JPS59213711A - Continuous conditioning of syrup - Google Patents

Continuous conditioning of syrup

Info

Publication number
JPS59213711A
JPS59213711A JP8715483A JP8715483A JPS59213711A JP S59213711 A JPS59213711 A JP S59213711A JP 8715483 A JP8715483 A JP 8715483A JP 8715483 A JP8715483 A JP 8715483A JP S59213711 A JPS59213711 A JP S59213711A
Authority
JP
Japan
Prior art keywords
syrup
weight
mixed
continuously
methyl methacrylate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8715483A
Other languages
Japanese (ja)
Other versions
JPH0119682B2 (en
Inventor
Yasuyuki Kato
加藤 安之
Masahiro Yuyama
湯山 正宏
Masahiko Moriya
森谷 雅彦
Akira Sakuramoto
桜本 朗
Hideaki Matsuura
秀昭 松浦
Toshiya Urano
浦野 俊也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP8715483A priority Critical patent/JPS59213711A/en
Publication of JPS59213711A publication Critical patent/JPS59213711A/en
Publication of JPH0119682B2 publication Critical patent/JPH0119682B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

PURPOSE:To perform a continuous conditioning of a viscous polymer solution without attaching and/or clogging of the polymer, by continuously mixing, in a liquid phase under a pressurized state, a non-conditioned syrup and conditioned one followed by flush evaporation, deaeration, and cooling to make the conditioned syrup, part of which being returned for said mixing. CONSTITUTION:In order to condition a viscous polymer solution (syrup) so as to be adapted to succeeding treatment processes, a non-conditioned syrup and conditioned one are continuously mixed, in a liquid phase under a pressure 1- 20atm., in a weight ratio of the former to the latter 1:1-200 to make a 1-70 deg.C mixed syrup, which is then subjected, under a pressure 1-200Torr, to continuous flush evaporation, deaeration, cooling, and, if required, concentration, to prepare a 0-50 deg.C conditioned syrup, part of which is returned for said mixing, the rest being provided for succeeding treatment processes, thus accomplishing the objective continuous conditioning.

Description

【発明の詳細な説明】 本発明は粘性重合体溶液(以下シロップと称する)を後
続する処理工程での使用に適するよう脱虱名錐煽縮など
の調整する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for preparing viscous polymer solutions (hereinafter referred to as syrups) to make them suitable for use in subsequent processing steps, such as decoating.

更に詳しくは、本発明はメチルメタクリレート系シロッ
プ等の未調整シロップと、循環使用される調整済みシロ
ップとを一定割合で混合区域で連続的に混合するし、温
度および圧力を規定の条件下に調節した混合シロップを
内部か減圧下にあるフラッシュ蒸発区域内に放出して脱
気冷却し、要すれば濃縮して調整済みシロップとなし、
一部を混合シロップとして再使用し、残部を後続の処理
工程へ送り出すことにより、重合体の付着閉塞やシロッ
プの変質を起すことなく長時間安定して均質な調整シロ
ップを得るシロップの連続調整方法に関する。
More specifically, the present invention continuously mixes an unconditioned syrup, such as a methyl methacrylate syrup, and a recycled conditioned syrup in a constant ratio in a mixing zone, and controls the temperature and pressure under specified conditions. The mixed syrup is discharged internally or into a flash evaporation zone under reduced pressure for degassing, cooling and, if necessary, concentration to form a prepared syrup;
Continuous syrup preparation method for obtaining a stable and homogeneous prepared syrup over a long period of time without causing polymer adhesion or blockage or syrup deterioration by reusing a portion as a mixed syrup and sending the remainder to subsequent processing steps Regarding.

ビスコース組成物、メチルメタクリレート系シロップな
どの粘性重合体溶液(以下シロップと総称する)から紡
糸、製膜あるいは製板する方法は公知である。これらの
シロップは紡糸、製膜あるいは製板などの処理工程に供
するに先立って脱気、脱泡、冷却、濃縮あるいは各種添
加剤の添加などの・調整操作が必要である。シロップ中
の空気または他のが気体を除去しないと、紡糸に当って
フィラメントが破れたり、フィルムの鋳造やシートの注
型重合に当っては、その中に気泡や気孔を生じて製品の
外観や物性を著しく損なう問題が発生する。従って、例
えばメチルメタクリレート系シロップの製造は、通常、
メチルメタクリレート系シロップに重合開始剤その他の
必要な添加剤が加えられると共に、その中に含まれてい
る溶存空気を除去するため減圧下で脱気された後、がス
ケットでシールされた二枚のがラス板の間に注入して加
熱下に重合させて製板する回分式のセルキャスト法、あ
るいは両端を二本のがスケットでシールされた二つの連
続した移動バンド間に注入して加熱下に連続重合させて
製板する連続キャスト法により行われている。空気また
は他の気体の存在形態は通常は二種類に大別され、一つ
はシロップ中に気泡となって混入している混和気体であ
り、他はシロップ中に溶解している溶存気体である。し
かしながら、シロップの注型重合においては添加された
重合開始剤の分解によって発生する窒素、二酸化炭素な
どの気体が上記の混和気体および溶存気体に付加される
ことになるので、製板時の発泡すなわち車台発泡を防止
するためにはより高度の脱気が要求される。すなわち、
シロップ中に存在する混和気体や溶存気体を除去しない
と加熱重合中に気泡が固定されたり、溶存気体の溶解度
が低下して発泡する現象があるため脱気してこれを防止
するわけであるが、この脱気が極めて高度に行なわれな
いと、上述の重合開始剤の分解により発生する気体が樹
脂板中に全量溶解するに十分な溶解度の気力が確保でき
ず、やはり発泡を生ずるに到るのである。
Methods for spinning, forming films, or forming plates from viscose compositions, methyl methacrylate syrups, and other viscous polymer solutions (hereinafter collectively referred to as syrups) are known. These syrups require adjustment operations such as deaeration, defoaming, cooling, concentration, or addition of various additives before being subjected to processing steps such as spinning, film forming, or plate forming. If the air or other gases in the syrup are not removed, the filaments will break during spinning, and air bubbles and pores will appear in the filaments during film casting and sheet cast polymerization, which will affect the appearance of the product. A problem arises that significantly impairs physical properties. Therefore, for example, the production of methyl methacrylate syrup usually involves
A polymerization initiator and other necessary additives are added to the methyl methacrylate syrup, which is then degassed under reduced pressure to remove the dissolved air contained therein. Batch-type cell casting method, in which steel is injected between lath plates and polymerized under heating, or continuous cell casting is injected between two continuous moving bands, each end of which is sealed with two gaskets, under heating. This is done by a continuous casting method that involves polymerizing and making plates. The existence of air or other gases is usually divided into two types: one is a mixed gas that is mixed in the form of air bubbles in the syrup, and the other is a dissolved gas that is dissolved in the syrup. . However, in the cast polymerization of syrup, gases such as nitrogen and carbon dioxide generated by the decomposition of the added polymerization initiator are added to the above-mentioned mixed gases and dissolved gases, so foaming during plate making or A higher degree of deaeration is required to prevent undercarriage foaming. That is,
If mixed gases and dissolved gases present in the syrup are not removed, air bubbles may become fixed during heating polymerization, or the solubility of dissolved gases may decrease, resulting in foaming, so degassing is used to prevent this. If this degassing is not carried out to a very high degree, sufficient solubility will not be ensured for the gas generated by the decomposition of the polymerization initiator to dissolve completely in the resin plate, which will also result in foaming. It is.

混入気体および/または溶存気体の除去方法としては、
シロップを容器内に静置して真空脱気する回分式、ある
いはシロップを薄膜として壁面上を流下させながら連続
的に真空脱気する濡壁式などの方法が公知であるが、前
者は脱気に長時間を要し、多量のシロップの処理に適さ
ないため、後者が好んで行われ種々の改良方法が提案さ
れている。
Methods for removing mixed gases and/or dissolved gases include:
There are two known methods: the batch method, in which the syrup is left in a container and vacuum degassed, and the wet wall method, in which the syrup is continuously vacuum degassed while flowing down on the wall as a thin film. Since it takes a long time to process and is not suitable for processing a large amount of syrup, the latter method is preferred, and various improved methods have been proposed.

特公昭35−8557号公報には粘性液体(シロップ)
の薄層を減圧状態に置くことによって脱気するに際して
、溶剤を分離する前後の液体の温度差をほぼ一定に保つ
ように液体の真空層に対する対接圧力並に温度を調整し
て液体を沸騰せしめ、且液体の飛沫と接触すべき装置の
表面を常に液体の流動フィルムで被覆するようにフィル
ムを流すことによって膠化又はスキン形成、を防止する
粘性液体より混和又は溶解あるいは混和並に溶解された
空気又はがスを除去する方法が開示されている。この方
法は流下するフィルムに沸騰する程度の高度の真空を与
えて脱気を完全にし、かつ、真空室の全湿潤部分をフィ
ルムの連続流によって洗って沸騰する溶液が原基の乾燥
部分に飛散することを防止せんとするものであるが、処
理される粘性液体の粘度が高い場合には脱気が不十分に
なり易く、また流動フィルムを形成させるための両舌片
間から出る液体は著量の飛沫を形成して泡立つため1方
の舌片の乾燥部分に飛沫または泡立ちが到達することは
避けられず、スキンを形成して長時間連続使用するとス
キンが落下したり、舌片間隙を閉塞させて連続したフィ
ルムの形成を阻害する欠点を有している。
In Japanese Patent Publication No. 35-8557, viscous liquid (syrup)
When degassing a thin layer of liquid by placing it under reduced pressure, the pressure and temperature of the liquid against the vacuum layer are adjusted so that the temperature difference between the liquid before and after the solvent is separated remains almost constant, and the liquid is boiled. Mixable or dissolved by a viscous liquid, or mixed or dissolved by a viscous liquid, which prevents agglomeration or skin formation by flowing the film so that the surface of the device that is to be in contact with liquid droplets is always coated with a flowing film of liquid. A method for removing contaminated air or gas is disclosed. This method applies a vacuum high enough to boil the falling film to ensure complete deaeration, and then washes all wet parts of the vacuum chamber with a continuous flow of film, causing the boiling solution to scatter onto the dry part of the primordium. However, if the viscosity of the viscous liquid to be treated is high, degassing tends to be insufficient, and the amount of liquid coming out between the tongues to form a fluid film is considerable. It is inevitable that the droplets or foam will reach the dry part of one tongue, and if it forms a skin and is used continuously for a long time, the skin may fall off or block the gap between the tongues. This has the drawback of inhibiting the formation of a continuous film.

また、特開昭58−118882号公報には重合可能な
シラツブ(シロップ)を注入器より注入し、該注入器と
陣笠状濡壁との間隙を経て、前記陣笠状濡壁上に膜流と
して流下させ、真空脱気により前記シラツブ中の気泡或
いは溶存気体又は気泡及び溶存気体を除去する脱泡シラ
ツブの製造法が開示されている。
Furthermore, in JP-A-58-118882, polymerizable syrup is injected from a syringe, passes through the gap between the syringe and the cap-shaped wet wall, and forms a film flow onto the cap-shaped wet wall. A method for producing a defoamed sill sludge is disclosed in which air bubbles or dissolved gas in the sill sludge or air bubbles and dissolved gas are removed by flowing down the sill sludge and vacuum degassing is performed.

この方法は気泡が注入器と陣笠状濡壁との円周状間隙を
通りこの濡壁のL端に注入されたとき破泡され、次いで
シロップが陣笠状濡壁に沿って膜流として流下する間に
残ってぃた気泡および溶存気体が除去されるようにして
脱泡効率を向上せんするものであるが、円周状間隙の調
節により破泡効果は調節できても、濡壁上に所望の膜厚
の膜流を形成させることは必ずしも容易ではなく、シロ
ップの粘度が高い場合には膜切れが生じたり、膜厚が肥
厚して溶存気体の除去効果は十分でない欠点を有してい
る。
In this method, bubbles are broken when they are injected into the L end of the wetted wall through a circumferential gap between the injector and the wetted wall, and then the syrup flows down as a film flow along the wetted wall. This is intended to improve the defoaming efficiency by removing air bubbles and dissolved gas remaining between the wet walls, but even though the bubble-breaking effect can be adjusted by adjusting the circumferential gap, the desired It is not always easy to form a film flow with a film thickness of .

一方、メタクリル樹脂板の製造法が従来の回分式のセル
キャスト法から生産性の高い連続キャスト法への転換が
進められるにつれて、より高い生産性を可能にするシロ
ップの製造法が要請され、従来の1回分式に変って、例
えば特開昭54−54188、特開昭54−54189
、および特開昭55−147514などの連続法が提案
されている。これらの方法においては従来のセルキャス
ト法に比べて、重合体含有率が高く、かつ、粘度が高い
シロップが用いられる。また、連続キャスト法および/
または連続シロップ製造法は少ない品種を一定の品質で
大量生産することを目的とするものであるから、シロッ
プ製造工程と製板工程との間に介在するシロップ調整工
程も自ずとその目的に合致した方法が要請される。
On the other hand, as the manufacturing method for methacrylic resin sheets is changing from the conventional batch-type cell casting method to the highly productive continuous casting method, there is a need for a syrup manufacturing method that enables higher productivity. For example, JP-A-54-54188, JP-A-54-54189
Continuous methods have been proposed, such as , and Japanese Patent Application Laid-Open No. 55-147514. These methods use syrups that have a higher polymer content and higher viscosity than those used in conventional cell casting methods. Also, continuous cast method and/or
Alternatively, since the purpose of the continuous syrup manufacturing method is to mass-produce a small number of varieties with constant quality, the syrup adjustment process that is interposed between the syrup manufacturing process and the plate making process is naturally a method that meets that purpose. is requested.

例えばシロップへ重合開始剤及び必要に応じて各種添加
剤を連続的に混合する特開昭44−99184号公報の
方法はこのような目的に沿うものである。
For example, the method disclosed in JP-A-44-99184, in which a polymerization initiator and optionally various additives are continuously mixed into syrup, meets this purpose.

本発明者らは既存の脱気方法の欠点を克服し、上述の連
続化の要請にも資する方法について鋭意検討した結果、
未脱気シロップに、脱気済シロップを一定割合で循環混
合し、規定の条件下に調節した後、規定の条件下でフラ
ッシュ蒸発し、かつ、蒸発した揮発成分を凝縮還流する
ことにより、重合体の付着閉塞やシロップの変質を起す
ことなく長時間安定して均質な脱泡シロップが得られる
ことを見出し、更には未脱気シロップが単量体を連続塊
状重合する連続シロップ製造工程より排出される熱シロ
ップである場合には、脱気と冷却とが同時に、かつ、効
率的に実施できる簡便な連続調整方法であることを見出
し本発明に到達した。
As a result of intensive study by the present inventors on a method that overcomes the drawbacks of existing deaeration methods and also contributes to the above-mentioned continuous request,
The degassed syrup is circulated and mixed at a fixed ratio with the undegassed syrup, adjusted to the specified conditions, and then flash evaporated under the specified conditions, and the evaporated volatile components are condensed and refluxed to produce a heavy It was discovered that a homogeneous defoamed syrup can be obtained stably for a long period of time without causing coalescence clogging or syrup deterioration, and furthermore, the undegassed syrup can be discharged from the continuous syrup production process in which monomers are continuously polymerized in bulk. The present inventors have discovered that there is a simple continuous adjustment method in which deaeration and cooling can be carried out simultaneously and efficiently in the case of a hot syrup produced by a heat treatment.

すなわち、本発明はシロップを後続する処理工程に適す
る様に調整するに当り未調整シロップと調整済みシロッ
プを1:1〜200の重量比で圧力1〜20気圧のもと
で液相状態を維持して連続的に混合して、温度1〜70
℃の混合シロップとなし、該混合シロップを圧力1〜2
Q Q Torrの条件下で連続してフラッシュ蒸発さ
せ、脱気、冷却、要すれば濃縮をして、温度θ〜50℃
の調整済みシロップとなし、この調整済みのシロップの
一部をL記の混合シロップに用い、残部を後続する処理
工程に供することを特徴とするシロップの連続調整方法
That is, the present invention maintains a liquid phase state under a pressure of 1 to 20 atm at a weight ratio of 1:1 to 200 by weight of unconditioned syrup and adjusted syrup in adjusting the syrup to be suitable for subsequent processing steps. and continuously mix at a temperature of 1 to 70℃.
The mixed syrup is heated to a pressure of 1~2°C.
Continuous flash evaporation under Q Q Torr conditions, deaeration, cooling, and concentration if necessary, to a temperature of θ to 50°C.
1. A method for continuously preparing syrup, which comprises using a portion of the prepared syrup in the mixed syrup described in L, and using the remaining portion in a subsequent processing step.

次に本発明について詳細に説明する。Next, the present invention will be explained in detail.

本発明の方法による輻整に適するシロップの種類として
は特に制限はなく、重合体を溶剤および/または単量体
に溶解してなる粘性重合体溶液が一般に用いられるが、
好ましくはメチルメタクリレートを主成分とする単量体
100〜80重量%とゴム状重合体θ〜20重量%から
なる原料液を部分的に重合してなるメチルメタクリレー
ト系シロップが挙げられ、特に好ましくはラジカル重合
開始剤の存在下に連続塊状重合して得られる90〜20
0℃の温度条件下にあるメチルメタクリレート系シロッ
プが挙けられる。このとき、メチルメタクリレートを主
成分とする単量体としてはメチルメタクリレートが単独
で用いられるか、あるいはこれと共重合可能なメチルア
クリレート、エチルアクリレートなどのアルキルアクリ
レート類、エチルメタクリレート、ラウリルメタクリレ
ート、エチレングリコールジメタクリレートなどのアル
キルメタクリレート類、アクリロニトリルなどの不飽和
ニトリル類、アクリルアミドなどの不飽和アミド類、ア
クリル酸、メタクリル酸などの不飽和カルボン酸類、ス
チレン、α−メチルスチレン、P−メチルスチレンなど
のビニル芳香族化合物、無水マレイン酸、N−アリール
マレイミドなどで例示されるエチレン性不飽和単量体の
余端に対して40重量%以下、好ましくは20重敞%以
下の範囲内において含有するメチルメタクリレート系単
量体混合物が用いられる。また、ゴム状重合体としては
ポリブタジェン、ポリイソプレン、ポリイソブチレンな
どの単独重合体、ブタジェン/スチレン、ブタジェン/
アクリロニトリルなどのジエン系共重合体、エチレン/
酢酸ビニル共重合体、エチレン/アルキルアクリレート
共重合体、ゴム状ポリアルキルアクリレート、ボリウ、
レタン、塩素化ポリエチレンおよびEPDMなどが原料
液の全量に対して0〜20重量%、好ましくは2〜10
重量%の範囲内で添加される。ラジカル重合開始剤とし
ては特に制限はなく、例えばアゾビスインブチロニトリ
ルなどのアゾ化合物、ベンゾイルパーオキサイド、ラウ
ロイルパーオキサイドなどの過酸化物が原料液100重
量部に対して通常o、oot〜1重量部、好ましくは0
.01〜0.5重散部用いられる。
There are no particular restrictions on the type of syrup suitable for condensation according to the method of the present invention, and a viscous polymer solution prepared by dissolving a polymer in a solvent and/or a monomer is generally used.
Preferably, methyl methacrylate syrup is produced by partially polymerizing a raw material liquid consisting of 100 to 80% by weight of a monomer mainly composed of methyl methacrylate and θ to 20% by weight of a rubbery polymer, and particularly preferred. 90-20 obtained by continuous bulk polymerization in the presence of a radical polymerization initiator
Examples include methyl methacrylate syrup under a temperature condition of 0°C. At this time, as the monomer whose main component is methyl methacrylate, methyl methacrylate is used alone, or alkyl acrylates such as methyl acrylate and ethyl acrylate that can be copolymerized with methyl methacrylate, ethyl methacrylate, lauryl methacrylate, and ethylene glycol. Alkyl methacrylates such as dimethacrylate, unsaturated nitriles such as acrylonitrile, unsaturated amides such as acrylamide, unsaturated carboxylic acids such as acrylic acid and methacrylic acid, vinyls such as styrene, α-methylstyrene, and P-methylstyrene. Methyl methacrylate contained in an amount of 40% by weight or less, preferably 20% by weight or less based on the remainder of the ethylenically unsaturated monomer exemplified by aromatic compounds, maleic anhydride, N-arylmaleimide, etc. A mixture of monomers is used. Rubber-like polymers include homopolymers such as polybutadiene, polyisoprene, polyisobutylene, butadiene/styrene, butadiene/
Diene copolymers such as acrylonitrile, ethylene/
Vinyl acetate copolymer, ethylene/alkyl acrylate copolymer, rubbery polyalkyl acrylate, polyurethane,
Rethane, chlorinated polyethylene, EPDM, etc. are 0 to 20% by weight, preferably 2 to 10% by weight based on the total amount of the raw material liquid.
It is added within a range of % by weight. There is no particular restriction on the radical polymerization initiator, and for example, an azo compound such as azobisin butyronitrile, or a peroxide such as benzoyl peroxide or lauroyl peroxide is usually used in an amount of o, oot to 1 per 100 parts by weight of the raw material solution. Parts by weight, preferably 0
.. 01 to 0.5 polydispersed parts are used.

シロップ中の重合体含有率、粘度および数平均重合度は
本発明の調整方法における脱気および/または冷却効果
あるいは重合体の付着閉塞やシロップの変質などと直接
的相関を有するものではないので特に制限はないが、得
られたシロップを後続する処理工程で使用する側の観点
からシロップ中の重合体含有率は5〜40重量%、好ま
しくは10〜80重量%、25℃における粘度は0.5
〜500ポ本発明の方法における調整は混合区域とフラ
ッシュ蒸発区域から構成される。未調整シロップは先ず
混合区域に連続的に供給され、同時に調整済みシロップ
も一定の割合で連続的に混合する。未調整シロップの温
度には特に制限はなく、貯槽に一担貯蔵され必要に応じ
て各種の添加剤が混合された冷シロップが用いうるが、
好ましくは連続塊状重合工程から連続的に排出される9
0〜200℃の温度条件下にある高温のシロップがその
まま用いられる。ここで用いる調整済みシロップの温度
は0〜50℃、好ましくは10〜40℃程度であり、こ
の温度は該シロップを後続する処理工程で使用する側の
観点や後述するフラッシュ蒸発区域の操作条件からの制
約も受けるが、この範囲内より高いときは混合区域や循
環ラインなどに重合体が付着し徐々に成長すると共に不
溶性の重合体に変化して閉塞に到る欠点がある。調整済
みシロップの循環量は前記未調整シロップ量に対して1
〜200倍重社、好ましくは2〜50倍重量である。
In particular, the polymer content, viscosity, and number average degree of polymerization in the syrup do not have a direct correlation with the degassing and/or cooling effect in the preparation method of the present invention, polymer adhesion clogging, syrup deterioration, etc. Although there is no limitation, from the viewpoint of using the obtained syrup in subsequent processing steps, the polymer content in the syrup is 5 to 40% by weight, preferably 10 to 80% by weight, and the viscosity at 25°C is 0. 5
~500 Po The conditioning in the process of the invention consists of a mixing zone and a flash evaporation zone. The unconditioned syrup is first continuously fed into the mixing zone, while the conditioned syrup is also continuously mixed at a constant rate. There is no particular limit to the temperature of the unadjusted syrup, and cold syrup that is stored in a storage tank and mixed with various additives as necessary can be used.
9 which is preferably continuously discharged from the continuous bulk polymerization step.
High temperature syrup under temperature conditions of 0 to 200°C is used as is. The temperature of the adjusted syrup used here is about 0 to 50°C, preferably about 10 to 40°C, and this temperature is determined from the viewpoint of using the syrup in the subsequent processing step and the operating conditions of the flash evaporation zone described below. However, if it is higher than this range, the polymer will adhere to the mixing area, circulation line, etc., gradually grow, and change into an insoluble polymer, resulting in blockage. The circulating amount of adjusted syrup is 1 for the amount of unadjusted syrup.
~200 times the weight, preferably 2 to 50 times the weight.

調整済みシロップの量が少な過ぎるとフラッシュ蒸発時
に十分な脱気が難しく、さらに、高温のシロップに対し
て十分な混合冷却効果が得られず前述の重合閉塞を生じ
る欠点がある。一方、この範囲より多いときは調整済み
シロップを再度調整する量が多くなるだけで無駄であり
好しくない。混合区域は混入ないし溶存気体濃度および
/または温度を実質的に均一にする機能を有していれば
構造上特に制限はなり、攪拌による混合は必須ではない
が、ここで重合開始剤、熱安定剤、紫外線吸収剤など後
続する処理工程ないし最終製品の添加剤が添加されても
よく、これらをより短時間に均一に混合するため、ある
いは該混合区域内での重合体の付着を防止するために攪
拌操作が有るのが好ましい。攪拌操作の混合状態には特
に制限はないが、完全混合が望ましく装置としては完全
混合攪拌槽がこの目的に好適である。攪拌翼の形状には
特に制限はなく例えはダブルヘリカルリボンg、MIG
型攪拌翼などが使用できる。攪拌翼は好ましくは未調整
シロップ入口の開口部を拭うよう配置され、混合区域に
流入した未調整シロップは直ちに調整済みシロップ中に
混合溶解される。攪拌翼の回転数は特に制限はないが通
常50〜i、o o o rpmに選ばれる。該混合区
域の平均滞留時間は混入ないし溶存気体濃度および/ま
たは温度を実質的に均一にするに十分な時間かあればよ
く通常1分以下の短時間でよい。
If the amount of the prepared syrup is too small, sufficient degassing will be difficult during flash evaporation, and furthermore, a sufficient mixing cooling effect will not be obtained for the high temperature syrup, resulting in the aforementioned polymerization blockage. On the other hand, if the amount exceeds this range, the amount of adjusted syrup that has been adjusted will simply need to be adjusted again, which is wasteful and undesirable. There are no particular restrictions on the structure of the mixing zone as long as it has the function of substantially uniformizing the mixed or dissolved gas concentration and/or temperature, and mixing by stirring is not essential; Additives for subsequent processing steps or the final product, such as additives, UV absorbers, etc., may be added to mix them more quickly and uniformly, or to prevent polymer build-up within the mixing zone. Preferably, there is a stirring operation. Although there are no particular restrictions on the mixing state in the stirring operation, complete mixing is desirable and a complete mixing stirring tank is suitable for this purpose. There is no particular restriction on the shape of the stirring blade, examples include double helical ribbon g, MIG.
Type stirring blades etc. can be used. The stirring vanes are preferably arranged to wipe the unconditioned syrup inlet opening, and the unconditioned syrup entering the mixing zone is immediately mixed and dissolved into the conditioned syrup. The rotational speed of the stirring blade is not particularly limited, but is usually selected from 50 to 1,000 rpm. The average residence time in the mixing zone may be as short as generally one minute or less, as long as it is sufficient to substantially uniform the concentration and/or temperature of the mixed or dissolved gases.

混合区域で得られる混合シロップの温度は調整済みシロ
ップの温度より1〜20℃、好ましぐは2〜15℃高い
温度に調節する。従って混合シロップの温度は通常1〜
70℃、好ましくは12〜55℃の範囲内にある。該温
度差が上述の軸回より小のときはフラッシュ蒸発区域に
おける揮発量が過小となり、逆にこの範囲より大のどき
は揮発量が過大となり後述する理由で共に好ましくない
。該温度差条件を達成するためには、調整済みシロップ
の温度と混合シロップへの混合比によって調節されるが
、要すれば混合区域で外部から加熱されてもよく、未調
整シロップが予熱されて該混合区域に供給されてもよい
。このような観点から、ラジカル重合開始剤の存在下に
連続塊状重合して得られる90〜200℃の温度条件下
にあるメチルメタクリレート系シロップは、そのまま未
調整シロップとして該混合区域に連続的に供給すること
ができ極めて好適である。混合シロップの蒸気圧は大気
圧よりも低いが、該シロップがフラッシュ蒸発区域にお
いて効率的にフラッシュ蒸発されるよう該区域へ入る直
前までの間、該シロップが液相状態を保持するに十分な
圧力を加える必要がありこの圧力は通常1〜20気圧、
好ましくは4〜10気圧である。
The temperature of the mixed syrup obtained in the mixing zone is adjusted to 1-20°C, preferably 2-15°C higher than the temperature of the prepared syrup. Therefore, the temperature of the mixed syrup is usually 1~
70°C, preferably within the range of 12-55°C. If the temperature difference is smaller than the above-mentioned axis, the amount of volatilization in the flash evaporation zone will be too small, and conversely, if the temperature difference is greater than this range, the amount of volatilization will be excessive, which is not preferable for the reasons described later. In order to achieve the temperature difference conditions, the temperature of the conditioned syrup and the mixing ratio to the mixed syrup are adjusted, but if necessary, external heating may be applied in the mixing zone, and the unconditioned syrup is preheated. may be fed to the mixing zone. From this point of view, the methyl methacrylate syrup obtained by continuous bulk polymerization in the presence of a radical polymerization initiator at a temperature of 90 to 200°C is continuously supplied to the mixing zone as unadjusted syrup. This is extremely suitable. The vapor pressure of the mixed syrup is less than atmospheric pressure, but sufficient to maintain the syrup in a liquid phase immediately before entering the flash evaporation zone so that the syrup is efficiently flash evaporated in the zone. It is necessary to apply this pressure, which is usually 1 to 20 atmospheres,
Preferably it is 4 to 10 atmospheres.

フラッシュ蒸発は圧力1〜200 Torr、好しくは
5〜l Q Q Torrの圧力条件下に維持されたフ
ラッシュ蒸発区域で前述の1〜70℃の温度1〜20気
圧の圧力下の混合シロップを放出することによって行わ
れる。
Flash evaporation involves discharging the mixed syrup under a pressure of 1 to 20 atm at a temperature of 1 to 70 °C as described above in a flash evaporation zone maintained under pressure conditions of 1 to 200 Torr, preferably 5 to 1 Q Q Torr. It is done by doing.

ここでは瞬間的に混合シロップから揮発成分の一部が蒸
発し、これによって混合シロップに混入および溶存の気
体の除去、シロップの冷却、シロップの濃縮を行う。
Here, a portion of the volatile components from the mixed syrup instantaneously evaporates, thereby removing gases mixed and dissolved in the mixed syrup, cooling the syrup, and concentrating the syrup.

混合シロップ量に対してフラッシュ蒸発する揮発成分の
割合を揮発率とすると、この揮発率は通常0.5〜20
重量%好しくは1〜10重量%が適している。
If the ratio of volatile components that flash evaporates to the amount of mixed syrup is defined as the volatility rate, this volatility rate is usually 0.5 to 20.
% by weight, preferably 1 to 10% by weight is suitable.

揮発率が低過ぎるとシロップに混入、溶存ノ気体の除去
、シロップの冷却、シロップの濃縮が十分に行われず、
又、揮発率が高過ぎると、シロップが必要以上に濃縮さ
れ、シロップの粘度が飛躍的に増大し、正常な流動状態
を阻害して好しくなく、−上記に示す揮発率域の圧力条
件によって行われる。混合シロップの温度が高い程、フ
ラッシュ蒸発区域の圧力が低い程揮発率は高くなる。
If the volatility rate is too low, removal of dissolved gases mixed into the syrup, cooling of the syrup, and concentration of the syrup will not be performed sufficiently.
Also, if the volatility is too high, the syrup will be concentrated more than necessary, the viscosity of the syrup will increase dramatically, and the normal flow state will be inhibited, which is undesirable. It will be done. The higher the temperature of the mixed syrup and the lower the pressure in the flash evaporation zone, the higher the volatilization rate.

シロップの冷却の度合は揮発率に依存する。The degree of cooling of the syrup depends on the rate of volatility.

揮発成分は冷却凝縮し、この凝縮液の1部分又は大部分
をシロップへ還流させる。
The volatile components are cooled and condensed, and part or most of this condensate is refluxed to syrup.

この還流量を調節することによってもシロップの濃縮度
合を調整できる。すなわち希薄な濃度のシロップを濃縮
する場合には揮発率を高目に取り還流量を少くすればよ
い。
The degree of concentration of the syrup can also be adjusted by adjusting the amount of reflux. That is, when concentrating a syrup with a dilute concentration, it is sufficient to increase the volatility rate and reduce the reflux amount.

なお、過度に濃縮されたシロップは、凝縮した揮発成分
を還流して戻しても容易に混ざり合わないので先に示し
た揮発率の1限を越えないことが望ましい。
Note that excessively concentrated syrup does not mix easily even if the condensed volatile components are refluxed back, so it is desirable that the volatility rate does not exceed the first limit shown above.

本発明に適したフラッシュ蒸発区域の主たる装置の構成
要件として具体的には塔状容器、還流冷却器およびシロ
ップ注入ノズルが挙げられる。還流冷却器は塔状容器の
上部に設置され、注入ノズル5は、塔状容器内上部に開
口している。塔状容器内で蒸発した揮発成分は該還流冷
却器で冷却凝縮されて塔頂部に還流され、注入ノズルお
よび/または塔壁面が潅流される様還流路を設置する。
The primary equipment components of a flash evaporation zone suitable for the present invention specifically include a tower vessel, a reflux condenser, and a syrup injection nozzle. The reflux condenser is installed in the upper part of the tower-shaped container, and the injection nozzle 5 is opened at the upper part of the tower-shaped container. The volatile components evaporated in the tower-like container are cooled and condensed in the reflux condenser and refluxed to the top of the tower, and a reflux path is installed so that the injection nozzle and/or the wall of the tower are perfused.

これにより注入ノズル先端から放出され、揮発成分液体
で湿潤したノズル背面や塔壁面に到達する飛沫や発泡は
絶えず流下する還流液で容易に洗浄され、あるいは再溶
解されて除去されるから、付着乾燥してスキンを形成し
て閉塞の原因となったり、スキンが落下して製品中の異
物となることが防止される。注入ノズル先端から放出さ
れた混合シロップは爆発的に膨張し、通常は瞬間的に破
泡あるいは溶存気体の除去が行われるから、必ずしも薄
層を形成して流下する必要はないが、直接塔底まで落下
するとその衝撃により新たな気泡を生成する不都合が生
じる恐れがあるので、これを防止し、史には再溶解を完
全にする上からも、塔内壁面に直接吹付けるか、または
挿入物を設けこれに衝突させてそれらの表面とを流下さ
せるのが好ましい。このような挿入物としては例えば平
板、または中央より周辺に向って下方に傾斜を有する板
が適し、これらは塔状容器内り部の注入ノズルより下方
に設置され、放出されたシロップは該板上で、好ましく
は薄層として流動させられ、塔壁面を被覆して流下する
間に還流液の溶解が完結させられて調整済みシロップと
して塔状容器底部の液留に合流される。この塔状容器底
部における滞留量には特に制限はなく、後続する処理工
程での使用量とのバランスを調節するバッファータンク
の役目を持たせてもよい。
As a result, droplets and foam emitted from the tip of the injection nozzle and reaching the back of the nozzle and tower wall surface moistened with volatile component liquid are easily washed away by the constantly flowing reflux liquid, or are redissolved and removed, allowing them to dry out. This prevents the skin from forming and causing a blockage, or from falling off and becoming a foreign object in the product. The mixed syrup discharged from the tip of the injection nozzle expands explosively, and bubbles are usually burst or dissolved gases are removed instantaneously, so it does not necessarily have to form a thin layer and flow down, but it flows directly to the bottom of the tower. In order to prevent this, and to ensure complete re-melting, spray directly onto the inner wall of the tower or remove the inserted material. It is preferable to provide a surface and allow the liquid to collide with the surface and flow down. Suitable such inserts are, for example, flat plates or plates with a downward slope from the center towards the periphery, which are placed below the injection nozzle inside the tower-like container and the discharged syrup is directed to the plate. At the top, it is preferably allowed to flow in a thin layer, coating the column wall and flowing down, during which time the dissolution of the reflux liquid is completed and it joins the liquid distillate at the bottom of the column as a prepared syrup. There is no particular limit to the amount of retention at the bottom of this tower-like container, and it may serve as a buffer tank to adjust the balance with the amount used in subsequent treatment steps.

本発明の方法においては、未開整シロップが通常この種
のシロップが使用される粘度範囲である0、5〜500
ボイズの内面粘度側の場合においても、混入溶存気体の
除去は完全であり、蒸発塔壁面で膜切れが生じても脱気
効率が低下したり、スキンを形成する欠点がない。更に
、未調整シロップが高温の場合においても、重合体の付
着閉塞やシロップの変質を起すことなく冷却することが
でき、かつ、上記の脱気についてもかえって好都合であ
ることが見い出された。
In the process of the invention, the crude syrup has a viscosity of 0.5 to 500, which is the viscosity range in which syrups of this type are normally used.
Even in the case of the internal viscosity side of the void, the removal of mixed dissolved gas is complete, and even if film breakage occurs on the wall surface of the evaporation tower, there is no deterioration in deaeration efficiency or the formation of skins. Furthermore, it has been found that even when the unadjusted syrup is at a high temperature, it can be cooled without causing polymer adhesion and clogging or deterioration of the syrup, and the above-mentioned degassing is even more convenient.

すなわち、本発明の方法によれば、シロップを後続する
処理工程に適するよう調整するに当り、重合体の付着閉
塞やスキン形成などによるシロップの変質を起すことな
く長時間安定して脱気および/または冷却して均質な調
整シロップが得られる簡便で効率的な連続調整方法か提
供される。
That is, according to the method of the present invention, when preparing syrup to be suitable for subsequent processing steps, degassing and/or degassing can be carried out stably for a long period of time without causing deterioration of the syrup due to polymer adhesion clogging or skin formation. Alternatively, a simple and efficient continuous preparation method is provided in which a homogeneous prepared syrup can be obtained by cooling.

本発明の方法により調整されたシロップは通常重合開始
剤を添加溶解して重合性液状組成物となし、セルキャス
ト法、連続キャスト法による1樹脂板の製造や、ガラス
繊維強化樹脂板の製造に供されるが、好ましくは連続キ
ャスト法あるいは連続式のガラス繊維強化樹脂板の製造
に供され、特に少ない品種を一定の品質で大量生産する
場合に重合開始剤などの添加剤を連続混合する方法と併
用して効果的である。最も好ましい適用例は連続シロッ
プ製造工程と連続キャスト製板工程との間に介在するシ
ロップ調整工程であるが、脱気を必要としない用途に供
してもよく、例えばゴム変性シロップに重合開始剤を添
加溶解して重合性液状組成物となし、該組成物を懸濁安
定剤の存在下に水性媒体中に攪拌下に分散させ加熱して
重合固化せしめて耐衝撃性の成形材料を製造する懸濁重
合法にも供される。
The syrup prepared by the method of the present invention is usually made into a polymerizable liquid composition by adding and dissolving a polymerization initiator, and is suitable for manufacturing one resin board by cell casting method or continuous casting method, or manufacturing glass fiber reinforced resin board. However, it is preferably used for continuous casting or continuous production of glass fiber reinforced resin plates, and is a method in which additives such as polymerization initiators are continuously mixed, especially when mass producing a small number of products with constant quality. It is effective when used in combination with The most preferred example of application is the syrup preparation process interposed between the continuous syrup manufacturing process and the continuous cast board manufacturing process, but it may also be used for applications that do not require degassing, such as adding a polymerization initiator to rubber-modified syrup. A suspension for producing an impact-resistant molding material by adding and dissolving the composition to form a polymerizable liquid composition, dispersing the composition in an aqueous medium under stirring in the presence of a suspension stabilizer, and polymerizing and solidifying it by heating. It can also be used in the turbidity polymerization method.

つぎに本発明を実施例によりて具体的に説明するか、本
発明はこれらによって限定されるものではない。なお、
実施例中の%は重量%であり、部は重f社部である。ま
た実施例中1008  を用いて測定した。
EXAMPLES Next, the present invention will be specifically explained with reference to examples, but the present invention is not limited by these examples. In addition,
In the examples, % is weight %, and parts are weights. In addition, measurements were made using 1008 in the examples.

実施例1 前段にダブルヘリカルリボンi<を設置した攪拌槽型反
応器、後段に管型反応器を配列してなる二段式連続反応
装置の出口側にダブルヘリカルリボン纏を設置した撹拌
槽型の混合冷却器を直結し、該混合冷却器と、上部に還
流冷却器を設置したフラッシュ蒸発塔上部との間を塔内
に開口を有する注入ノズルとその玉流側に背圧弁を設置
した管路で連結し、かつ、該蒸発塔底部と前記混合冷却
器との間をギヤポンプを介して循環路で連結してなる連
続式装置を使用した。
Example 1 A two-stage continuous reaction device consisting of a stirred tank type reactor with a double helical ribbon i< installed in the first stage and a tubular reactor arranged in the second stage, a stirred tank type with a double helical ribbon wrapper installed on the outlet side. The mixing cooler is directly connected to the upper part of the flash evaporation tower, which is equipped with a reflux cooler at the upper part, and the injection nozzle has an opening in the tower and a pipe with a back pressure valve installed on the downstream side of the injection nozzle. A continuous system was used in which the bottom of the evaporation tower and the mixing cooler were connected by a circulation path via a gear pump.

種型反応器の容積は0.56で、攪拌速度はs o o
 rprnであり、管型反応器は内径13餌、長さ80
婦で、外部に熱媒を循環するフルジャケットの二重管型
のものを用い、混合冷却器の胴部に開口させた。混合冷
却器の容積は0.2eで、攪拌速度は500rpmであ
った。また、還流冷却器の伝熱面積は0.2扉であり、
フラッシュ蒸発塔の塔径は上部が21011.下部が1
60Hで、画部分の境界付近に径18Offの平板が設
置され、該平板の中央上方約100ffに出口径25闘
の注入ノズルを開口させた。メチルメタクリレート単量
体100部とアゾビスイソブチロニトリル0.047部
とを種型反応器に連続的に供給し、反応温度160℃、
圧力6気圧、平均滞留時間147秒で重合を行ない、次
いでジャケットが220℃の熱媒油で加熱された管型反
応器を通過させて残留開始剤を実質的に消滅させられた
175℃の熱シロップは11.6Kg/時の速度で混合
冷却器に連続的に供給され、一方、予めフラッシュ蒸発
塔状容器で除熱された30℃の調整済みシロップが16
0 Kq/時の速度で供給されて、両者は該混合冷却器
で攪拌混合されて40℃まで急冷された。調整済みシロ
ップの熱シロップに対する混合比は重量で約14倍であ
り、混合冷却器内の圧力は背圧弁により6気圧に維持し
た。次に混合シロップは内部が59 Torrの圧力条
件下にあるフラッシュ蒸発塔内に注入ノズルを通じて連
続的に放出して脱気と同時に冷却を行ない、蒸発した揮
発成分は還流冷却器で凝縮還流して注入ノズル、挿入平
板および塔内壁面が潅流された。フラッシュ蒸発時の揮
発酸物の揮発率は混合シロップ量に対して約4%の低値
であり、還流液は塔状容器内流下中に容易にシロップに
再溶解され均一な調整シロップが得られた。該調整シ・
ツブは塔底よりギアポンプで抜き出され、一部が後続工
程での使用に供され残部は前記混合冷却器に供給された
。調整済みシロップの重合転化率は25,4%、25℃
における粘度は13.5ポイズ、シロップ中の重合体の
数平均重合度は740、溶存酸素濃度はo ppmであ
り、着色やスキンなどの異物も全く認められなかった。
The volume of the seed reactor is 0.56, and the stirring speed is so
rprn, the tubular reactor has an inner diameter of 13 mm and a length of 80 mm.
A full-jacket, double-tube type device was used to circulate the heat medium to the outside, and an opening was opened in the body of the mixing cooler. The volume of the mixing cooler was 0.2e, and the stirring speed was 500 rpm. In addition, the heat transfer area of the reflux condenser is 0.2 doors,
The diameter of the flash evaporation column is 21011 mm at the top. The bottom is 1
At 60H, a flat plate with a diameter of 18 Off was installed near the boundary of the image area, and an injection nozzle with an outlet diameter of 25 Off was opened approximately 100 Off above the center of the flat plate. 100 parts of methyl methacrylate monomer and 0.047 parts of azobisisobutyronitrile were continuously supplied to a seed reactor, and the reaction temperature was 160°C.
Polymerization was carried out at a pressure of 6 atm and an average residence time of 147 seconds, followed by passage through a tubular reactor whose jacket was heated with heat transfer oil at 220°C to a temperature of 175°C to substantially annihilate residual initiator. Syrup is continuously fed into the mixing cooler at a rate of 11.6 Kg/hour, while 16 kg/hr of conditioned syrup at 30°C, which has previously been heat removed in a flash evaporation tower vessel, is
They were supplied at a rate of 0 Kq/hour, and both were stirred and mixed in the mixing cooler and rapidly cooled to 40°C. The mixing ratio of conditioned syrup to hot syrup was approximately 14 times by weight, and the pressure in the mixing cooler was maintained at 6 atmospheres by a back pressure valve. Next, the mixed syrup is continuously discharged through an injection nozzle into a flash evaporation column whose interior is under a pressure condition of 59 Torr, where it is simultaneously degassed and cooled.The evaporated volatile components are condensed and refluxed in a reflux condenser. The injection nozzle, insertion plate and inner column wall were perfused. The volatilization rate of volatile acids during flash evaporation is a low value of about 4% relative to the amount of mixed syrup, and the reflux liquid is easily redissolved into syrup while flowing down in the tower-like container, making it possible to obtain a uniform adjusted syrup. Ta. The adjustment
The whelks were extracted from the bottom of the tower using a gear pump, a portion of which was used in the subsequent process, and the remainder of which was supplied to the mixing cooler. Polymerization conversion rate of adjusted syrup is 25.4%, 25℃
The viscosity of the syrup was 13.5 poise, the number average degree of polymerization of the polymer in the syrup was 740, the dissolved oxygen concentration was 0 ppm, and no foreign matter such as coloring or skin was observed.

上記のシロップ製造および調整条件で700時間連続運
転を行なったが、この間重合転化率、粘度などを実質的
に一定に維持することができた。また、連続運転を停止
した後、反応器、混合冷却器およびフラッシュ蒸発塔を
開放点検したところ、いずれの器内にも重合体の付着は
全く認められなかった。
Continuous operation was carried out for 700 hours under the above syrup production and adjustment conditions, during which time the polymerization conversion rate, viscosity, etc. could be maintained substantially constant. Further, after stopping the continuous operation, the reactor, mixing cooler, and flash evaporation tower were opened and inspected, and no polymer was observed inside any of them.

この調整済みシロップに重合開始剤としてアゾビスジメ
チルバレロニトリルを等量のジブチルフタレートに分散
させたペースト状物0.1%を連続的に溶解して重合性
液状組成物となし、ベルト間隙を8Hに設定した公知の
連続重合装置に注入して、85℃で24分間、次いで1
20℃で8分間加熱して重合を完結させて樹脂板を製造
した。
In this prepared syrup, 0.1% of a paste made by dispersing azobisdimethylvaleronitrile in an equal amount of dibutyl phthalate as a polymerization initiator was continuously dissolved to obtain a polymerizable liquid composition, and the belt gap was adjusted to 8H. It was injected into a known continuous polymerization apparatus set at 85°C for 24 minutes, then 1
Polymerization was completed by heating at 20° C. for 8 minutes to produce a resin plate.

この製品は無色透明で気泡は全く観察されず良好な外観
を有していた。
This product was colorless and transparent with no bubbles observed and had a good appearance.

比較例1 調整済みシロップの供給を停止し、その結果熱シロップ
が直接フラッシュ蒸発に供されたほかは実施例1と同一
装置および操作条件で運転した。揮発成分の揮発率が5
0%以上となり、揮発成分分離後のシロップの粘度もt
、oooボイズ以1となるため、フラッシュ蒸発が瞬間
的に完結せず発泡が継続し、またシロップが自重により
流下し難いため塔頂部に滞留して運転を継続することが
できなかった。
Comparative Example 1 The same equipment and operating conditions as Example 1 were operated, except that the feed of the prepared syrup was stopped, so that the hot syrup was subjected to direct flash evaporation. The volatility rate of volatile components is 5
0% or more, and the viscosity of the syrup after volatile component separation is also t.
, ooo voids or more, the flash evaporation was not completed instantaneously and foaming continued, and the syrup remained at the top of the column, making it difficult to flow down due to its own weight, making it impossible to continue operation.

実施例2 実施例1の装置を使用した。ポリブタジェオゴム(旭化
成工業契ジエン■NF−a5A)5%、メチルメタクリ
レート79%、およびスチレン16%からなる原料液9
0部と、ベンゾイルパーオキサイド0.1部をメチルメ
タクリレート1o部に溶解してなる開始剤溶液とを種型
反応器の供給液とし、該反応器における平均滞留時間を
160秒としたほかは実施例1と同一条件で重合を行な
い、次いで、管型反応器から混合冷却器への供給速度が
lO,7Kg/時となるのに対応して循環供給速度を1
50Kp/時としたほかは実施例1と同一条件でフラッ
シュ蒸発を行なって30℃の調整済みシロップを得た。
Example 2 The apparatus of Example 1 was used. Raw material solution 9 consisting of 5% polybutadiene rubber (Asahi Kasei Co., Ltd. diene NF-a5A), 79% methyl methacrylate, and 16% styrene.
0 part of benzoyl peroxide and an initiator solution prepared by dissolving 0.1 part of benzoyl peroxide in 10 parts of methyl methacrylate were used as feed liquids for the seed reactor, and the average residence time in the reactor was 160 seconds. Polymerization was carried out under the same conditions as in Example 1, and then the circulating feed rate was increased to 1 O, 7 kg/h from the tubular reactor to the mixing cooler.
Flash evaporation was carried out under the same conditions as in Example 1 except that the temperature was 50 Kp/hour to obtain a prepared syrup at 30°C.

シツップ中における単量体の重合転化率は26.5%、
25℃における粘度は24.1ポイズ、分散ゴム粒子の
平均粒径は0.5μであった。上記の条件で850時間
連続運転を行なったが、この間重合転化率、粘度および
ゴム粒子径は実質的に一定であった。
The polymerization conversion rate of monomers in the ship was 26.5%,
The viscosity at 25° C. was 24.1 poise, and the average particle size of the dispersed rubber particles was 0.5 μm. Continuous operation was carried out for 850 hours under the above conditions, during which time the polymerization conversion rate, viscosity and rubber particle size remained substantially constant.

また、連続運転を停止した後、装置を開放点検したとこ
ろ、いずれの箇所にも重合体の付着は全く認められなか
った。この調整済みシロップ100部にメチルアクリレ
ート8部、ラウロイルパーオキサイド0.8部、ラウリ
ルメルカプタン0.8部を溶解して重合性液状組成物と
なし、水150部に懸濁安定剤として部分けん化ポリビ
ニルアルコ■ 一ル(日本合成化学製コーセノール GM−14,) 
0.1部を溶解してなる水性媒体と共に攪拌機付き種型
反応器に仕込み、攪拌して分散させた後、窒素雰囲気下
で内温90℃になるよう加熱して2時間攪拌重合させ、
史に内温110℃で30分間熱処理して重合を完結させ
てビーズ状重合体を得た。この重合体を270℃で射出
成形して得た厚さ3間の成形品のASTM 1,1−6
72 に準拠して測定した全光線透過率は92%で、拡
散率は1.8%であり、A、STM D−548に準拠
して測定した熱変形温度は102℃、ASMD−256
に準世して測定したアイゾツト衝撃値(ノツチ付)は6
.5にクーC1n / crnであって極めて高品質で
あった。
Furthermore, when the apparatus was opened and inspected after continuous operation was stopped, no polymer was found to be attached to any part. A polymerizable liquid composition was prepared by dissolving 8 parts of methyl acrylate, 0.8 parts of lauroyl peroxide, and 0.8 parts of lauryl mercaptan in 100 parts of this prepared syrup, and partially saponified polyvinyl as a suspension stabilizer in 150 parts of water. Alco ■ Ichiru (Nippon Gohsei Cosenol GM-14,)
The mixture was charged into a seed reactor equipped with a stirrer together with an aqueous medium in which 0.1 part was dissolved, and after stirring and dispersion, the mixture was heated under a nitrogen atmosphere to an internal temperature of 90°C and polymerized with stirring for 2 hours.
The polymerization was completed by heat treatment at an internal temperature of 110° C. for 30 minutes to obtain a bead-like polymer. The ASTM 1,1-6 molded product obtained by injection molding this polymer at 270°C and having a thickness of 3 to 3
The total light transmittance measured in accordance with A.72 was 92%, the diffusivity was 1.8%, the heat distortion temperature was 102°C measured in accordance with A, STM D-548, and ASMD-256.
The Izot impact value (with notch) measured in accordance with
.. 5 and C1n/crn and was of extremely high quality.

比較例2 実施例1の二段式連続反応装置の出口側に、蛇管式冷却
器を配列してなる連続装置を使用した。蛇管の内径は1
3m、長さは8mで、水冷用ジャケットを備え、出口側
は背圧弁を介して受器に接続されていた。
Comparative Example 2 A continuous device in which a corrugated pipe cooler was arranged on the outlet side of the two-stage continuous reaction device of Example 1 was used. The inner diameter of the snake pipe is 1
It was 3 m long and 8 m long, equipped with a water cooling jacket, and the outlet side was connected to the receiver via a back pressure valve.

実施例2と同一の反応条件で重合を行ない、次いでジャ
ケットが20℃の冷水で冷却され内部が6気圧に維持さ
れた蛇管式冷却器を通過させて50℃の冷シロップとし
て系外に取り出しtこ。シロップ中における単量体の重
合転化率は27.3%、25℃における粘度は34.8
ポイズ、分散ゴム粒子の平均粒径は0.8μであり、冷
却過程における重合反応と進行とゴム粒子の凝縮による
肥大化が観測された。連続運転開始後15時1141且
頃よりシロップの出口温度が上昇しはじめると共に、系
内の圧力損失の増大が観測されたので20時間で運転を
停止し、反応器および冷却器を開放点検したところ、冷
却器の入口制約8)層わたる重合体の閉塞が認められた
。閉塞物はクロロホルムに大部分不溶な高分子量のもの
であった。
Polymerization was carried out under the same reaction conditions as in Example 2, and then the mixture was passed through a corrugated tube cooler whose jacket was cooled with cold water at 20°C and whose interior was maintained at 6 atm, and taken out of the system as a cold syrup at 50°C. child. The polymerization conversion rate of monomers in the syrup is 27.3%, and the viscosity at 25°C is 34.8.
The average particle diameter of the poise and dispersed rubber particles was 0.8 μm, and enlargement due to polymerization reaction and progress during the cooling process and condensation of the rubber particles was observed. From around 3:11:41pm after the start of continuous operation, the temperature at the syrup outlet began to rise and an increase in pressure loss in the system was observed, so the operation was stopped after 20 hours and the reactor and cooler were opened and inspected. , condenser inlet restriction 8) Blockage of polymer across layers was observed. The occlusions were of high molecular weight and largely insoluble in chloroform.

実施例3 実施例1の二段式連続反応装置の代りにシロップ誠合槽
からの供給配管を混合器に接続してなる装置を使用した
。メチルメタクリレート単量体77.5部にメタクリル
樹脂(住友化学工業製 スミペックスO−BMW)20
部とトリメチロールプロパントリアクリレート2.5部
とを溶解してなる温度が30℃であり、25℃における
粘度が1.9ポイズであるシロップは9に7部時の速度
で混合器に連続的に供給され、一方、予めフラッシュ蒸
発された調整済みシロップが40Kf/時の速度で供給
され、更に後続工程の重合開始剤であるインプロピルク
ミルパーオキシネオデカノエート0.26部をメチルメ
タクリレート単量体10部に溶解してなる開始剤溶液が
IKg/時の速度で連続的に供給されて、これらは該混
合器で攪拌混合され15℃、5気圧に調節された。
Example 3 Instead of the two-stage continuous reaction apparatus of Example 1, an apparatus was used in which the supply piping from the syrup consolidation tank was connected to a mixer. 77.5 parts of methyl methacrylate monomer and 20 parts of methacrylic resin (SumiPex O-BMW, manufactured by Sumitomo Chemical Industries)
A syrup obtained by dissolving 1 part and 2.5 parts of trimethylolpropane triacrylate at a temperature of 30°C and a viscosity of 1.9 poise at 25°C was continuously added to a mixer at a rate of 9 to 7 parts. Meanwhile, pre-flash evaporated prepared syrup was fed at a rate of 40 Kf/hr, and 0.26 part of inpropyl cumyl peroxy neodecanoate, which is a polymerization initiator for the subsequent step, was added to methyl methacrylate monomer. An initiator solution dissolved in 10 parts of polymer was continuously fed at a rate of I kg/hour, and these were stirred and mixed in the mixer, and the temperature was adjusted to 15° C. and 5 atm.

混合器におけるシロップの循環比は重量で4倍であった
。次に混合シロップは内部が20 TOOrの圧力条件
下にあるほかは実施例1と同一条件下にあるフラッシュ
蒸発塔を通過させて調整済みシロップを得た。このシロ
ップの温度は12℃であり、溶存酸素濃度はo ppm
であった。このシロップをガラス繊維(日本硝子繊維社
製CR−218−LA−75)が最終樹脂板に25%含
まれるように均一に充填した平型用重合型内に注入して
該ガラス繊維に含浸させ、次いでこの重合型を85℃の
加熱浴に浸漬して0、7 mの厚みの樹脂板は短時間の
重合にも拘らず重合発泡は見られなかった。
The circulation ratio of syrup in the mixer was 4 times by weight. The mixed syrup was then passed through a flash evaporation column under the same conditions as in Example 1 except that the interior was under a pressure condition of 20 TOOr to obtain a prepared syrup. The temperature of this syrup is 12°C, and the dissolved oxygen concentration is o ppm
Met. This syrup is injected into a flat polymerization mold uniformly filled with glass fibers (CR-218-LA-75 manufactured by Nippon Glass Fiber Co., Ltd.) so that the final resin plate contains 25% to impregnate the glass fibers. Then, this polymerized mold was immersed in a heating bath at 85°C, and no polymeric foaming was observed in the resin plate with a thickness of 0.7 m despite the short polymerization time.

実施例 還流液の一部が系外に排出されるよう変更したほかは実
施例1と同一装置を使用し、同一条件で運転した。系外
に排出される還流液の量は2. OKt /時であり、
フラッシュ蒸発塔において蒸発凝縮される揮発成分量の
約30%に相当した。濃縮冷却されて塔底より排出され
る調整済みシロップの重合体含有率は30.7%、25
℃における粘度は68.6ポイズであった。また塔壁面
でのスキン形成は認められなかった。
Example The same apparatus as in Example 1 was used, except that a portion of the reflux liquid was discharged outside the system, and the apparatus was operated under the same conditions. The amount of reflux liquid discharged outside the system is 2. OKt / time,
This corresponded to about 30% of the amount of volatile components vaporized and condensed in the flash evaporation tower. The polymer content of the adjusted syrup that is concentrated and cooled and discharged from the bottom of the tower is 30.7%, 25
The viscosity at °C was 68.6 poise. Furthermore, no skin formation was observed on the tower wall.

Claims (4)

【特許請求の範囲】[Claims] (1)粘性重合体溶液(以下シロップと称する)を後続
する処理工程に適する様に調整するに当り未調整シロッ
プと調整済みシロップをi:l〜200の重量比で圧力
1〜20気圧のもとで液相状態を維持して連続的に混合
して、温度1〜70℃の混合シロップとなし、該混合シ
ロップを圧力1〜2 Q Q Torrの条件下で連続
してフラッシュ蒸発させ、脱気、冷却、要すれば濃縮を
して温度θ〜50℃の調整済続する処理工程に供するこ
とを特徴とするシロップの連続調整方法。
(1) When preparing a viscous polymer solution (hereinafter referred to as syrup) to be suitable for subsequent processing steps, unadjusted syrup and adjusted syrup are mixed at a weight ratio of i:l to 200 at a pressure of 1 to 20 atm. The mixture is continuously mixed while maintaining the liquid phase state to form a mixed syrup at a temperature of 1 to 70°C, and the mixed syrup is continuously flash evaporated under a pressure of 1 to 2 Q Torr to desorb. A method for continuously preparing syrup, which comprises airing, cooling, concentrating if necessary, and subjecting the syrup to a controlled temperature of θ to 50° C., followed by subsequent treatment steps.
(2)  シロップかメチルメタクリレートを主成分と
する単量体100〜80重量%とゴム状重合体θ〜20
重量%からなる原料液(但し、両者は合計100重世%
とす・る)を部分的に重合してなるメチルメタクリレー
ト系シロップである特許請求の範囲第(1)項に記載の
方法。
(2) 100 to 80% by weight of a monomer mainly composed of syrup or methyl methacrylate and a rubbery polymer θ to 20% by weight
Raw material liquid consisting of % by weight (however, both are 100% by weight in total)
The method according to claim (1), wherein the syrup is a methyl methacrylate syrup obtained by partially polymerizing .
(3)  シロップの重合体含有率が5〜40重量%で
あり、かつ、25℃における粘度が0.5〜500ポイ
ズである特許請求の範囲第(1)項に記載の方法。
(3) The method according to claim (1), wherein the syrup has a polymer content of 5 to 40% by weight and a viscosity of 0.5 to 500 poise at 25°C.
(4)未調整シロップがメチルメタクリレートを主成分
とする単量体100〜80重量%とゴム状重合体0〜2
0重量%からなる原料液をラジカル重合開始剤の存在下
に連続的に重合して得られる90〜2.00℃の温度条
件下にあるメチルメタクリレ−1・系シロップである特
許請求の範囲第(1)項1に記載の方法。
(4) The unadjusted syrup contains 100 to 80% by weight of a monomer mainly composed of methyl methacrylate and 0 to 2% by weight of a rubbery polymer.
The claim is a methyl methacrylate-1 syrup obtained by continuously polymerizing a raw material liquid containing 0% by weight in the presence of a radical polymerization initiator at a temperature of 90 to 2.00°C. The method according to paragraph (1) 1.
JP8715483A 1983-05-17 1983-05-17 Continuous conditioning of syrup Granted JPS59213711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8715483A JPS59213711A (en) 1983-05-17 1983-05-17 Continuous conditioning of syrup

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8715483A JPS59213711A (en) 1983-05-17 1983-05-17 Continuous conditioning of syrup

Publications (2)

Publication Number Publication Date
JPS59213711A true JPS59213711A (en) 1984-12-03
JPH0119682B2 JPH0119682B2 (en) 1989-04-12

Family

ID=13907062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8715483A Granted JPS59213711A (en) 1983-05-17 1983-05-17 Continuous conditioning of syrup

Country Status (1)

Country Link
JP (1) JPS59213711A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4937302A (en) * 1988-02-05 1990-06-26 Rohm Gmbh Method for separating methanol-methyl methacrylate mixtures
US6869501B2 (en) 2001-12-20 2005-03-22 3M Innovative Properties Company Continuous process for controlled concentration of colloidal solutions

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4937302A (en) * 1988-02-05 1990-06-26 Rohm Gmbh Method for separating methanol-methyl methacrylate mixtures
US6869501B2 (en) 2001-12-20 2005-03-22 3M Innovative Properties Company Continuous process for controlled concentration of colloidal solutions

Also Published As

Publication number Publication date
JPH0119682B2 (en) 1989-04-12

Similar Documents

Publication Publication Date Title
US5804676A (en) Process for preparing polymer
US2694700A (en) Process of suspension polymerization
JPS61228012A (en) Continuous treatment of polymerization reaction liquid mixture
KR20010034690A (en) Method for removing volatile matter from polymer solution composition
JPS59166506A (en) Method for continuous removal of volatile component from polymer liquid composition
US4417030A (en) Mass polymerization process for ABS polyblends
WO1998029460A1 (en) Methods and apparatus for removing residual monomers
JPS59213711A (en) Continuous conditioning of syrup
US5708133A (en) Process for purifying polymer
US4743664A (en) Process for producing α,β-unsaturated carboxylic acid polymer
US20040102593A1 (en) Copolymers, devoid of rubber,with low residual monomer content and a method and device for producing the same
US2815334A (en) Catalyst injection in low temperature polymerizations
US4182854A (en) Process for removing volatile matter from styrene resin
JPH08325321A (en) Recovery of unreacted monomer from polymer latex
JP2003096105A (en) Process for manufacturing methacrylic polymer
CN111918884B (en) Residual monomer removing device
JP2002161109A (en) Method for removing organic solvent and manufacturing pellet from solution of isobutylene-based block copolymer
JP3570624B2 (en) Method for producing styrene / acrylic water-soluble resin by continuous bulk polymerization
JP3506323B2 (en) Method for producing copolymer
JP3582911B2 (en) Continuous polymerization method
WO1990010653A1 (en) Method or removing volatile substances and apparatus therefor
EP0051945B1 (en) Improved suspension process for the polymerization of vinyl chloride monomer
JPS5918707A (en) Manufacture of polymer deprived of volatile matter
JPS606364B2 (en) Improved manufacturing method of ABS resin
JPS5917126B2 (en) Process for producing improved impact-resistant styrenic polymers