JPS59214746A - Spin-echo measuring device - Google Patents

Spin-echo measuring device

Info

Publication number
JPS59214746A
JPS59214746A JP58088676A JP8867683A JPS59214746A JP S59214746 A JPS59214746 A JP S59214746A JP 58088676 A JP58088676 A JP 58088676A JP 8867683 A JP8867683 A JP 8867683A JP S59214746 A JPS59214746 A JP S59214746A
Authority
JP
Japan
Prior art keywords
microwave
cavity resonator
ringing
pulse
respect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58088676A
Other languages
Japanese (ja)
Other versions
JPS6311623B2 (en
Inventor
Takaharu Kuwata
桑田 敬治
Ekuo Yoshida
吉田 栄久夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd, Nihon Denshi KK filed Critical Jeol Ltd
Priority to JP58088676A priority Critical patent/JPS59214746A/en
Publication of JPS59214746A publication Critical patent/JPS59214746A/en
Publication of JPS6311623B2 publication Critical patent/JPS6311623B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/60Arrangements or instruments for measuring magnetic variables involving magnetic resonance using electron paramagnetic resonance

Abstract

PURPOSE:To measure an echo signal with a good S/N ratio and sensitivity, by providing a microwave detecting means, which is connected to an output port provided at a position having about 90 degrees with an input port with respect to the central axis of a circular cylinder of a cavity resonator. CONSTITUTION:Microwave pulses generated in a pulse generator 1 are supplied to a circular cylinder type cavity resonator 6 through an attenuator 5. The cavity resonator 6 has an input port 7 and an output port 8. The two ports are provided so that an angle of 90 degrees is formed with respect to a central axis O of the circular cylinder. The microwave extracted through a waveguide 10 is guided to a microwave detector 4 through a limiter 11 and detected. The isolation between the input side and the output side is -20dB or more. In comparison with a conventional device, the leakage of the microwave due to ringing becomes 1/100 or less. The foot due to the ringing is quickly attenuated. Since the effect of the ringing is quickly attenuated, T can be shortened. The echo signal can be detected under the state the signal strength is large by the amount corresponding to this shortened amount with a good S/N ratio.

Description

【発明の詳細な説明】 本発明は、電子スピン共鳴装置に関し、特にスピンエコ
ー測定に好適な電子スピン共鳴装置に関づるものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electron spin resonance apparatus, and particularly to an electron spin resonance apparatus suitable for spin echo measurements.

第1図は、電子スピン共鳴装置でスピンエコー測定を行
う際に用いられる従来の溝成を示し、図において1はマ
イクロ波パルス発生器、2はマジック1回路、3は該マ
ジック1回路2に接続された空胴共振器、4はマジック
1回路2から取出された空胴共振器3からの反射波を受
信するだめのマイクロ波検出器である。実際の測定では
、パルス発生器1から第2図に承りように間隔−[をJ
3いたπ/2パルス(電子スピンを90’回転させる時
間幅及び強度を持つマイクロ波パルス)とπパルスく同
じ<180’回転さゼる時間幅及び強度を持つマイクロ
波パルス)から成るパルス列を空胴共振器3へ送り、期
間T後に出現するエコー信(3[Eを検出する。そして
、−1−を変化さけた時のにの変化をプロットすること
により核と電子の相72関係を調べたり、]ニエコー信
をノーリ工変換しCスペク1〜ル信号を19たりするこ
とが行われている。
Figure 1 shows a conventional groove configuration used when performing spin echo measurements with an electron spin resonance apparatus. In the figure, 1 is a microwave pulse generator, 2 is a magic 1 circuit, and 3 is a magic 1 circuit 2. The connected cavity resonator 4 is a microwave detector for receiving the reflected wave from the cavity resonator 3 taken out from the Magic 1 circuit 2. In actual measurement, the interval −[J is
A pulse train consisting of a π/2 pulse (a microwave pulse with a time width and intensity that rotates the electron spin by 90') and a microwave pulse with a time width and intensity that rotates the electron spin by <180' is the same as the π pulse. The echo signal (3[E) that appears after the period T is detected.Then, by plotting the change in when -1- is avoided, the phase 72 relationship between the nucleus and the electron can be determined. For example, the Nieko signal is directly converted and the C spectrum signals are converted to C spectrum signals.

ところが、従来用いている第1図の装置Cは、パルス発
生器側で正しく第2図<a >に示づパルス列を発生し
空117共振器へ送っても、空胴共振器においてマイク
1」波パルスの立ち下がりに発生づるリンギング等のた
め、共振器3から反射して来るマイク【]波は第2図(
b)に示ツJ:うに大きく裾を引いたものとなり、入力
パルスの1/106以下の強度しか持たないエコー信号
は、その裾の中に隠れてしまい検出づることは容易でな
かった。
However, in the conventional device C shown in FIG. 1, even if the pulse generator correctly generates the pulse train shown in FIG. Due to ringing, etc. that occurs at the falling edge of the wave pulse, the microphone wave reflected from the resonator 3 is shown in Figure 2 (
As shown in b), J: The signal had a very large tail, and the echo signal, which had an intensity of 1/106 or less of the input pulse, was hidden in the tail and was not easy to detect.

Vを長くして裾の強度が小さくなってからエコー信号を
検出することも考えられるが、エコー信号はTが長くな
ると強度が小さくなるので、この場合も検出は困難とな
る。
It is also possible to detect the echo signal after the intensity of the tail becomes smaller by lengthening V, but since the intensity of the echo signal becomes smaller as T becomes longer, detection becomes difficult in this case as well.

本発明は上述した点に鑑みてなされたものであり、エコ
ー信号を容易に検出することのできるスピン1コー測定
装置を提供することを目的としている。
The present invention has been made in view of the above-mentioned points, and an object of the present invention is to provide a spin 1-coe measurement device that can easily detect echo signals.

本発明は、マイクロ波パルス又はパルス列を作成する手
段と、該パルス作成手段からのマイ、クロ波が局面に設
置Jられ1c入力穴から内部へ供給される円筒型空胴共
振器と、該空胴共振器の円筒中心軸に関し前記入力穴と
略90°の角度を持つ位置にあ番ノられた出力穴に接続
されるマイクロ波検出手段とを備えたことを特徴として
いる。以下、図面を用いて本発明を詳述する。
The present invention comprises a means for creating a microwave pulse or a pulse train, a cylindrical cavity resonator in which the microwave and microwaves from the pulse creating means are installed on a surface and supplied to the inside from an input hole 1c, and the cavity. It is characterized by comprising a microwave detection means connected to an output hole numbered at a position making an angle of approximately 90 degrees with the input hole with respect to the cylindrical center axis of the body resonator. Hereinafter, the present invention will be explained in detail using the drawings.

第3図は本発明の一実施例の構成を示し、第1図の実施
例と同一の構成要素には同一番号が付されている。第3
図において、パルス発生器1から発生したマイクロ波パ
ルスは、アッテネータ5を介して円筒内で該円筒の中心
を通るある平面に対称な高周波磁界を持つ、例えば1’
E11nモ一ド円筒型空胴共振器6へ供給される。該空
胴共振器6は、第4図(a )にA−A断面図、(11
)にB−B断面図を夫々示すように、入力穴7と出力穴
8を有し、2つの穴は円筒の中心軸Ok:関し90゜の
角度を成づように開けられ(いる。第4図において9は
入力側導波管、10は出力側導波管である。該導波管1
0を介して取出されたマイクロ波は、リミッタ11を介
してマイクロ波検出器4へ導かれて検出される。得られ
た検出13号は、増幅器12、A−D変換器13を介し
てコンピュータ14及びレコーダ15へ送られる。16
は共振器部分に直流磁場を印加するだめの磁石である。
FIG. 3 shows the configuration of an embodiment of the present invention, and the same components as in the embodiment of FIG. 1 are given the same numbers. Third
In the figure, a microwave pulse generated from a pulse generator 1 is transmitted through an attenuator 5 inside a cylinder and has a high-frequency magnetic field symmetrical to a certain plane passing through the center of the cylinder, for example 1'.
It is supplied to the E11n mode cylindrical cavity resonator 6. The cavity resonator 6 is shown in FIG.
), it has an input hole 7 and an output hole 8, and the two holes are opened so as to form an angle of 90 degrees with respect to the central axis of the cylinder. In Fig. 4, 9 is an input waveguide, and 10 is an output waveguide.
The microwave extracted through the microwave is guided to the microwave detector 4 via the limiter 11 and detected. The obtained detection signal 13 is sent to a computer 14 and a recorder 15 via an amplifier 12 and an A-D converter 13. 16
is a magnet that applies a DC magnetic field to the resonator.

第5図は1’ E 1.12モードを例にとって円筒型
空胴共振器6内のマイクロ波磁界の分布を示す。図から
分るように、共振器内部には、2つの閉ループ磁界が発
生し、試料を入れた試料管Sは、2つの磁界の境界部分
に挿入される。この部分の磁界は第4図にも破線で示す
ように中心軸Oと入力穴7を結ぶ方向(y方向)に発生
している。
FIG. 5 shows the distribution of the microwave magnetic field within the cylindrical cavity resonator 6, taking the 1' E 1.12 mode as an example. As can be seen from the figure, two closed-loop magnetic fields are generated inside the resonator, and the sample tube S containing the sample is inserted into the boundary between the two magnetic fields. The magnetic field in this portion is generated in the direction (y direction) connecting the central axis O and the input hole 7, as shown by the broken line in FIG.

上述の如き構成において、出力穴8の位置では、第4図
(b)に示づように磁界が矢印Cの方向を向いているた
め、この出力穴8からはこのままの状態ではマイクロ波
は外部へ漏れf1磁界の方向が矢印Cからずれた場合に
のみ外部へ漏れ、磁界の方向が出力穴10の方向を向い
た時漏れが最高となる。
In the above-mentioned configuration, at the position of the output hole 8, the magnetic field is directed in the direction of the arrow C as shown in FIG. Leakage f1 leaks to the outside only when the direction of the magnetic field deviates from arrow C, and the leakage is maximum when the direction of the magnetic field points toward the output hole 10.

前述したリン・ギング発生時の成分は、円筒面が完全円
でない等の理由により実際にはC′のように×方向に−
b成分を持つ。(第4図(b))そのずれによって発生
したOから出力穴8へ向かう方向成分はdとわずかであ
る。その点、人力穴と出力穴が同一であった第1図の従
来例では、0から出力穴へ向かうy方向成分はeと極め
て大きくなり、その分外部へマイクロ波が漏れて第2図
(b)に示りように大きく裾を引く原因となっていた。
The above-mentioned component when ringing occurs is actually - due to the fact that the cylindrical surface is not a perfect circle, in the x direction as shown by C'.
It has a b component. (FIG. 4(b)) The component in the direction from O toward the output hole 8 caused by the shift is as small as d. In this regard, in the conventional example shown in Fig. 1 in which the manual hole and the output hole are the same, the y-direction component from 0 to the output hole becomes extremely large as e, and the microwave leaks to the outside by that much, as shown in Fig. 2 ( As shown in b), this caused the hem to be drawn significantly.

本発明者の実測では、本発明では入力側と出力側のアイ
ソレーションは電力比で一206B以上あり、従って入
力側と出力側のアイソレーションが不可能だった従来装
置に比ベリンギングによるマイクロ波の漏れは1/10
0以下になったことになり、第2図(C)に示り−よう
にリンギングによる裾は素早く減衰する。このようにリ
ンギングの影響が素早く収まるので、■を短くすること
ができ、その分強度の大きな状態で]L=1−信号をS
N比良く検出することが可能となる。
According to actual measurements by the inventor, in the present invention, the power ratio of isolation between the input side and the output side is more than 1206B, and therefore, compared to the conventional device in which isolation between the input side and the output side was impossible, microwaves due to belling Leakage is 1/10
This means that the value becomes less than 0, and the tail caused by ringing quickly attenuates as shown in FIG. 2(C). In this way, the effect of ringing quickly subsides, so that ■ can be shortened, and the intensity is correspondingly large] L = 1 - signal S
It becomes possible to detect with a good N ratio.

一方、検出される共鳴信号強度について検討すると、励
起パルスを与えた直後に誘起される信号強度をMx  
(t ) (穴7から取り出される信号強度)、My(
t)(穴8から取り出される信号強度)とづれば、MX
  (t )、 MY  (t )は夫々以下の通り表
わされる。
On the other hand, when considering the detected resonance signal intensity, the signal intensity induced immediately after applying an excitation pulse is Mx
(t) (signal intensity taken out from hole 7), My(
t) (signal strength taken out from hole 8), MX
(t) and MY(t) are each expressed as follows.

Mx  (t ) =MOCO3ωt −exD  (
−X/T2 )My  (t ) =Mo sin c
c>t −exp  (−X/1−2 >上式において
Moは平衡状態におりる磁化ベタ1−ル、ωはラーモア
周波数、T2は横緩和時間である。
Mx (t) = MOCO3ωt −exD (
-X/T2) My (t) = Mo sin c
c>t-exp (-X/1-2>In the above equation, Mo is the magnetization base level in equilibrium, ω is the Larmor frequency, and T2 is the transverse relaxation time.

Mx(t)は入力穴から検出を行う第1図の従来例に相
当し、My (t)は本発明の場合である。
Mx(t) corresponds to the conventional example shown in FIG. 1 in which detection is performed from the input hole, and My(t) corresponds to the case of the present invention.

上式を比較りれば分るように、MX(t)とMY(1)
は90°の位相差はあるものの、信号強度は同一である
。従って本発明では、リンギングの影響を抑圧しても共
鳴信号が抑圧されることはなく、共鳴信号は第1図の従
来例と同一水準で検出することが可能である。
As you can see by comparing the above equations, MX(t) and MY(1)
Although there is a phase difference of 90°, the signal strength is the same. Therefore, in the present invention, even if the influence of ringing is suppressed, the resonance signal is not suppressed, and the resonance signal can be detected at the same level as the conventional example shown in FIG.

以上詳述した如く本発明によれば、エコー信号をSN比
及び感度良く測定できる装置が実現される。
As described in detail above, according to the present invention, an apparatus capable of measuring echo signals with a high signal-to-noise ratio and high sensitivity is realized.

尚、入力穴と出力穴は軸Oに関して90’の角度を成せ
ば良く、例えば入力穴7を軸Oを中心に90°回転させ
た位置に出力穴8を設けるようにしても良いことは言う
までもない。
Note that the input hole and the output hole only need to form an angle of 90' with respect to the axis O, and it goes without saying that the output hole 8 may be provided at a position where the input hole 7 is rotated 90 degrees around the axis O, for example. stomach.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の構成を示す図、第2図は従来の問題点を
説明覆るだめの波形図及び本発明に基づく波形図、第3
図は本発明の一実施例の構成を示ず図、第4図はそのΔ
−A及びB−8断面図、第5図は共振器内のモードを示
づための図である。 1:マイクロ波パルス発生器、 4:マイク[1波検出器、6:円筒型空胴共振器、7:
入力穴、8:出力穴、9,10:尋波管、16:磁石。 特許出願人 口本電子株式会社 代表者 伊蒔 −夫 第4図(a)    第4図(b)
Fig. 1 is a diagram showing the conventional configuration, Fig. 2 is a waveform diagram to explain the conventional problems and a waveform diagram based on the present invention, and Fig. 3 is a diagram showing the conventional configuration.
The figure does not show the configuration of an embodiment of the present invention, and FIG.
-A and B-8 sectional views, and FIG. 5 are diagrams for showing modes within the resonator. 1: Microwave pulse generator, 4: Microphone [1 wave detector, 6: Cylindrical cavity resonator, 7:
Input hole, 8: Output hole, 9, 10: Hydraulic wave tube, 16: Magnet. Patent application population Hondenshi Co., Ltd. Representative Imai-husband Figure 4 (a) Figure 4 (b)

Claims (1)

【特許請求の範囲】 マイクロ波パルス又はパルス列を作成する手段と、該パ
ルス作成手段からのマイクロ波が周面に設りられた入力
穴から内部へ供給される円筒型空胴共振器と、該空調共
振器の同日中心軸に関し前記入ツノ穴と略90’の角度
を持つ位置にあ【ノられた出力穴に接続されるマイクロ
波検出手段とを備えたことを特徴とづ゛るスピンエコー
測定装置。
[Claims] A means for creating a microwave pulse or a pulse train; a cylindrical cavity resonator into which the microwave from the pulse creating means is supplied through an input hole provided on the periphery; A spin echo characterized by comprising microwave detection means connected to an output hole located at a position at an angle of approximately 90' with respect to the central axis of the air conditioning resonator with respect to the input horn hole. measuring device.
JP58088676A 1983-05-20 1983-05-20 Spin-echo measuring device Granted JPS59214746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58088676A JPS59214746A (en) 1983-05-20 1983-05-20 Spin-echo measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58088676A JPS59214746A (en) 1983-05-20 1983-05-20 Spin-echo measuring device

Publications (2)

Publication Number Publication Date
JPS59214746A true JPS59214746A (en) 1984-12-04
JPS6311623B2 JPS6311623B2 (en) 1988-03-15

Family

ID=13949423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58088676A Granted JPS59214746A (en) 1983-05-20 1983-05-20 Spin-echo measuring device

Country Status (1)

Country Link
JP (1) JPS59214746A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015167176A (en) * 2014-03-04 2015-09-24 日本電信電話株式会社 control method of quantum memory

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015167176A (en) * 2014-03-04 2015-09-24 日本電信電話株式会社 control method of quantum memory

Also Published As

Publication number Publication date
JPS6311623B2 (en) 1988-03-15

Similar Documents

Publication Publication Date Title
Huisjen et al. A pulsed EPR spectrometer
FI78988C (en) SELECTIVE RESOURCES AND ANALYZING FOR THE LOCATION OF NMR SPECTROSCOPY.
Bauer et al. Gaussian pulses
EA200401028A1 (en) NUCLEAR MAGNETIC RESONANCE, MEASURED BY SUPER CONDUCTING QUANTUM INTERFERENTIAL SENSOR, AND IMAGE FORMATION BY MEANS OF MAGNETIC RESONANCE UNDER SUPER SLUX
US2844789A (en) Microwave magnetic detectors
JPH01152348A (en) Nuclear magnetic resonance detection apparatus and method
US3340466A (en) Nondestructive testers utilizing highfrequency and low-frequency eddy currents to test for surface and subsurface defects
US3879653A (en) Microwave spectrometer employing a bimodal cavity resonator
US4290017A (en) Apparatus and method for nondestructive evaluation of surface flaws in conductive materials
JP2001078986A (en) Method for measuring gradient magnetic field and mri apparatus
JPS59214746A (en) Spin-echo measuring device
MY125211A (en) A method and apparatus for detecting a substance using nuclear resonance
JPH09264940A (en) Apparatus for excitation and detection of magnetic resonance
JP3335982B2 (en) Magnetic field measuring method and magnetic field measuring instrument
JPH07163543A (en) High-frequency signal receiving coil of magnetic resonance imaging system
JP6931892B2 (en) Magnetic Resonator and Method
KR100282700B1 (en) Signal processing circuit of moisture measuring device using hydrogen nuclear magnetic resonance.
SU1437816A1 (en) Method of measuring magnetostriction coefficient
Fakri-Bouchet et al. Measurements of the radiofrequency field in magnetic resonance coils
SU949442A1 (en) Magnetic resonance signal registering method
SU1539698A1 (en) Method of local measurement of saturation magnetization of ferrite film
JP2003098242A (en) Method and instrument for measuring coercive force quickly
JP2001033430A (en) Eddy-current flaw detection apparatus
SU1103130A1 (en) Nutation reflaxometry method
SU1188681A1 (en) Apparatus for measuring strength of weak variable magnetic fields