JPS59214283A - Gas laser device - Google Patents

Gas laser device

Info

Publication number
JPS59214283A
JPS59214283A JP8771983A JP8771983A JPS59214283A JP S59214283 A JPS59214283 A JP S59214283A JP 8771983 A JP8771983 A JP 8771983A JP 8771983 A JP8771983 A JP 8771983A JP S59214283 A JPS59214283 A JP S59214283A
Authority
JP
Japan
Prior art keywords
anode
discharge
cathode
voltage
auxiliary anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8771983A
Other languages
Japanese (ja)
Inventor
Ken Fujii
憲 藤井
Yoshinori Kuramochi
倉持 義徳
Hiromitsu Kihana
喜花 宏光
Takashi Kugaya
久賀谷 隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8771983A priority Critical patent/JPS59214283A/en
Publication of JPS59214283A publication Critical patent/JPS59214283A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/097Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To lower the power loss at the starting of discharge by mounting an auxiliary anode between an anode and a cathode and generating seed discharge between the auxiliary anode and the cathode. CONSTITUTION:An anode 4 and a cathode 5 are mounted into a laser tube 1, and connected to a constant-current high-voltage pulse source 11 through a ballast resistor 10. An auxiliary anode 21 is set up between the anode 4 and the cathode 5, and a capacitor C and a resistor R are connected in series between the auxiliary anode and the anode 4. When pulses are transmitted from a pulse generator 12, output voltage from the constant-current light-voltage pulse power supply 11 begins to rise. The potential of the anode 4 and auxiliary anode 21 rises at the same value, seed discharge is formed between the auxiliary anode 21 and the cathode 5 first, and main discharge is generated between the anode 4 and the cathode 5 when output voltage from the power supply 11 further rises. Beakdown voltage can be lowered by mounting the auxiliary anode 21.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、ガスレーザ装置に係υ、特に出力を可変でき
るパルス出力ガスレーザ装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a gas laser device, and particularly to an improvement of a pulse output gas laser device whose output can be varied.

し発明の背景〕 以下、ガスレーザ装置の一柚で必るC02ガスレーザ装
置を例にあけて説明する。一般にCO2ガスレーザ装置
は1.(e、N、、Co□なとの混合ガス中でグロー放
電を行い、そのエネルギーにより励起されたCO8分子
が基底状態に戻るときのエネルギー差全レーザ光として
取)出している。
BACKGROUND OF THE INVENTION [0006] Hereinafter, a description will be given of a C02 gas laser device, which is one of the gas laser devices, as an example. In general, CO2 gas laser equipment has 1. (Glow discharge is performed in a mixed gas of e, N, Co□, etc., and the energy difference when CO8 molecules excited by the energy returns to the ground state is extracted as total laser light).

従来のガスレーザ装置の構成を第1図に示す。The configuration of a conventional gas laser device is shown in FIG.

図において、レーザ管1の中に設けられたアノード4と
カソード5にバラスト抵抗10と定電流高圧パルス電源
11が直列接続されている。また、レーザ管lの内部は
、真空ポンプ8によシ排気され、レーザ媒質ガス6が固
定絞シフを通して導入され、数kP、の一定ガス圧力に
保たれている。いま、パルス発生器12からパルスが供
給されると定電流高圧パルス電源11の出力電圧が数k
vから数十kVまで上昇し、アノード4とカンード5の
間の放電開始電圧に達すると、放電が起こシ、供給され
たパルスが立下がるまで放電電流工に応じた一定のレー
ザ出力9が得られる。定電流高圧パルス電源11の出力
電圧としては、放電開始させるために7ノード4とカソ
ード5の間の放電開始電圧以上必要であυ、放電開始後
はアノード4とカソード50間の放電維持電圧とバラス
ト抵抗lOでの電圧降下分を加えただけの電圧が必要で
ある。バラスト砥抗1O1l″ll:レーザ管1の電圧
電流の負特性を打消して安定な放==得るだめのもので
、レーザ出力9を可変とした場合、放電電流■を下げて
レーザ出力9を下げようとするほど大きな抵抗値を必要
とし、ますます定電流高圧パルス電源11の出力′電圧
の高いものが必要となる。また、放電電流■を数十mA
と大きくすればレーザ管1の負性抵抗が小さくなるため
、放電安定化に必要なバラスト抵抗10の抵抗値は小さ
くできるが、バラスト抵抗10の抵抗値を小さくすると
、放電開始時に過大の放電電流が流れ、放電電流のパル
ス波形の立上シに設定値の数倍のオーバシュートを生じ
る。
In the figure, a ballast resistor 10 and a constant current high voltage pulse power source 11 are connected in series to an anode 4 and a cathode 5 provided in a laser tube 1. Further, the inside of the laser tube 1 is evacuated by a vacuum pump 8, and a laser medium gas 6 is introduced through a fixed diaphragm shift to maintain a constant gas pressure of several kP. Now, when a pulse is supplied from the pulse generator 12, the output voltage of the constant current high voltage pulse power supply 11 increases to several kilograms.
When the voltage increases from v to several tens of kV and reaches the discharge starting voltage between the anode 4 and the cande 5, a discharge occurs and a constant laser output 9 according to the discharge current is obtained until the supplied pulse falls. It will be done. The output voltage of the constant current high voltage pulse power supply 11 is required to be equal to or higher than the discharge starting voltage between the node 4 and the cathode 5 in order to start the discharge, and after the start of the discharge, the discharge sustaining voltage between the anode 4 and the cathode 50 is required. A voltage equal to the voltage drop across the ballast resistor IO is required. Ballast abrasive resistor 1O1l''ll: This is used to cancel the negative characteristics of the voltage and current of the laser tube 1 to obtain stable discharge.If the laser output 9 is made variable, the laser output 9 can be adjusted by lowering the discharge current ■. The lower the resistance value is, the higher the output voltage of the constant current high voltage pulse power supply 11 is required.
If the resistance value of the ballast resistor 10 is made large, the negative resistance of the laser tube 1 becomes small, so the resistance value of the ballast resistor 10 necessary for stabilizing the discharge can be made small. flows, causing an overshoot several times the set value at the rise of the pulse waveform of the discharge current.

従来の装置では、以上のように放電開始時にアノード4
が放電開始電圧以上の高電圧と71i−9、ミラー2と
の耐圧が破れて放′屯が起こり、ミラーの劣化を招くと
いう問題があり、またレーザ出力を可変しようとすると
、バラスト抵抗10が大きくなるため電力損失が大きく
なって電源利用効率が低下し、装置が大形となる欠点が
あった。
In the conventional device, as described above, the anode 4 is
There is a problem that the withstand voltage between the 71i-9 and the mirror 2 is broken due to a high voltage higher than the discharge starting voltage, causing radiation and deterioration of the mirror.Also, when trying to vary the laser output, the ballast resistor 10 Due to the large size, power loss increases, power usage efficiency decreases, and the device becomes large.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、補助アノードを導入することによシ、
゛電源利用効率が高く、小形で高信頼なノくルス出力ガ
スレーザ装置を提供することにある。
The object of the present invention is to
``The object of the present invention is to provide a small-sized, highly reliable laser output gas laser device with high power utilization efficiency.

〔発明の概要〕[Summary of the invention]

かかる目的を達成するために、本発明は、放電開始電圧
が7ノードとカソードの距離に比例することから、アノ
ードとカソードの間に補助アノードを設け、補助アノー
ドとカソードの間に種放電を形成させることによって、
放電開始に要する高圧パルス電源の出力電圧を低減し、
かつ放電開始時に過大な放電電流を生じることなくバラ
スト抵抗の抵抗値及び電力損失を低減することを特徴と
する。
In order to achieve this object, the present invention provides an auxiliary anode between the anode and the cathode, and forms a seed discharge between the auxiliary anode and the cathode, since the discharge starting voltage is proportional to the distance between the 7 node and the cathode. By letting
Reduces the output voltage of the high-voltage pulse power supply required to start discharge,
Moreover, the present invention is characterized in that the resistance value of the ballast resistor and the power loss are reduced without generating an excessive discharge current at the start of discharge.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明による実施例を図面を参照して、詳細に説
明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第2図は本発明によるガスレーザ装置の一実施例を示す
構成図である。図において、レーザ管1の中に設けたア
ノード4とカソード5にバラスト抵抗lOと定電流高圧
パルス電源11を直列に接続し、パルス発生器12から
定電流高圧パルス電源11に持続時間が例えば10m(
8)のパルスを供給する。そして、アノード4とカソー
ド5の中間に補助アノード21を設け、カソード5との
間に種放電を形成させる手段としてコンデンサCと抵抗
Rを補助アノード21とアノード4の間に直列接続する
。丑だ、レーザ管1の内部は真空ポンプ8で排気し、流
量調節装置22を介してレーザ媒質ガス6を導入し、流
量調節装置22にょシレーザ管内のガス圧を例えば、l
/2〜数kP4の範囲で調節する。
FIG. 2 is a configuration diagram showing an embodiment of a gas laser device according to the present invention. In the figure, a ballast resistor lO and a constant current high voltage pulse power source 11 are connected in series to an anode 4 and a cathode 5 provided in a laser tube 1, and a constant current high voltage pulse power source 11 is connected from a pulse generator 12 to a constant current high voltage pulse power source 11 for a duration of 10 m, for example. (
8) Supply the pulse. An auxiliary anode 21 is provided between the anode 4 and the cathode 5, and a capacitor C and a resistor R are connected in series between the auxiliary anode 21 and the anode 4 as means for forming a seed discharge between the anode 4 and the cathode 5. The inside of the laser tube 1 is evacuated by the vacuum pump 8, and the laser medium gas 6 is introduced through the flow rate adjustment device 22, and the gas pressure inside the laser tube is adjusted to, for example, l.
Adjust in the range of /2 to several kP4.

以上の構成において、いま、ノクルス発生器12からパ
ルスが供給されると、定電流高圧ノくルス亀源11の出
力電圧が例えば20kV/m5ecの速さで上昇し始め
る。このときアノード4と補助アノード21は同電位で
上昇する。アノード4とカソード5の間の放電開始電圧
に比べ補助アノード21とカソード50間の放電開始電
圧の方が低いので、定電流高圧パルス電源11の出力電
圧が補助アノード21とカソード50間の放電開始電圧
例えば十数kVに達すると補助アノード21とカソード
5の間で種放電が形成される。ここで放電開始電圧は2
つの電極間の距離に比例するので、例えば補助アノード
21をアノード4とカソード5の中央の位置に設けた場
合、補助アノード21の放電開始電圧はアノード4の放
電開始電圧l/2となる。
In the above configuration, when a pulse is now supplied from the Noculus generator 12, the output voltage of the constant current high voltage Noculus generator 11 begins to rise at a rate of, for example, 20 kV/m5ec. At this time, the anode 4 and the auxiliary anode 21 rise at the same potential. Since the discharge start voltage between the auxiliary anode 21 and the cathode 50 is lower than the discharge start voltage between the anode 4 and the cathode 5, the output voltage of the constant current high voltage pulse power supply 11 is lower than the discharge start voltage between the auxiliary anode 21 and the cathode 50. When the voltage reaches, for example, more than ten kV, a seed discharge is formed between the auxiliary anode 21 and the cathode 5. Here, the discharge starting voltage is 2
For example, if the auxiliary anode 21 is provided at the center between the anode 4 and the cathode 5, the discharge starting voltage of the auxiliary anode 21 will be equal to the firing voltage of the anode 4, 1/2.

次に、種放電が形成されるとコンデンサC及び抵抗孔に
電流工、が流れて電圧降下が生じてくるため、補助アノ
ード21の電位はアノード4からみて降下し始める。と
ころがアノード4の電位■。
Next, when a seed discharge is formed, a current flows through the capacitor C and the resistance hole, causing a voltage drop, so that the potential of the auxiliary anode 21 begins to drop as viewed from the anode 4. However, the potential of anode 4 is ■.

は種放電形成後も上昇し続けるので、コンデンサCと抵
抗Rの値を適当に選ぶど、補助アノード21の電位v、
を一定にでき、アノード4とカソード5の間に主放電が
形成されるまで安定に種放電を維持することができる。
continues to rise even after the seed discharge is formed, so by appropriately selecting the values of the capacitor C and the resistor R, the potential of the auxiliary anode 21, v,
can be kept constant, and the seed discharge can be stably maintained until the main discharge is formed between the anode 4 and cathode 5.

この条件を満足するためのコンデンサCの値は次式で表
される。
The value of capacitor C to satisfy this condition is expressed by the following equation.

■2 C=□      ・・・・・・・・・・・・・・・(
1)ΔV+/Δt ここで工、は種数′亀の電流値、Δ■1/Δtは定電流
高圧パルス電源11の出力電圧上昇速度である。
■2 C=□ ・・・・・・・・・・・・・・・(
1) ∆V+/∆t Here, ∆ is the current value of the genus 'tortoise, and ∆■1/∆t is the rate of increase in the output voltage of the constant current high voltage pulse power supply 11.

いま、例えば、抵抗几f:l 00にΩに選んでI2=
lOmAに制限したとすると、Δ■1/Δt=20kV
/m5ecのとき、式(1)よりコンデンサCを500
1) Fに選べばよい。
Now, for example, select resistance f: l 00 to Ω and set I2=
If it is limited to lOmA, Δ■1/Δt=20kV
/m5ec, the capacitor C is 500 from formula (1).
1) Choose F.

さて、種放電の形成によシ、カソード5から放出された
亀子は補助アノード21に到達するまでにガス分子をイ
オン化してプラズマをつくシ、電流■、となって流れる
ほか、一部はアノード4と補助アノード21の間にもプ
ラズマを発生させる。
Now, due to the formation of a seed discharge, the gas emitted from the cathode 5 ionizes gas molecules and creates plasma by the time it reaches the auxiliary anode 21. In addition to flowing as a current Plasma is also generated between the auxiliary anode 4 and the auxiliary anode 21.

そして、上昇し続けていた電位V、による7ノード4と
カソード50間の電界強度が、種数′亀中一定に保たれ
た電位■、による補助7ノードとカソード50間の電界
強度よp犬きくなシ、電流■1が流れ始めて7ノード4
とカソード5の間の主放電が開始する。すなわち、種放
電形成後、電位■1がアノード4とカソード5の間の放
電維持電圧に達したときに主放電が開始し、この放電維
持電圧は、補助アノード21がない場合の放電開始電圧
の例えば7056程度の値である。一度主放電が開始す
ると定電流高圧パルス電源11の出力からあらかじめ設
定した電流、例えば30mAが流れ、それまで上昇して
いた電位■1が一足になると共に種放電の電流I、は減
少し始め、短時間、例えば0.1m5ecでゼロとなる
。その後は主放電の電流■1だけが流れ、補助アノード
21は主放電に影響を及ぼさない。ここで、バラスト抵
抗10の抵抗値を小さくするために、放1電流を一定、
例えば30mAとし、レーザ出力9の調整は、流量調節
装置22として例えば手動流量調節弁または電動流量調
節弁によシ、ガス流量を例えは数A/h r〜数十t/
hrの範囲で調節し、レーザ管lの管内ガス圧力を例え
ばl/2〜数kP、に変化させて行う。例えばl/2k
P、のときレーザ出力5W、5kP、のと@50Wとな
る。このとき、バラスト抵抗lOの抵抗値は、放電電流
によりレーザ出力調整を行う場合に比べ、約172〜l
/3に小さくでき、バラスト抵抗の電力損失は約1/4
〜l/9に低減でき、かつ上に述べたように放電開始時
でも過大電流を生じない。
The electric field strength between the 7 node 4 and the cathode 50 due to the potential V, which continued to rise, is now equal to the electric field strength between the 7 auxiliary node 4 and the cathode 50 due to the potential 2, which is kept constant throughout the genus . When the current ■1 begins to flow, node 4 becomes 7.
A main discharge between the cathode 5 and the cathode 5 starts. That is, after the seed discharge is formed, the main discharge starts when the potential 1 reaches the discharge sustaining voltage between the anode 4 and the cathode 5, and this discharge sustaining voltage is equal to the discharge starting voltage when the auxiliary anode 21 is not present. For example, the value is about 7056. Once the main discharge starts, a preset current, for example 30 mA, flows from the output of the constant current high voltage pulse power supply 11, and as the potential 1, which had been rising until then, becomes one foot, the seed discharge current I begins to decrease. It becomes zero in a short time, for example, 0.1 m5ec. After that, only the main discharge current 1 flows, and the auxiliary anode 21 does not affect the main discharge. Here, in order to reduce the resistance value of the ballast resistor 10, the discharge current is kept constant.
For example, the laser output 9 may be adjusted to 30 mA using a manual flow control valve or an electric flow control valve as the flow rate control device 22, and the gas flow rate may be adjusted from several A/hr to several tens of tons/hour.
The gas pressure inside the laser tube 1 is varied from 1/2 to several kP, for example. For example l/2k
When P, the laser output is 5W, 5kP, and @50W. At this time, the resistance value of the ballast resistor lO is approximately 172~l compared to the case where the laser output is adjusted by the discharge current.
/3, and the power loss of the ballast resistor is approximately 1/4
-1/9, and as mentioned above, no excessive current occurs even at the start of discharge.

なお、補助アノード21の形状は、アノード4と全く同
じでよく、従来のレーザ管の製造技術がそのまま使える
。また、補助アノード21の取付位置は、アノード4に
近づけると空間的には極放電から主放電へ移行しやすく
なるが種放電の持続時間が短<ナシ、カソード5に近づ
けるとその逆になることから、7ノード4とカソード5
の中央とカソード50間の範囲に設けるのが好適である
Note that the shape of the auxiliary anode 21 may be exactly the same as the anode 4, and conventional laser tube manufacturing techniques can be used as is. Furthermore, when the auxiliary anode 21 is installed closer to the anode 4, it becomes easier to spatially transition from polar discharge to main discharge, but the duration of the seed discharge is short (none), and when it is closer to the cathode 5, the opposite occurs. From, 7 nodes 4 and cathodes 5
It is preferable to provide the cathode 50 in a range between the center of the cathode 50 and the center of the cathode 50 .

したがって、本発明の実施例によれば、放電開始に要す
る定電流高圧パルス電源の出力電圧を低減でき、かつ放
電開始時に過大な放電電流を生じることなくバラスト抵
抗の抵抗値及び電力損失を低減できるため、電源利用効
率が向上し、装置を小形・低価格にでき、安定性及び信
頼性の向上が計れる。
Therefore, according to the embodiment of the present invention, it is possible to reduce the output voltage of the constant current high voltage pulse power supply required to start discharge, and also to reduce the resistance value of the ballast resistor and power loss without generating an excessive discharge current at the start of discharge. Therefore, power usage efficiency is improved, the device can be made smaller and cheaper, and stability and reliability can be improved.

第3図は本!る明の他の実施例を示すもので、第2図と
異なる点は、レーザ管lの中のアノード4と2つのカソ
ード5,5′からなる2系統の放電路の各々に補助アノ
ード21.21’を設けたことにある。本実施例によれ
は、第2図の実施例に比べて定電流高圧パルス電源11
の出力電流は2倍となるが出力電圧はl/2で済むので
装置がさらに小形になムバラスト抵抗io、io’での
電圧降下を低くできるのでミラー2とカソード5及びミ
ラー3とカソード5′の間の異常放電を防ぎやすい。ま
た、2つの補助アノード21.21’の各々にそれぞれ
抵抗R,R’及びコンデンサC2C′を設けたことによ
り2系統の放電路の各々の放電開始が互いに影響しにく
くなるので、補助アノードのない場合に比べ放電路が2
系統とも放電開始する確率が高くなる。なお、定電流高
圧−々ルスミ源11の代わシに直流高圧電源を用い、バ
ラスト抵抗10.10’の代わりに高耐圧真空管などの
定電流回路を用い、パルス発生器12から定電流回路に
パルスを供給するようにしてもよい。
Figure 3 is a book! The difference from FIG. 2 is that auxiliary anodes 21 . 21' is provided. This embodiment has a constant current high voltage pulse power supply 11 compared to the embodiment shown in FIG.
Although the output current is doubled, the output voltage is only 1/2, which makes the device even more compact.The voltage drop across the ballast resistors io and io' can be lowered, so mirror 2 and cathode 5 and mirror 3 and cathode 5' It is easy to prevent abnormal discharge during Furthermore, by providing the resistors R, R' and the capacitor C2C' for each of the two auxiliary anodes 21, 21', the discharge initiation of each of the two discharge paths becomes less likely to affect each other. The number of discharge paths is 2 compared to the case
There is a high probability that discharge will start in both systems. In addition, a DC high-voltage power supply is used instead of the constant-current high-voltage source 11, a constant-current circuit such as a high-voltage vacuum tube is used instead of the ballast resistor 10, 10', and the pulse generator 12 supplies pulses to the constant-current circuit. may also be supplied.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、パルス出力のガ
スレーザ装置において、放電開始に要する高圧電源の出
力電圧を低減でき、かつ放電開始時に過大な放′屯眠流
を生じることなくバラスト抵抗の抵抗値及び電力損失を
低減できるので、電源利用効率が向上し、装置を小形・
低価格にでき、安全性及び信頼性の向上が計nる。
As explained above, according to the present invention, in a pulse output gas laser device, it is possible to reduce the output voltage of the high-voltage power supply required to start discharge, and to reduce the ballast resistance without causing an excessive sleep current at the start of discharge. Since resistance value and power loss can be reduced, power usage efficiency is improved and equipment can be made smaller and smaller.
It can be made at low cost and has improved safety and reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のガスレーザ装置の構成図、第2図は本発
明によるガスレーザ装置の一実施例を示す構成図、第3
図は本発明によるガスレーザ装置の他の実施例ケ示す構
成図でめる。
FIG. 1 is a block diagram of a conventional gas laser device, FIG. 2 is a block diagram showing an embodiment of a gas laser device according to the present invention, and FIG.
The figure is a block diagram showing another embodiment of the gas laser device according to the present invention.

Claims (1)

【特許請求の範囲】 1、 レーザ管のアノードとカソードの間に高電圧パル
スを印加して形成させた放電路にレーザ媒質ガスを通過
させてパルスレーザ出力を得るガスレーザ装置において
、上記アノードとカソードの間に補助アノードを設け、
放電開始時に上記補助アノードと上記カソードの間に種
放電を形成させる手段を具備することを特徴とするガス
レーザ装置。 2 上記補助アノードとカソードの間に種放電を形成さ
せる手段が上記アノードと上記補助アノードに直列接続
したコンデンサと抵抗を具備することを特徴とする特許
請求の範囲第1項記載のガスレーザ装置。 3、上記放電路を複数個で構成し各放電路ごとに補助ア
ノードを設けたことを特徴とする特許請求の範囲第1項
記載のガスレーザ装置。
[Claims] 1. In a gas laser device that obtains a pulsed laser output by passing a laser medium gas through a discharge path formed by applying a high voltage pulse between an anode and a cathode of a laser tube, the anode and cathode are connected to each other. An auxiliary anode is provided between the
A gas laser device comprising means for forming a seed discharge between the auxiliary anode and the cathode at the time of starting discharge. 2. The gas laser device according to claim 1, wherein the means for forming a seed discharge between the auxiliary anode and the cathode comprises a capacitor and a resistor connected in series to the anode and the auxiliary anode. 3. The gas laser device according to claim 1, wherein the discharge path is composed of a plurality of discharge paths, and an auxiliary anode is provided for each discharge path.
JP8771983A 1983-05-20 1983-05-20 Gas laser device Pending JPS59214283A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8771983A JPS59214283A (en) 1983-05-20 1983-05-20 Gas laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8771983A JPS59214283A (en) 1983-05-20 1983-05-20 Gas laser device

Publications (1)

Publication Number Publication Date
JPS59214283A true JPS59214283A (en) 1984-12-04

Family

ID=13922710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8771983A Pending JPS59214283A (en) 1983-05-20 1983-05-20 Gas laser device

Country Status (1)

Country Link
JP (1) JPS59214283A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6127360U (en) * 1984-07-25 1986-02-18 東北リコ−株式会社 Carbon dioxide laser discharge tube

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6127360U (en) * 1984-07-25 1986-02-18 東北リコ−株式会社 Carbon dioxide laser discharge tube

Similar Documents

Publication Publication Date Title
Vuchkov et al. Influence of the excitation circuits on the CuBr laser performance
US5481162A (en) Method of supplying current to a sodium high-pressure discharge lamp, and current supply system
US4648093A (en) Power supply for gas discharge lasers
US6639365B2 (en) Ultra-compact arc discharge lamp system with an additional electrode
US4627063A (en) Laser oscillator
US4509176A (en) Longitudinal-discharge-pulse laser with preionization obtained by corona effect
Sze Inductively stabilized rare‐gas halide minilaser for long‐pulsed operation
JPS59214283A (en) Gas laser device
US4328464A (en) High power metallic halide laser
JP4312035B2 (en) Power supply device, high voltage pulse generator, and discharge excitation gas laser device
JPS61216373A (en) Pulse laser apparatus
JPS62249493A (en) Eximer laser device provideo with automatic preliminary ionization
Sethian et al. The Nike electron-beam-pumped KrF laser amplifiers
US7295591B2 (en) Long-pulse pulse power system for gas discharge laser
JPS61240690A (en) Gas laser oscillator
US3846716A (en) Method of regulating light emitting power of laser and apparatus for effecting same
RU2251179C2 (en) Method and device for exciting self-restrained and self-heated metal atom junction pulsing lasers
RU2065672C1 (en) High-voltage heavy-current monochromatic accelerator
RU2107366C1 (en) Electric-discharge laser
RU2162263C2 (en) Self-maintained space discharge shaping device
JPS6064486A (en) Gas laser device
JPS5820478B2 (en) Light emission method of xenon discharge tube
JPH0626278B2 (en) Gas laser device
JPS63228776A (en) Gas laser device
TETER J. BAD ZIAK, M. BORZECKI, A. CHOJ NA C KA, Z. DZWIGALSKI