Chiyoke part, 25
...Antenna Cl26...Thermistor, 27...High frequency oscillation circuit, 28...
Low frequency modulation circuit, ZD... Zener diode,
PUTl...N gate thyristor, TRl~T
R7...Transistor, R3-R5...
・Resistance, C7~C, ... Capacitor, S...
...Schmitt circuit, 33...Relay, Rb
...Contact, 34...Step-up transformer.

Claims (1)

【特許請求の範囲】[Claims] 1 本体内を加熱室と加熱室外に区画し、加熱室内に被
加熱物の温度を検出する感熱部、検出した温度に対応す
る周波数で発振する低周波変調回路、前記低周波変調回
路で変調される高周波を発射する高周波発振回路からな
る感熱装置を、一方加熱室外には加熱用高周波発振装置
と前記感熱装置の発射する高周波を受信する受信装置と
を設け、前記受信装置の検出した感熱装置の変調信号に
より前記加熱用高周波発振装置の高周波出力を制御する
照射制御装置を設けた高周波加熱装置において、前記感
熱装置を温度により抵抗が変化する感熱素子、前記抵抗
の変化する感熱素子で周波数が変化する低周波変調回路
、前記低周波変調回路の出力で変調される高周波発振回
路、および前記加熱用高周波発振装置の発射する電波を
受信して前記低周波変調回路と高周波発振回路の電源と
なす回路で構成すると共に前記加熱用高周波発振装置と
電源間にインピーダンス回路を接続し、被加熱物の加熱
動作中、常時前記高周波発振回路の発射する変調信号を
受信するとともに、前記被加熱物の温度が設定加熱温度
に到達した時点において、前記変調信号により前記イン
ピーダンス回路を加熱用高周波出力量が被加熱物に加熱
効果が生じないインピーダンス値に切換えるよう前記照
射制御装置を構成した高周波加熱装置。
1 The main body is divided into a heating chamber and an outside of the heating chamber, a heat sensitive part detects the temperature of the object to be heated inside the heating chamber, a low frequency modulation circuit that oscillates at a frequency corresponding to the detected temperature, and a heat sensitive part that is modulated by the low frequency modulation circuit. A heat-sensitive device consisting of a high-frequency oscillation circuit that emits high-frequency waves is provided outside the heating chamber, and a high-frequency oscillator for heating and a receiving device that receives the high-frequency waves emitted by the heat-sensitive device are installed outside the heating chamber. A high-frequency heating device is provided with an irradiation control device that controls the high-frequency output of the high-frequency oscillation device for heating using a modulation signal, the heat-sensitive device is a heat-sensitive element whose resistance changes depending on the temperature, and the frequency changes with the heat-sensitive element whose resistance changes. a high-frequency oscillation circuit that is modulated by the output of the low-frequency modulation circuit; and a circuit that receives radio waves emitted from the heating high-frequency oscillation device and serves as a power source for the low-frequency modulation circuit and the high-frequency oscillation circuit. An impedance circuit is connected between the heating high-frequency oscillation device and the power source, and during the heating operation of the heated object, the modulated signal emitted by the high-frequency oscillation circuit is constantly received, and the temperature of the heated object is controlled. The irradiation control device is configured to switch the impedance circuit according to the modulation signal to an impedance value at which the heating high frequency output amount does not produce a heating effect on the object to be heated, when the set heating temperature is reached.
JP51141495A 1976-11-25 1976-11-25 High frequency heating device Expired JPS592156B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51141495A JPS592156B2 (en) 1976-11-25 1976-11-25 High frequency heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51141495A JPS592156B2 (en) 1976-11-25 1976-11-25 High frequency heating device

Publications (2)

Publication Number Publication Date
JPS5366034A JPS5366034A (en) 1978-06-13
JPS592156B2 true JPS592156B2 (en) 1984-01-17

Family

ID=15293250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51141495A Expired JPS592156B2 (en) 1976-11-25 1976-11-25 High frequency heating device

Country Status (1)

Country Link
JP (1) JPS592156B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4518839A (en) * 1982-03-03 1985-05-21 Hitachi Heating Appliances Co., Ltd. High frequency heating apparatus with wireless temperature probe
JPS61181924A (en) * 1985-02-06 1986-08-14 Toyo Commun Equip Co Ltd Temperature/pressure sensor with active type oscillator and measurement therewith

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52134461A (en) * 1976-05-03 1977-11-10 Robertshaw Controls Co Remote temperatureemeasuring probe

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52134461A (en) * 1976-05-03 1977-11-10 Robertshaw Controls Co Remote temperatureemeasuring probe

Also Published As

Publication number Publication date
JPS5366034A (en) 1978-06-13

Similar Documents

Publication Publication Date Title
US4520250A (en) Heating apparatus of thawing sensor controlled type
CA1147399A (en) Microwave oven with a sound generating device incorporated in a temperature sensor
US4002875A (en) High frequency heating apparatus
JPS6121328B2 (en)
JPS592156B2 (en) High frequency heating device
US3784781A (en) Magnetron moding interrupter control circuit
KR102503278B1 (en) Aerosol generating device which harvests energy
JPH0325885A (en) Induction heating cooker
CN109714849B (en) Hand-held type heating device
JPS60253192A (en) Heating and cooking device
JP2712780B2 (en) High frequency heating equipment
JPS6228553B2 (en)
JPS5811036Y2 (en) High frequency heating device
JPS58115227A (en) Cooking apparatus
JPS581733B2 (en) cooking oven
JPS596423Y2 (en) temperature sensing device
JPS58837B2 (en) high frequency heater
JPS6231254B2 (en)
JPS6126801Y2 (en)
JPS6023257B2 (en) microwave oven
KR950010376B1 (en) Impedance correct controlling apparatus and method for an electronic range
JPH01286285A (en) High frequency heating device
JP2538586B2 (en) Cooking device
JPH0141915B2 (en)
JPH0216145Y2 (en)