JPS59214346A - Subband encoding method and its encoding decoder - Google Patents

Subband encoding method and its encoding decoder

Info

Publication number
JPS59214346A
JPS59214346A JP58088007A JP8800783A JPS59214346A JP S59214346 A JPS59214346 A JP S59214346A JP 58088007 A JP58088007 A JP 58088007A JP 8800783 A JP8800783 A JP 8800783A JP S59214346 A JPS59214346 A JP S59214346A
Authority
JP
Japan
Prior art keywords
signal
adaptive
quantization
subband
bit allocation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58088007A
Other languages
Japanese (ja)
Inventor
Taku Arazeki
卓 荒関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP58088007A priority Critical patent/JPS59214346A/en
Priority to CA000454314A priority patent/CA1253255A/en
Priority to US06/610,729 priority patent/US4713776A/en
Publication of JPS59214346A publication Critical patent/JPS59214346A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1682Allocation of channels according to the instantaneous demands of the users, e.g. concentrated multiplexers, statistical multiplexers
    • H04J3/1688Allocation of channels according to the instantaneous demands of the users, e.g. concentrated multiplexers, statistical multiplexers the demands of the users being taken into account after redundancy removal, e.g. by predictive coding, by variable sampling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/66Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission for reducing bandwidth of signals; for improving efficiency of transmission
    • H04B1/667Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission for reducing bandwidth of signals; for improving efficiency of transmission using a division in frequency subbands

Abstract

PURPOSE:To simplify a device and shorten transmission delay by inputting and dividing a sound signal into plural subbands, and providing encoding means which input signals of the respective subbands and perform adaptive quantization for quantizing the signals while updating step size successively. CONSTITUTION:A signal which is inputted from a terminal 1 and sampled is divided into N subbands through filters 11, 12-1N and sampled according to divided band width. The band-divided signals are inputted to adaptive quantizers 21, 22-2N. One of those signals, i.e. signal 100 is quantized by the adaptive quan tizer 21. The output of a gain control circuit 210 is applied to a quantizing circuit 211 and encoded into a signal 103 as a number l of a quantized level, and the signal is outputted. Outputs of adaptive reverse quantizers 61, 62...6N are inputted to frequency converting filters 81, 82...8N and shifted in frequency to their original frequency bands. The outputs of the respective frequency dconvertig filters 81, 8N are summed up by an adder 52, whose output is sent out as a reproduced signal from a terminal 4.

Description

【発明の詳細な説明】 本発明は音声信号を複数個の帯域9こ分割し効率よく符
号化する音声符号化方法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a voice encoding method for efficiently encoding a voice signal by dividing it into a plurality of nine bands.

音声信号を効率良く量子化する方法として適応量子化方
法がある。これは簡単にいうと、量子化器の前に平均振
幅を一定(こするためのAGO(自動利得調整回路)を
置き、量子化結果を復号した後(ここのAGCと逆の利
得を乗じるものと考えられる。このようにするとレベル
変動の大きい信号が入力されても量子化器の入力ではい
つもほぼ一定のレベルになるため少ないビット数でも量
子化による歪を少なくすることができる。なお、適応量
子化方法の別の実現法として量子化器の量子化間隔(ス
テップサイズ)全逐次動かしても上のようOこAGOを
用いた場合と等価な効果が得られる。
Adaptive quantization is a method for efficiently quantizing audio signals. Simply put, an AGO (automatic gain adjustment circuit) is placed in front of the quantizer to maintain a constant average amplitude (an automatic gain adjustment circuit) is placed in front of the quantizer, and after the quantization result is decoded (multiplied by a gain opposite to the AGC here) In this way, even if a signal with large level fluctuations is input, the level at the input of the quantizer will always be almost constant, so distortion due to quantization can be reduced even with a small number of bits. As another implementation method of the quantization method, even if the quantization interval (step size) of the quantizer is all sequentially moved, an effect equivalent to the case where OkoAGO is used as described above can be obtained.

さて、上では一つの信号を量子化する場合について述べ
たが、サブバンド符号化方法のように信号を複数個の帯
域lこ分割しそれぞれの帯域で量子化することが多い。
Now, the case where one signal is quantized has been described above, but the signal is often divided into a plurality of bands and quantized in each band, as in the case of subband coding.

このよう7.1′場合、複数の帯域の間にレベル差があ
るならばそのレベル差に応じて量子化ビット数を割り当
てることζこより歪の少ない量子化が実現できる。この
符号化方法は太田氏の論文(“サブバンド符号器構成法
の検討“、電子通信学会通信方式研究会資料、O8’ 
79−22゜1979)に詳述されているので詳細な説
明は省くが、結論として、符号化するときに各サブバン
ドに何ビット遺子化したかという情報を復号側(こ伝送
する必要がある。なお、このように信号番こ応じてビッ
ト割当を変える方法を適応ビット割当と呼ぶ。上の論文
によると、適応ビット割尚モした方が伝送品質は向上す
るか、そのかわりハードウェアが複雑化する。従って、
適応ビット割当は必すしも得策では無いとされている。
In the case of 7.1', if there is a level difference between a plurality of bands, quantization with less distortion can be realized by allocating the number of quantization bits according to the level difference. This encoding method is described in Mr. Ota's paper ("Study of subband encoder configuration method", Institute of Electronics and Communication Engineers communication system study group materials, O8'
79-22゜1979), so a detailed explanation will be omitted, but the conclusion is that when encoding, it is necessary to transmit information on how many bits are encrypted to each subband on the decoding side. This method of changing bit allocation according to the signal number is called adaptive bit allocation.According to the above paper, adaptive bit allocation improves transmission quality, or instead increases hardware becomes complicated. Therefore,
It is said that adaptive bit allocation is not necessarily a good idea.

従来の適応ビット割当を用いたサブバンド符号化の方法
ζこついて図を用いて詳細に説明する。
A conventional method of subband encoding using adaptive bit allocation ζ will be explained in detail using figures.

第1図は従来のサブバンド符号器の実施例であり、2帯
域に分割した場合のブロック図である。
FIG. 1 shows an example of a conventional subband encoder, and is a block diagram when the subband encoder is divided into two bands.

第1図の左半分は符号器で右半分は復号器である。The left half of FIG. 1 is an encoder, and the right half is a decoder.

符号器においては8 K Hzで標本化された音声信号
が端子1から入力されフィルタJOで低域のみが取り出
され標本化周波数4 KHzで出力される。咳た、フィ
ルタJ5では高域のみが取り出さ!1.1本化周波数4
KHzで出力される。ビット割半回路44は二つの信号
の′電力を計算し量子化器20と量子化器30のそれぞ
れ、の量子化ステップサイズと量子化ビット数を決定す
る。ここで両信号に割当るビット数の第1」は一定とす
る。このaき量子化ステップサイズさ量子化ビット数を
決定するアルゴリズムは前述の論文(こ従って求めるこ
とかできる。マルチブレの出力とを入力し並べなおして
出力する。その出力は端子2から伝送され端子3全通し
て復号器(こ入る。デマルチプレクサ50は受信した信
号を入力してビット割当に関する情報(こ基き第1の逆
量子化器60  と第2の逆量子化器70  とf・こ
分配する。
In the encoder, an audio signal sampled at 8 KHz is input from terminal 1, and only the low frequency is extracted by filter JO and output at a sampling frequency of 4 KHz. Cough, filter J5 extracts only the high frequency range! 1. Single frequency 4
Output at KHz. The bit divider and half circuit 44 calculates the power of the two signals and determines the quantization step size and number of quantization bits of the quantizer 20 and the quantizer 30, respectively. Here, it is assumed that the first number of bits allocated to both signals is constant. The algorithm for determining the quantization step size and the number of quantization bits can be found in the paper mentioned above. 3. The demultiplexer 50 inputs the received signal and divides the information regarding the bit allocation (based on this into the first inverse quantizer 60, second inverse quantizer 70, and f. do.

こイ1ら)]I!量子化器60.70は符号器の量子化
器20.30と逆の動作をする。つまり、量子化された
信号からもさの信号を再生する。逆量子化器60の出力
は周波数変換フィルタ80に入力される。周波数変換フ
ィルタ80は逆量子化器60の出力である4KHz標本
化された信号を補間しながら13 K、l−1z標本化
し低域成分として出力するものである。また、周波gI
l俊]ψフィルタ90は逆量子化器70の出力を入力し
補間しながら高域に周波数シフトシ8 KHz %%木
化された高域成分として出力する。双」算器51はこれ
ら二つの周波数変換フィルタ80.90の出力を加算し
て再生音声信号として端子4から出力する。本実施例を
用いると二つの帯域に等しいす;量子化ビット数を′謳
11尚るよりも量子化歪が減る。つ才り、低域側の信号
の方が高域側の信号よりも電力が太きいとすると低域へ
のシー1当てビット数が多くなり低域側の8N比(信号
対量子化歪の比)が高くなる。一方、高域への割当てビ
ット数は減り低域側のSN比は低下するがもともと信号
が小さいとすれは品質の劣化6ま少ない。以上の説明は
多分に1匡観的であるが、理論的には前述の太田氏の論
文等に説明さ狽ている。
Koi 1 et al)] I! The quantizer 60.70 operates inversely to the encoder's quantizer 20.30. In other words, the original signal is reproduced from the quantized signal. The output of the inverse quantizer 60 is input to a frequency conversion filter 80. The frequency conversion filter 80 interpolates the 4KHz sampled signal output from the inverse quantizer 60, samples it at 13K, l-1z, and outputs it as a low frequency component. Also, the frequency gI
The ψ filter 90 inputs the output of the inverse quantizer 70, and while interpolating it, shifts the frequency to a high frequency range and outputs it as a wood-based high frequency component. The double calculator 51 adds the outputs of these two frequency conversion filters 80 and 90 and outputs the result from the terminal 4 as a reproduced audio signal. Using this embodiment, two bands are equal; quantization distortion is reduced compared to increasing the number of quantization bits to 11. If the power of the low-frequency signal is higher than that of the high-frequency signal, the number of bits applied to the low frequency band will increase, and the 8N ratio (signal to quantization distortion) on the low frequency side will increase. ratio) increases. On the other hand, the number of bits allocated to the high frequency band decreases, and the S/N ratio on the low frequency side decreases, but if the signal is small to begin with, the quality deterioration will be minimal. The above explanation is probably one-size-fits-all, but it is theoretically explained in the paper by Mr. Ota mentioned above.

以上述べ1こように、適応ビット割当を用いることOこ
より量子化歪みの影響をtJ−さくできるが、ビット割
当に関する情報を伝送しなけれはならないこと、また装
置が複々1[になるという問題点がある。
As stated above, using adaptive bit allocation can reduce the effects of quantization distortion by using adaptive bit allocation, but there is also the problem that information regarding bit allocation must be transmitted, and that the device becomes multiple There is a point.

さらにはビット割当回路44においては信号の平均的な
レベルを求める必要があるため量子化器20.30にお
いてはピッl−&1当回路44とのタイミンクをあイつ
せる1こめ遅延を施さねばならない。以上のことは帯域
数が2以上ζこ増えても事情はまったく同じである1 以上のことから複数の帯域の信号の大きさに応じて適応
ビット割当をイ1うサブバンド符号化方法は装置が複雑
化し、さらにビット割当に関する情報を伝送しなければ
ならす遅延も発生するという問題点があった。
Furthermore, in the bit allocation circuit 44, it is necessary to find the average level of the signal, so in the quantizer 20.30, a delay of one must be applied to match the timing with the bit allocation circuit 44. . The above situation is exactly the same even if the number of bands increases by 2 or more. From the above, a subband encoding method that adaptively allocates bits according to the signal size of multiple bands is a device. There are problems in that the process becomes complicated and there is also a delay in transmitting information regarding bit allocation.

不発明の目的は、装置がi4j単で遅延の少ないサブバ
ンド符号化法の提供にある。
An object of the invention is to provide a subband coding method that uses only i4j and has a small delay.

本発明によれは、音声信号を入力し複数個のサブ帯域に
分割する手段と、前記各サブ帯域の信号を入力し遂次ス
テップサイズを更新しながら量子化する適応量子化を含
む符号化手段と、前記各適応量子化におけるステップサ
イズの情報をもとに各帯域の量子化ビット数を決定する
ビット割当手段と、前記ビット割当手段の出力Oこ従っ
て前記各符号化手段の出力を並べかえ出力する手段とを
有する符号化部と、前記符号化部からの信号を復号側ビ
ット割当情報にもとづき前記各サブ帯域に対応するよう
に配分し出力する手段と、前記配分する手段の出力を′
逐次ステップサイズを更新しながら復号する適応逆量子
化を含む復号手段と、前記適応逆量子化におけるステッ
プサイズにもとづき前記復号側ビット割当情報を出力す
る手段と、前記各復号手段の出力を組み合わせて出力1
−る手段とを有する復号部とを持つサブバンド符号化方
法が得られる。
According to the present invention, there is provided a means for inputting an audio signal and dividing it into a plurality of subbands, and an encoding means including adaptive quantization for inputting a signal of each of the subbands and quantizing it while sequentially updating the step size. and a bit allocation means for determining the number of quantization bits of each band based on information on the step size in each adaptive quantization, and an output of the bit allocation means, and outputs after sorting the outputs of the respective encoding means. an encoding section having means for allocating the signal from the encoding section, means for allocating and outputting the signal from the encoding section so as to correspond to each of the sub-bands based on decoding side bit allocation information, and an output of the allocating means;
A decoding means including adaptive inverse quantization that performs decoding while sequentially updating the step size, a means for outputting the decoding side bit allocation information based on the step size in the adaptive inverse quantization, and outputs of the respective decoding means are combined. Output 1
A subband encoding method is obtained having a decoding section having means for decoding.

本発明Oこよれはさらに、音声信号を入力し複数個のサ
ブ帯域Oこ分割するフィルタと、前記各ザブ帯域の信号
を入力し逐次ステップサイズを更新しながら量子化する
適応量子化を含む符号器と、前記各逆量子化におけるス
テップサイズの情報を入力し各サブ帯域の短時間信号レ
ベルとみなして各サブ帯域の量子化ビットの配分を決定
するビット割当手段と、前記ビット割当手段の出力に従
って前記各符号器の出力を並べかえ出力するマルチプレ
クサとを有するサブバンド符号化器が得られる。
The present invention further provides a code including a filter that inputs an audio signal and divides it into a plurality of sub-bands, and an adaptive quantizer that inputs the signal of each sub-band and quantizes it while sequentially updating the step size. a bit allocation means for inputting step size information in each of the inverse quantizations and determining the allocation of quantization bits for each subband by considering it as a short-time signal level of each subband; and an output of the bit allocation means. A subband encoder having a multiplexer that rearranges and outputs the outputs of the respective encoders according to the above is obtained.

本発明ζこよれはさらにまた、受信信号を入力しビット
割当情報にもとづき複数個のサブ帯域に分割し出力する
デマルチプレクサと、前記各サブ帯域に分割された信号
を入力し坏次ステップ→rイズを更新しながら復号する
適応逆量子化を含む復号手段と、前記各必応逆量子化に
おけるステップサイズを入力し各サブ帯域の短時間信号
レベルとみなして前記ビット割当情報を出力する復号ヒ
ツト割当手段と、前記各復号手段の出力を組み合わせて
再生音声信号を作る手段とを有するザブバンド復号器が
得られる。
The present invention further includes a demultiplexer that inputs a received signal, divides it into a plurality of subbands based on bit allocation information, and outputs the divided signal; a decoding means including adaptive inverse quantization that performs decoding while updating the size; and a decoding unit that inputs the step size in each necessary inverse quantization and outputs the bit allocation information by regarding it as a short-time signal level of each subband. A subband decoder is obtained having an allocation means and a means for combining the outputs of the respective decoding means to produce a reproduced audio signal.

仄に図を用いて本発明による実施例を詳細に説明下る。Embodiments of the present invention will be explained in detail with reference to the drawings.

第2図は本発明による第1の実施例である。また、第3
図は適応量子化21.22、・・・2Nの実施例、記4
図は適応逆量子化器61.62、・・・6Nの実施例で
ある。
FIG. 2 shows a first embodiment according to the present invention. Also, the third
The figure shows an example of adaptive quantization 21, 22,...2N.
The figure shows an embodiment of adaptive inverse quantizers 61, 62, . . . , 6N.

端子1から入力した8KI−izでサンプリングされた
信号はフィルター1.12、・・・INにより、N個の
ザブ帯域に分割され帯域幅に応じて再サンプルされる。
A signal sampled at 8KI-iz input from terminal 1 is divided into N subbands by filters 1, 12, . . . IN, and resampled according to the bandwidth.

帯域の分割の方法ζこついては前述の太田氏の論文を参
照して決めることかでさる。ここではN=4としてiす
間隔とし、各帯域42KHzサンプリングする。帯域分
割された信号は適応量子化器21.22、・・・2Nに
入力される。そのうちの一つであるf−信号100は適
応量子化器21において量子化される。信号100は第
3図の利得調整担1路210によりステップサイズ△−
の逆数1/△jが乗ぜら石る。Jはザンブリング時間を
表わす。△jは後述のアルゴリズムで動作し利得調整回
路210はAGOとして働く。利得調整回路210の出
力は量子化回路211に加えられ量子化され量子化レベ
ルの番号lとして符号化され信号103となって出力さ
れる。また信号103は適応回路212に入力される。
The method of band division can be determined by referring to the aforementioned paper by Mr. Ota. Here, N=4, the interval is set as i, and each band is sampled at 42 kHz. The band-divided signals are input to adaptive quantizers 21, 22, . . . 2N. One of them, the f-signal 100, is quantized in an adaptive quantizer 21. The signal 100 is adjusted in step size Δ- by the gain adjustment circuit 210 of FIG.
Multiplied by the reciprocal of 1/△j. J represents zumbling time. Δj operates according to an algorithm described later, and the gain adjustment circuit 210 works as an AGO. The output of the gain adjustment circuit 210 is applied to a quantization circuit 211, where it is quantized, encoded as a quantization level number l, and outputted as a signal 103. The signal 103 is also input to the adaptation circuit 212 .

量子化回路211での量子化ビット数は6ビツトとする
。適応回路212は6ビツトのうち上位2ビツトのみを
入力し次式に従ってステップサイズを更新する。
The number of quantization bits in the quantization circuit 211 is assumed to be 6 bits. The adaptation circuit 212 receives only the upper two bits of the six bits and updates the step size according to the following equation.

△j+1−(△j)β・M (l ) −(1)ここで
、βは1より小さな正の値、へ1.(1)はlで定まる
1前後の値である。これはD 、 J Goodman
等ζこ提案され1こアルゴリズムで論文(“IA ro
bustadaptive quantizer”、I
 EEETransactions on Commu
nications、 Vol、00M 23、pp、
 1362−1365.1975)に詳述されている。
Δj+1−(Δj)β・M(l)−(1) Here, β is a positive value smaller than 1, to 1. (1) is a value around 1 determined by l. This is D, J Goodman
A paper (“IA ro
“bustadaptive quantizer”, I
EEETransactions on Commu
nications, Vol, 00M 23, pp.
1362-1365.1975).

簡単に述べると、気、子化の結果が内側(0に近い方)
のレベルtこなったときはM (A)を1より小さくし
、量子化の結果が外側のレベル(こなっ1こときはM 
(1)を1より大きくする。そのようにすると△j+□
は、大きな信号が入力した場合は大きい方へ、小さな信
号が入力された場合は小さな方へ変化する。また、βは
過去の状態を忘れさせるために導入された定数であり、
伝送時のビット誤りの影響を除々に小さくすることがで
きる。従って、利得調整回路210はAGOとして働く
ことができる。適応量子化器21の出力信号101は適
応ビット割当回路45に入力される。また信号103は
マルチプレクサ41に入力される。他の帯域の信号もそ
れぞれ適応S:子化器22・・・2Nに入力され上述の
動作と同じ動作が行われる。適応ビット割当回路45は
各適応量子化回路21.22、・・・2Nから出力され
るステップサイズ1−信号の平均レベルを表現するとみ
なしてそれらを比べて各帯域ζこ何ビット割当るかを決
定する。但し、割当ビットの最大は6ビツト、最小は2
ビツトとする。各帯域はすべて2KHz  サンプリン
グ(500μSeC周期)されて5つ、32 k b 
p sの伝送レートを実現するには500μ式あ1こり
16ビツト使える。従って、全チャンネルで16ビツト
である。割当ビット数の最小を2としたのはステップサ
イズの更新を常に可能にするためである。ビット割当情
報はマルチプレクサ41に入力する。マルチプレクサ4
1は適応量子化器21.22、・・・2Nの出力信号を
並べなおして出力する。
To put it simply, the result of qi and childization is inside (closer to 0)
When the level t of
(1) is made larger than 1. If you do that, △j+□
changes to a larger value when a large signal is input, and to a smaller value when a small signal is input. Also, β is a constant introduced to make you forget the past state,
The influence of bit errors during transmission can be gradually reduced. Therefore, gain adjustment circuit 210 can act as an AGO. The output signal 101 of the adaptive quantizer 21 is input to the adaptive bit allocation circuit 45. The signal 103 is also input to the multiplexer 41. Signals in other bands are also input to the adaptive S: child generators 22...2N, and the same operations as described above are performed. The adaptive bit allocation circuit 45 assumes that the step size output from each adaptive quantization circuit 21, 22, . decide. However, the maximum allocated bits is 6 bits, and the minimum is 2 bits.
Bit. Each band is sampled at 2KHz (500μSeC period), 5 times, 32kB
To achieve a transmission rate of ps, 16 bits per 500μ formula can be used. Therefore, all channels are 16 bits. The reason why the minimum number of allocated bits is set to 2 is to enable updating of the step size at all times. Bit allocation information is input to multiplexer 41. multiplexer 4
1 rearranges and outputs the output signals of the adaptive quantizers 21, 22, . . . 2N.

その様子を第5図に示す。al、bi、C1、di  
はそれぞれ各サブ帯域の量子化結果であり、1の小さい
方が上位ビットである。ここではステップサイズの更新
に用いられるビットf始めの方に4チャンネル分並べて
おき、各チャンネルの下位ビットはビット割当情報にも
とづいて第5図のように並べられる。このようにすると
復号時に装置が少し簡単になる。もちろん、一つの帯域
の伝送すべきビットを−まとめにしてもよい。このよう
にしてマルチプレクサ41で並べかえられた信号は端子
2から出力さ、れる。復号器では受信信号を端子3から
入力しデマルチプレクサ51に入力する。デマルチプレ
クサ51はビット割当回路55からのビット割当情報に
従って受信信号を各帯域に分配する。ビット割当回路5
5は各適応量子化器61.62、・・・6Nからステッ
プサイズを入力し符号器のビット割当回路45と同じ動
作を行う。後述するように各ステップサイズは符号器側
のそれと一致するため各帯域には受信信号が正しく分配
される。デマルチプレクサ51の出力は各適応逆量子化
器61.62、・・・6Nに入力される。適応逆量子化
器61においては信号200は逆量子化回路610と適
応回路612とに加えられる。その時、適応回路612
には上位2ビツトのみが入力される。逆量子化回路61
0の出力は利得調整回路611に入力され、ここでステ
ップサイズ△、が乗ぜられる。ス伝送路誤りが無いとす
れは適応回路212で求まったステップサイズ△・と△
、は一致する。もし士分な細かさで量子化が行われたと
すると、利得調整回路611の出力203は信号100
に十分近い値となる。適応逆量子化回路62、・・・ 
6N)こおいても適応逆量子化回路61と同様な処理が
行われる。
The situation is shown in FIG. al, bi, C1, di
are the quantization results of each subband, and the one with smaller 1 is the upper bit. Here, the bits f used for updating the step size are arranged for four channels toward the beginning, and the lower bits of each channel are arranged as shown in FIG. 5 based on bit allocation information. This makes the device a little simpler during decoding. Of course, the bits to be transmitted in one band may be grouped together. The signals rearranged by the multiplexer 41 in this manner are outputted from the terminal 2. In the decoder, the received signal is inputted from the terminal 3 and inputted to the demultiplexer 51. The demultiplexer 51 distributes the received signal to each band according to the bit allocation information from the bit allocation circuit 55. Bit allocation circuit 5
5 inputs the step size from each adaptive quantizer 61, 62, . . . 6N, and performs the same operation as the bit allocation circuit 45 of the encoder. As described later, each step size matches that on the encoder side, so the received signal is correctly distributed to each band. The output of the demultiplexer 51 is input to each adaptive inverse quantizer 61, 62, . . . 6N. In adaptive dequantizer 61, signal 200 is applied to dequantizer circuit 610 and adaptive circuit 612. At that time, the adaptive circuit 612
Only the upper 2 bits are input to . Inverse quantization circuit 61
The output of 0 is input to the gain adjustment circuit 611, where it is multiplied by a step size Δ. If there is no transmission path error, the step sizes △・ and △ found by the adaptive circuit 212 are
, matches. If quantization is performed with reasonable precision, the output 203 of the gain adjustment circuit 611 will be the signal 100.
The value is sufficiently close to . Adaptive inverse quantization circuit 62,...
6N) The same processing as in the adaptive inverse quantization circuit 61 is performed here as well.

適応逆量子化器61.62、・・・6N の出力は周波
数変換フィルタ81.82、・−・8Nに入力されもと
の周波数帯に周波数シフトされる。各周波数変換フィル
タ81.82、・・・8N の出力は加算器52により
加え合わされて再生信号となって端子4から出力される
The outputs of the adaptive inverse quantizers 61.62, . . . 6N are input to frequency conversion filters 81.82, . . . 8N and are frequency shifted to the original frequency band. The outputs of the respective frequency conversion filters 81, 82, .

以上述べたように本実施例を用いると、ビット割当情報
を伝送する必要が無く、かつビット割当のための信号レ
ベルの測定が不要であり装置が簡単になりさらに信号の
達延も生じないサブバンド符号化法が得られる。
As described above, when this embodiment is used, there is no need to transmit bit allocation information, no need to measure the signal level for bit allocation, the equipment is simple, and there is no signal delay. A band coding method is obtained.

第6図と第7図は本発明による第2の実施例を説明する
ための図であり、符号器の一部と復号器の一部を示す図
である。
FIGS. 6 and 7 are diagrams for explaining a second embodiment of the present invention, and are diagrams showing a part of an encoder and a part of a decoder.

本実施例では、第1の実施例の適応量子化器21と)■
応逆量子化器61のかわりに第6図と第7図の例を用い
ることになる。第6図と第7図を中心に説明する。イn
号100と予測器802の出力である予測値との差を減
算器801で求め適応力文子化器800に加える。適応
量子化器は第1の実施例の適応量子化器21とまったく
同じものでよい、刺応放子化H’k 800は信号IG
3を出力するとともに上位2ビツトのみを局部逆量子化
器803に入力す6.こわは第1の実施例の適応逆量子
化器61と同じものでよいが入力ζこは2ビツトしか加
えられていない。局部逆量子化器803の出力と予測器
802の出力との和を加算器804で求め予測器802
の入力とする。予測器802は通常の予測器を用いれは
よい。
In this embodiment, the adaptive quantizer 21 of the first embodiment and)
In place of the reciprocal quantizer 61, the examples shown in FIGS. 6 and 7 will be used. The explanation will be centered on FIGS. 6 and 7. In
The difference between the number 100 and the predicted value which is the output of the predictor 802 is obtained by a subtracter 801 and added to the adaptive sentence generator 800. The adaptive quantizer may be exactly the same as the adaptive quantizer 21 of the first embodiment.
3 and input only the upper 2 bits to the local inverse quantizer 8036. The stiffness may be the same as the adaptive inverse quantizer 61 of the first embodiment, but only 2 bits are added to the input ζ. The sum of the output of the local inverse quantizer 803 and the output of the predictor 802 is calculated by the adder 804 and the predictor 802
As input. Predictor 802 may be a normal predictor.

復号器側では信号200のうちの上位2.ビットのみを
入力する適応逆量子化器811の出方と予測器813の
出力を加算器812で加える。また信号20oの全ビッ
トを適応逆量子化器810に入力する。これら適応逆量
子化器は第2の実施例の適応逆量子化器62と同じもの
でよい。加算器814は適応量子化器810の出力と予
測器813の出力を加えて再生信号203として出力す
る。なお本実施例と異り、加算器812の出力と下位ビ
ットのみの逆量子化で得られる結果の和を求めても同じ
再生信号が得られる。
On the decoder side, the top two of the signals 200. An adder 812 adds the output of an adaptive inverse quantizer 811 that inputs only bits and the output of a predictor 813. All bits of signal 20o are also input to adaptive inverse quantizer 810. These adaptive inverse quantizers may be the same as the adaptive inverse quantizer 62 of the second embodiment. Adder 814 adds the output of adaptive quantizer 810 and the output of predictor 813 and outputs the result as reproduced signal 203. Note that, unlike this embodiment, the same reproduced signal can be obtained by calculating the sum of the output of the adder 812 and the result obtained by dequantizing only the lower bits.

なお第2の実施例においては各帯域ともADPOMを行
うようにしたが、一部帯域のみそADPOMとして他の
帯域を第1の実施例のようにしてもよい。
In the second embodiment, each band is subjected to ADPOM, but only some bands may be subjected to ADPOM, and other bands may be subjected to ADPOM as in the first embodiment.

混在可能である。また、ADPOM以外の予測符号化を
使ってもよい。
Can be mixed. Moreover, predictive coding other than ADPOM may be used.

以上述べたノうに、本発明による第2の実施例を用いる
と、ADPOM%用いた装置の簡単なサブバンド符号化
法が実現できる。
As described above, by using the second embodiment of the present invention, a simple subband encoding method for an apparatus using ADPOM% can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の実施例を示す図、第2図は本発明による
第1の実施例を示す図、第3図と第4図は本発明(こよ
る第1の実施例の適応量子化器と適応逆量子化器を示す
図、第5図はマルチプレクサ41の出力の一例を示す図
、第6図と第7図は本発明による第2の実施例を説明す
るための図であり符号器の一部と復号器の一部を示す図
である。 累2図、第3図、第4図、第6図および第7図において
1.2.3.4は端子、11.12、INはフィルタ、
21.22.2Nは適応量子化器、41はマルチプレク
サ、45はビット割当回路、51はデマルチプレクサ、
52は加算器、55はビットM当回路、61.62.6
Nは適応逆を子化器、81.82.8Nは周波数変換フ
ィルタ、100.101.103゜200.201.2
03、姿+仁箆脹ユは信号、210は利得調整回路、2
11は重子化(ロ)路、212は適応回路、610は逆
量子化回路、611は利得調整回路、612は適応回路
、800は適応量子化器、801は減算器、802は予
測器、803は適応逆量子化器、804は加算器、81
0.811は適応逆量子化器、812は加算器、813
は予測器、814は加算器である。 −1 オ 3 閃 す グ 刀 7 S 胆 76 図 オ 7 図 g/′3
FIG. 1 is a diagram showing a conventional embodiment, FIG. 2 is a diagram showing a first embodiment according to the present invention, and FIGS. 3 and 4 are diagrams showing adaptive quantization of the first embodiment according to the present invention. FIG. 5 is a diagram showing an example of the output of the multiplexer 41, and FIGS. 6 and 7 are diagrams for explaining the second embodiment according to the present invention, and the reference numerals are used to explain the second embodiment of the present invention. 1.2.3.4 is a terminal, 11.12, IN is a filter,
21.22.2N is an adaptive quantizer, 41 is a multiplexer, 45 is a bit allocation circuit, 51 is a demultiplexer,
52 is an adder, 55 is a bit M circuit, 61.62.6
N is an adaptive inverse childizer, 81.82.8N is a frequency conversion filter, 100.101.103°200.201.2
03, appearance + 仁箆脹yu is a signal, 210 is a gain adjustment circuit, 2
11 is a multiplexing circuit, 212 is an adaptive circuit, 610 is an inverse quantization circuit, 611 is a gain adjustment circuit, 612 is an adaptive circuit, 800 is an adaptive quantizer, 801 is a subtracter, 802 is a predictor, 803 is an adaptive inverse quantizer, 804 is an adder, 81
0.811 is an adaptive inverse quantizer, 812 is an adder, 813
is a predictor, and 814 is an adder. -1 O 3 Flash Gu Sword 7 S Bile 76 Figure O 7 Figure G/'3

Claims (1)

【特許請求の範囲】 1、音声信号を入力し複数個のサブ帯域に分割する手段
と、前記各サブ帯域の信号を入力し逐次ステップサイズ
を更新しながら量子化1〜る適応量子化を含む符号化手
段と、前記各適応量子化におけるステップサイズの情報
をもとて各帯域の量子化ビット数を決定するビット割当
手段と、前記ビット割当手段の出力に従って前記各符号
化手段の出力を並べかえ出力する手段とを有する符号化
部と、前記符号化部からの信号を復号側ビット割当情報
にもとづき前記各サブ帯域に対応するように配分し出力
する手段と、前記配分する手段の出力を逐次ステップサ
イズを更新しなから復号する適応逆量子化を含む復号手
段と、前記適応逆量子化におけるステップサイズにもと
づき前記復号側ビット割当情報を出力する手段と、前記
各復号手段の出力を組み合わせて出力する手段とを有す
る復号部とを持つサブバンド符号化方法う 2、音声信号を入力し複数個のサブ帯域番こ分割するフ
ィルタと、前記各サブ帯域の信号を入力し逐次ステップ
サイズを更新しながら量子化する適応量子化を含む符号
器と、前記各逆量子化ζこおけるステップサイズの情報
を入力し各サブ帯域の短時間信号レベルとみなして各サ
ブ帯域の量子化ビットの配分を決定するビット割当手段
と、前記ビット割当手段の出力に従って前記各符号器の
出力を並べかえ出力するマルチプレクサとを有するサブ
バンド符号化器。 3、受信信号を入力しビット割当情報にもとづき複数個
のサブ帯域に分割し出力するデマルチプレクサと、前記
各サブ帯域をこ分割された信号を入力し逐次ステップサ
イズを更新しながら復号する適応逆量子化を含む復号手
段と、前記各適応逆量子化におけるステップサイズを入
力し各サブ帯域の短時間信号レベルとみなして前記ビッ
ト割当情報を出力する復号ビット割当手段と、前記各復
号手段の出力を組み合わせて再生音声信号を作る手段と
を有するサブバンド復号器。
[Claims] 1. Means for inputting an audio signal and dividing it into a plurality of subbands, and adaptive quantization for inputting the signal of each subband and quantizing while sequentially updating the step size. encoding means; bit allocation means for determining the number of quantization bits for each band based on step size information in each adaptive quantization; and rearranging the outputs of the respective encoding means according to the outputs of the bit allocation means. an encoding unit having a means for outputting, a means for allocating and outputting a signal from the encoding unit so as to correspond to each of the sub-bands based on decoding side bit allocation information, and outputting the output of the allocating means sequentially. a decoding means including adaptive inverse quantization that decodes without updating the step size; a means for outputting the decoding side bit allocation information based on the step size in the adaptive inverse quantization; and a combination of the outputs of the respective decoding means. Subband encoding method (2) has a decoding unit having means for outputting, a filter that inputs an audio signal and divides it into a plurality of subband numbers, and inputs the signal of each of the subbands and updates the step size sequentially. An encoder including adaptive quantization that performs quantization while inputting the step size information for each inverse quantization ζ, and considering it as the short-time signal level of each subband, allocates the quantization bits of each subband. A subband encoder comprising a bit allocation means for determining, and a multiplexer for rearranging and outputting the outputs of the respective encoders according to the output of the bit allocation means. 3. A demultiplexer that inputs a received signal, divides it into a plurality of subbands based on bit allocation information, and outputs it; and an adaptive inverter that inputs the signal divided into each subband and decodes it while sequentially updating the step size. a decoding means including quantization; a decoding bit allocation means for inputting a step size in each adaptive inverse quantization and outputting the bit allocation information by regarding it as a short-time signal level of each subband; and an output of each of the decoding means. and a subband decoder comprising means for combining the two to produce a reproduced audio signal.
JP58088007A 1983-05-16 1983-05-19 Subband encoding method and its encoding decoder Pending JPS59214346A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP58088007A JPS59214346A (en) 1983-05-19 1983-05-19 Subband encoding method and its encoding decoder
CA000454314A CA1253255A (en) 1983-05-16 1984-05-15 System for simultaneously coding and decoding a plurality of signals
US06/610,729 US4713776A (en) 1983-05-16 1984-05-16 System for simultaneously coding and decoding a plurality of signals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58088007A JPS59214346A (en) 1983-05-19 1983-05-19 Subband encoding method and its encoding decoder

Publications (1)

Publication Number Publication Date
JPS59214346A true JPS59214346A (en) 1984-12-04

Family

ID=13930743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58088007A Pending JPS59214346A (en) 1983-05-16 1983-05-19 Subband encoding method and its encoding decoder

Country Status (1)

Country Link
JP (1) JPS59214346A (en)

Similar Documents

Publication Publication Date Title
US4713776A (en) System for simultaneously coding and decoding a plurality of signals
KR100299528B1 (en) Apparatus and method for encoding / decoding audio signal using intensity-stereo process and prediction process
US5115240A (en) Method and apparatus for encoding voice signals divided into a plurality of frequency bands
RU2197776C2 (en) Method and device for scalable coding/decoding of stereo audio signal (alternatives)
KR100420891B1 (en) Digital Signal Encoding / Decoding Methods and Apparatus and Recording Media
RU2381571C2 (en) Synthesisation of monophonic sound signal based on encoded multichannel sound signal
US5301255A (en) Audio signal subband encoder
KR100941011B1 (en) Coding method, coding device, decoding method, and decoding device
KR100419546B1 (en) Signal encoding method and apparatus, Signal decoding method and apparatus, and signal transmission method
JP2005338637A (en) Device and method for audio signal encoding
JP3900000B2 (en) Encoding method and apparatus, decoding method and apparatus, and program
JP3519859B2 (en) Encoder and decoder
JPH06216782A (en) Coding method, coding device, decoding device, and recording medium
KR100952065B1 (en) Coding method, apparatus, decoding method, and apparatus
JPH07336234A (en) Method and device for coding signal, method and device for decoding signal
JPH0629934A (en) Adaptive differential coding transmission method
JPS63110830A (en) Frequency band dividing and encoding system
EP0398973B1 (en) Method and apparatus for electrical signal coding
JPH08307281A (en) Nonlinear quantization method and nonlinear inverse quantization method
JPS59214346A (en) Subband encoding method and its encoding decoder
JP3291948B2 (en) High-efficiency encoding method and apparatus, and transmission medium
JPH0836399A (en) Processing device for audio coded data
US20030200081A1 (en) Audio signal decoding and encoding device, decoding device and encoding device
JPH02264520A (en) Band split coding/decoding system and band split coder and band split decoder
KR960012477B1 (en) Adaptable stereo digital audio coder & decoder