JPS59213567A - Flow controller for power steering system - Google Patents

Flow controller for power steering system

Info

Publication number
JPS59213567A
JPS59213567A JP58088244A JP8824483A JPS59213567A JP S59213567 A JPS59213567 A JP S59213567A JP 58088244 A JP58088244 A JP 58088244A JP 8824483 A JP8824483 A JP 8824483A JP S59213567 A JPS59213567 A JP S59213567A
Authority
JP
Japan
Prior art keywords
orifice
control
power steering
spool
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58088244A
Other languages
Japanese (ja)
Inventor
Toshito Hiramatsu
俊人 平松
Satoshi Sudo
数藤 聰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Koki KK
Original Assignee
Toyoda Koki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Koki KK filed Critical Toyoda Koki KK
Priority to JP58088244A priority Critical patent/JPS59213567A/en
Publication of JPS59213567A publication Critical patent/JPS59213567A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/06Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Steering Mechanism (AREA)

Abstract

PURPOSE:In a flow controller where fluid is delivered from a pump through an orifice to a power steering system, to maintain the flow characteristic constant by preparing two orifices and constructing one of them with shape memory alloy which will enlarge opening under low temperature. CONSTITUTION:A spool valve 22 is inserted slidably into a containing hole 11 made through the pump housing 10 and contacted through a spring 26 against a control spool 23 inserted into a hole in an union 21. The control spool 23 is energized by a spring 27 placed between an orifice forming member 24 fitted over the outer end section of union inner hole to contact against the step 21b at the inner end. In such a flow controller, the orifice forming member 24 is formed with first orifice 24a in the center while a plurality of second orifices 24b in the circumference. A doughnut-shaped control member 35 made of shape memory alloy is secured to the orifice 24b to control such that the opening will be enlarged under low temperature.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、ポンプより吐出された圧力流体をオリフィス
を介して動力舵取装置に送出し、余剰流をバイパス通路
より吸入側に還流する流量制御装置、とりわけポンプ回
転数の上昇につれて動力舵取装置に送出する流量を降下
させる動力舵取装置用流量制御装置に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention is directed to a flow rate system in which pressurized fluid discharged from a pump is sent to a power steering device through an orifice, and surplus flow is returned to the suction side through a bypass passage. The present invention relates to a control device, and particularly to a flow rate control device for a power steering device that reduces the flow rate sent to the power steering device as the pump rotation speed increases.

〈従来技術〉 従来、上記機能を有する流量制御装置として、ポンプ回
転数の上昇による吐出流量の増加に基づいて制御絞りの
前後に圧力差を発生させ、この圧力差によって制御スプ
ールを変位させて第1.第2オリフイスの一方の開口面
積を可変制御し、第1図Aに示すようにポンプ回転数N
が一定の回転数になると吐出流量Qを降下させるように
したものがある。
<Prior art> Conventionally, as a flow rate control device having the above function, a pressure difference is generated before and after the control throttle based on an increase in the discharge flow rate due to an increase in the pump rotation speed, and the control spool is displaced by this pressure difference to 1. The opening area of one side of the second orifice is variably controlled, and the pump rotation speed N is adjusted as shown in Fig. 1A.
There is one in which the discharge flow rate Q is lowered when the number of revolutions reaches a certain value.

しかしながらかかる従来装置によると、低温時圧力流体
の粘性が増大することによって制fall絞り前後の差
圧が大きくなり、その結果制御スプールが変位して第1
オリフイスを閉してしまい、第1図Bに示すように所要
の流量特性か得られなくなるという問題があった。
However, according to such conventional devices, the pressure difference before and after the control fall throttle increases due to the increase in the viscosity of the pressure fluid at low temperatures, and as a result, the control spool is displaced and the first
There was a problem in that the orifice was closed, making it impossible to obtain the required flow characteristics as shown in FIG. 1B.

〈発明の目的〉 本発明は従来のこのような問題を解決するためになされ
たものであり1.その目的とするところは低1111時
におLノる圧力流体の粘性変化にかかわらず、その流量
特性が変化しないようにすることである。
<Object of the Invention> The present invention has been made in order to solve these conventional problems.1. The purpose is to ensure that the flow rate characteristics do not change regardless of changes in the viscosity of the pressure fluid at low times.

〈発明の構成〉 本発明は上記目的を達成するためになされたもので、第
2オリフイスを低温時はその絞り開度を大きく常温ては
絞り開度を小さくする各形状を記憶した形状記1、a合
金によって構成したことを特徴とする動力舵取装置用流
量制御装置に関する。
<Structure of the Invention> The present invention has been made to achieve the above-mentioned object, and includes a shape memo 1 in which the shape of the second orifice is memorized so that the opening degree of the second orifice increases when the temperature is low and decreases the opening degree when the temperature is normal. , relates to a flow control device for a power steering device, characterized in that it is constructed of a-alloy.

〈実施例〉 以下本発明の実施例を図面に基づいて説明する。<Example> Embodiments of the present invention will be described below based on the drawings.

第2図において10はポンプハウジングで、このポンプ
ハウジングlOには、収納孔11がM通して設ジノられ
ていて、この収納孔11の一端にユニオン21が液密的
に螺着されており、また収納孔11の他端に止め栓25
が液密的に嵌着されている。
In FIG. 2, 10 is a pump housing, and a storage hole 11 is provided through the pump housing 10 through M, and a union 21 is screwed into one end of this storage hole 11 in a fluid-tight manner. Also, a stopper 25 is provided at the other end of the storage hole 11.
are fitted in a liquid-tight manner.

スプール弁22ば、収納孔11内のユニオン21と止め
栓25との間に摺動可能に嵌挿されていて、収納孔11
内に第1弁室32と第2弁室33を形成している。また
、スプール弁22は第2弁室33内に介装したスプリン
グ26により付勢されて後述する制御スプール23に弾
撥的に当接し、供給通路12とポンプハウジング10に
設けたバイパス通路13との連通を遮断している。なお
、バイパス通路13は流体ポンプの吸入室に連通されて
いる。
The spool valve 22 is slidably inserted between the union 21 and the stopper 25 in the storage hole 11.
A first valve chamber 32 and a second valve chamber 33 are formed inside. Further, the spool valve 22 is biased by a spring 26 interposed in the second valve chamber 33 and elastically abuts on a control spool 23 (described later), so that the spool valve 22 is connected to the supply passage 12 and the bypass passage 13 provided in the pump housing 10. communication is cut off. Note that the bypass passage 13 communicates with the suction chamber of the fluid pump.

制御スプール23は、ユニオン21の内孔内に摺動可能
に嵌挿されており、ユニオン21の内孔の外端側に嵌着
したオリフィス形成部材24との間に介装されたスプリ
ング27より付勢され”ζ、ユニオン21の内孔の内端
側段部21bに弾撥的に当接している。この制御スプー
ル23には、第2弁室32と制御スプール23および制
御スプール23間の空室34とを連通させる流通孔23
aが形成されており、この流通孔23aは後述するオリ
フィス形成部材24の各オリフィス24a。
The control spool 23 is slidably inserted into the inner hole of the union 21, and the control spool 23 is slidably inserted into the inner hole of the union 21. The control spool 23 is biased "ζ" and elastically abuts against the inner end step 21b of the inner hole of the union 21. A communication hole 23 that communicates with the vacant room 34
a is formed, and this communication hole 23a is each orifice 24a of an orifice forming member 24, which will be described later.

24bを通して、第1弁室32とユニオン21の送出口
21aとを連通させている。また、制御スプール23の
段部23b端面には、ユニオン21に設りた圧力導入孔
21Cが開口している。この圧力導入孔21Cは供給通
路12に連通していて、供給圧力か所定圧以」二になる
と制御スプール23をスプリング27に抗して摺動させ
る。
24b, the first valve chamber 32 and the outlet port 21a of the union 21 are communicated with each other. Further, a pressure introduction hole 21C provided in the union 21 is opened at the end surface of the stepped portion 23b of the control spool 23. This pressure introduction hole 21C communicates with the supply passage 12, and causes the control spool 23 to slide against the spring 27 when the supply pressure exceeds a predetermined pressure.

オリフィス形成部材24は、後述する各オリフィス24
;1,24bとともに制御ノズル24cをω、7え−ζ
おり、この制御ノズル24Cは各オリフィス24.a、
24bの後流側を、ユニオン21およびポンプハウジン
グ】0に設けた連通孔21d。
The orifice forming member 24 includes each orifice 24 described later.
; together with 1 and 24b, the control nozzle 24c is ω, 7e-ζ
This control nozzle 24C is connected to each orifice 24. a,
A communication hole 21d is provided on the downstream side of the union 21 and the pump housing 24b.

14を通して第2弁室33に連通させている。これによ
り、各オリフィス24a、24bの後流側流体の一部か
第2弁室33内に導かれ、スプール弁22の両端に各オ
リフィス24a、24bの前後の圧力が作用し、各オリ
フィス24a、24bの前後の差圧に応してスプール弁
22が軸方向へ移動して、上記差圧を一定に保持すべく
バイパス通路13の開度を調整する。
14 and communicates with the second valve chamber 33. As a result, a part of the fluid on the downstream side of each orifice 24a, 24b is guided into the second valve chamber 33, pressures before and after each orifice 24a, 24b act on both ends of the spool valve 22, and each orifice 24a, The spool valve 22 moves in the axial direction in accordance with the differential pressure before and after 24b, and adjusts the opening degree of the bypass passage 13 to maintain the differential pressure constant.

しかして、オリフィス形成部材24には、その略中央部
に第1オリフイス24aか形成されており、またその第
1オリフイス24aの外周部には複数の小孔群からなる
第2オリフイス24bが形成されている。これら第1.
第2オリフィス24a、24bは、通常前記第1弁室3
2と送出口21aとを互いに連通し、また制御スプール
23の移動によって第1オリフイス24aを閉止し、そ
の開度を制御するようになっている。
In the orifice forming member 24, a first orifice 24a is formed approximately at the center thereof, and a second orifice 24b consisting of a plurality of small hole groups is formed at the outer periphery of the first orifice 24a. ing. These first.
The second orifices 24a, 24b are normally arranged in the first valve chamber 3.
2 and the outlet 21a are communicated with each other, and the movement of the control spool 23 closes the first orifice 24a and controls its opening degree.

こめ2つのオリフィス24a、24bの中、第断された
舌片を有する制御部材35が固着されている。この形状
記憶合金よりなる制御部材35は、このオリフィス24
bを通過する圧力流体の温度に応じた各形状を記憶して
おり、例えばその圧力流体の温度が常温の場合、第3図
に示すように内周側の舌片が直線状になってオリイス2
4bの開度を小さくし、また低温の場合、第4図に示す
ように舌片が内方へ屈曲してオリフィス24bの開度を
大きくするようになっている。
A control member 35 having a cut tongue is fixed in the two orifices 24a, 24b. The control member 35 made of this shape memory alloy is connected to the orifice 24.
Each shape is memorized according to the temperature of the pressure fluid passing through b. For example, when the temperature of the pressure fluid is room temperature, the tongue on the inner circumference becomes a straight line as shown in Fig. 3. 2
The degree of opening of the orifice 24b is made small, and when the temperature is low, the tongue piece bends inward as shown in FIG. 4 to increase the degree of opening of the orifice 24b.

前記ユニオン21は略円筒状を呈し、その内端部が収納
孔11内に遊嵌されていて、その内端外周と前記収納孔
11の内周間に制御絞り31を形成し、この制御絞り3
1を介して供給通路12と第1弁室32とを連通ずるよ
うになっている。この制御絞り31は、供給通路12に
供給される作動流体の吐出流量が多くなると、その流路
抵抗により上流側と下流側、ずなわら供給通路12と第
1弁室32に通しる空室34間に圧力差を生じさせ、こ
の圧力差に応じて前記制御スプール23を軸方向に変位
さ−ぜるようになっている。
The union 21 has a substantially cylindrical shape, and its inner end is loosely fitted into the storage hole 11, and a control aperture 31 is formed between the outer periphery of the inner end and the inner periphery of the storage hole 11. 3
1, the supply passage 12 and the first valve chamber 32 are communicated with each other. When the discharge flow rate of the working fluid supplied to the supply passage 12 increases, the control throttle 31 is formed into a vacant space that passes through the supply passage 12 and the first valve chamber 32 on both the upstream and downstream sides due to the flow resistance. 34, and the control spool 23 is axially displaced in accordance with this pressure difference.

このよ・うに構成した流量制御装置においては、車両エ
ンジンにより流体ポンプが駆動されると、作動流体が流
体ポンプの吐出室から供給通路12に供給される。供給
された作動流体は、制御絞り31を通って第1弁室32
に供給され、第1弁室32から流通孔23aおよび各オ
リフィス24a。
In the flow control device configured in this manner, when the fluid pump is driven by the vehicle engine, working fluid is supplied from the discharge chamber of the fluid pump to the supply passage 12. The supplied working fluid passes through the control throttle 31 and enters the first valve chamber 32.
is supplied from the first valve chamber 32 to the communication hole 23a and each orifice 24a.

241)を経てユニオン21の送出口jlaがら動力舵
取装置へ給送される。
241) and is fed to the power steering device from the outlet jla of the union 21.

しかして、流体ポンプの回転速度が低い場合には作動流
体の吐出流量が少ないため、スプール弁22はバイパス
通路13を閉止して作動流体の全Iを各オリフィス24
a、24bを経て動力舵取装置へ給送させるが、流体ポ
ンプの回転数の上昇に応じて作動流体の吐出流量が増大
すると、スプール弁22はオリフィス24.a、2’4
b前後の差1Fを一定にすべく摺動してバイパス通−路
13を開き、作動流体の余剰流をバイパス通路13を通
して流体ポンプの吸入室へ還流させる。この結果、動力
舵取装置へ給送される作動流体は、各オリフィス24a
、24bにより決定される第1図に示す所定量Q1に維
持される。
When the rotational speed of the fluid pump is low, the discharge flow rate of the working fluid is small, so the spool valve 22 closes the bypass passage 13 and directs all of the working fluid to each orifice 24.
The spool valve 22 is supplied to the power steering device via the orifice 24.a and 24b.When the discharge flow rate of the working fluid increases as the rotational speed of the fluid pump increases, the spool valve 22 is supplied to the power steering device through the orifice 24.a and 24b. a, 2'4
The bypass passage 13 is opened by sliding to keep the difference 1F between before and after b constant, and the surplus flow of the working fluid is returned to the suction chamber of the fluid pump through the bypass passage 13. As a result, the working fluid supplied to the power steering device is supplied to each orifice 24a.
, 24b is maintained at the predetermined amount Q1 shown in FIG.

また、車両の高速走行への以降に伴い流体ポンプの回転
数がさらに上昇して1、供給通路12へ供給される作動
流体の吐出流量が増大すると、制御絞り31における流
体抵抗により供給通路12内の流体圧力が上昇し、供給
通路12と第1弁室32間に差、圧が生じるとともに、
供給通路12の圧力は圧力導入孔21cを通して制御ス
プール23をスプリング27に抗して摺動させる押圧力
として作用する。このため、作動流体の吐出流量の増大
に応じて供給通路12の圧力がスプリング27の何勢力
に打謄つまで高まると、制御スプール23G、1スプリ
ング27に抗して漸次摺動し、最後に第1オリフイス2
4aが完全に閉止されるため、動力舵取装置へ、給送さ
れる作動流体の供給流量は、第2オリフイス24bで決
定される流量Q2に維11される。
Furthermore, when the rotational speed of the fluid pump further increases as the vehicle starts to run at high speed, and the discharge flow rate of the working fluid supplied to the supply passage 12 increases, fluid resistance in the control throttle 31 causes the inside of the supply passage 12 to increase. The fluid pressure increases, and a difference and pressure are generated between the supply passage 12 and the first valve chamber 32, and
The pressure in the supply passage 12 acts as a pushing force that causes the control spool 23 to slide against the spring 27 through the pressure introduction hole 21c. Therefore, when the pressure in the supply passage 12 increases in response to an increase in the discharge flow rate of the working fluid until it overcomes the force of the spring 27, the control spool 23G gradually slides against the spring 27, and finally 1st orifice 2
4a is completely closed, the flow rate of the working fluid supplied to the power steering device is maintained at the flow rate Q2 determined by the second orifice 24b.

このような制御スプール23の作動によって、車両の低
速走行時では、動力舵取装置への供給流量を多くしてハ
ンドル操向を軽くし、そして高速走行に移行するに伴っ
ζ、動力舵取装置への供給流量を除々に少なくすること
で、ハンドル操作を除々に重くし、運転者に違和感を与
、えることなく、高速安定性をもたせることができる。
By operating the control spool 23 in this manner, when the vehicle is traveling at low speed, the flow rate supplied to the power steering device is increased to lighten the steering wheel steering, and as the vehicle shifts to high speed traveling, the power steering device is increased. By gradually reducing the flow rate supplied to the vehicle, it is possible to gradually make steering operation heavier and provide high-speed stability without causing discomfort to the driver.

ところ、で、圧力流体が常温の場合には上記したように
正常な流量特性を得られるが、運転開始時等工[力流体
の温度が低い場合には、その流体の粘性か人きいため、
制御絞り31の絞り抵抗が大となって制御絞り310前
後に差圧が発生し、その結果制御スプール23が摺動し
て第1オリフイス24aが閉しられてしまい、第1図B
に示すように必要な流量を確保できなくなる。    
   Iしかるに本発明では、第2オリフイス24bの
開度を設定する制御部材35が形状記憶合金によって形
成されているため、圧力流体が常温の状態では、第3図
に示すように開口面積が小である制御部材35が、第4
図に示すように開口面積が大なる形状に変化している。
By the way, when the pressure fluid is at room temperature, normal flow characteristics can be obtained as described above, but when the pressure fluid is at a low temperature, the viscosity of the fluid is low.
The throttling resistance of the control orifice 31 becomes large and a pressure difference is generated before and after the control orifice 310, and as a result, the control spool 23 slides and the first orifice 24a is closed.
As shown in Figure 2, it becomes impossible to secure the necessary flow rate.
However, in the present invention, since the control member 35 that sets the opening degree of the second orifice 24b is formed of a shape memory alloy, the opening area is small when the pressure fluid is at room temperature, as shown in FIG. A certain control member 35
As shown in the figure, the opening area has changed to a larger shape.

従って制御スプール23が移動して、第1オリフイス2
4aが閉じて流量低下しても、その分第2オリフィス2
4bの開度が大きくなって、第1オリフイス24aにお
ける流量低下分が補償されるため、全体として流量低下
はなくなり、正確な流量制御が可能となる。
Therefore, the control spool 23 moves and the first orifice 2
4a closes and the flow rate decreases, the second orifice 2
4b becomes larger to compensate for the decrease in flow rate in the first orifice 24a, there is no decrease in flow rate as a whole, and accurate flow control becomes possible.

〈発明の効果〉 以上述べたように本発明の動力舵取装置用流量制御装置
は、第2オリフイスを低温時はその絞り開度を大きく、
常温では絞り開度を小さくする各形状を記憶した形状記
憶合金によって構成したものであるため、低温時におけ
る圧力流体の粘性変化にかかわらず、その流量特性が変
化しないようにすることができる利点を有する。
<Effects of the Invention> As described above, the flow rate control device for a power steering device of the present invention increases the throttle opening of the second orifice when the temperature is low.
Since it is constructed from a shape memory alloy that memorizes each shape that reduces the throttle opening at room temperature, it has the advantage of not changing its flow characteristics regardless of changes in the viscosity of the pressure fluid at low temperatures. have

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示すもので、第1図はポンプ回
転数に対する流量特性を示すグラフ、第2図は本発明の
流量制御装置を示す断面図、第3図及び第4図は同流量
制御装置の要部を示す部分拡大断面図である。 12・・・供給通路、13・・・バイパス通路、22・
・・スプール弁、23・・・制御スプール、24a・・
・第1オリフイス、24b・・・第2オリフイス、31
・・・制御絞り、35・・・制御部材。 特許出1頭人 豊田工機株式会社
The drawings show embodiments of the present invention; FIG. 1 is a graph showing the flow rate characteristics with respect to the pump rotation speed, FIG. 2 is a sectional view showing the flow rate control device of the present invention, and FIGS. 3 and 4 are the same. FIG. 3 is a partially enlarged cross-sectional view showing the main parts of the flow rate control device. 12... Supply passage, 13... Bypass passage, 22.
...Spool valve, 23...Control spool, 24a...
・First orifice, 24b...Second orifice, 31
... Control aperture, 35... Control member. 1 patented person Toyota Machinery Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)  ポンプに通じる供給通路より第1.第2オリ
フイスを介して動力舵取装置に送出される圧力流体なら
びにその圧力流体の一部を余剰流としてポンプの吸入側
に還流すべくバイパス通路の開度を調整する流量調整用
スプール弁、前記供給通路内に設けられた制御絞り前後
の圧力差に応じて変位し前記第1オリフイスの開度を制
御する制御スプールを備え、前記第2オリフイスを低温
時はその絞り開度を大きく常温では絞り開度を小さくす
る各形状を記1、ウシた形状記憶合金によって構成した
ことを特徴とする動力舵取装置用流量制御装置。
(1) The first one from the supply passage leading to the pump. The flow rate adjusting spool valve adjusts the opening degree of the bypass passage so that the pressure fluid sent to the power steering device via the second orifice and a part of the pressure fluid are returned to the suction side of the pump as surplus flow; A control spool is provided in the supply passage and displaces according to the pressure difference before and after the control throttle to control the opening degree of the first orifice, and the control spool is configured to increase the throttle opening degree of the second orifice when the temperature is low and to restrict the opening degree at room temperature. 1. A flow control device for a power steering device, characterized in that each shape that reduces the opening degree is made of a shape memory alloy.
JP58088244A 1983-05-19 1983-05-19 Flow controller for power steering system Pending JPS59213567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58088244A JPS59213567A (en) 1983-05-19 1983-05-19 Flow controller for power steering system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58088244A JPS59213567A (en) 1983-05-19 1983-05-19 Flow controller for power steering system

Publications (1)

Publication Number Publication Date
JPS59213567A true JPS59213567A (en) 1984-12-03

Family

ID=13937439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58088244A Pending JPS59213567A (en) 1983-05-19 1983-05-19 Flow controller for power steering system

Country Status (1)

Country Link
JP (1) JPS59213567A (en)

Similar Documents

Publication Publication Date Title
US4549566A (en) Flow volume control device for power steering system
JPH0127308B2 (en)
JPS59213567A (en) Flow controller for power steering system
JPS6345342B2 (en)
JPH0335540B2 (en)
JPH0335539B2 (en)
JP3237457B2 (en) Flow control device in power steering device
JPH0213276Y2 (en)
JPS59220457A (en) Flow volume control device for motor steering device
JPH0335541B2 (en)
JPS6365544B2 (en)
JPH0339642Y2 (en)
JP2600569Y2 (en) Flow control device for power steering device
JPH03602Y2 (en)
JPH0121109Y2 (en)
JPH0114542Y2 (en)
JPS5912645Y2 (en) flow control valve
JP2600568Y2 (en) Flow control device for power steering device
JPH04356275A (en) Flow controller for power steering device
JP2545874Y2 (en) Flow control valve
US2829496A (en) Servo circuit with variable back-pressure return
JPH0995252A (en) Flow control device for power steering
JP3376613B2 (en) Flow control device for power steering device
JPS60107460A (en) Controller of flow rate of working fluid for power steering
JPS6060073A (en) Flow controller for power steering operating fluid