JPS59213489A - Treatment of water containing boron - Google Patents

Treatment of water containing boron

Info

Publication number
JPS59213489A
JPS59213489A JP8816183A JP8816183A JPS59213489A JP S59213489 A JPS59213489 A JP S59213489A JP 8816183 A JP8816183 A JP 8816183A JP 8816183 A JP8816183 A JP 8816183A JP S59213489 A JPS59213489 A JP S59213489A
Authority
JP
Japan
Prior art keywords
water
membrane
boron
chlorine
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8816183A
Other languages
Japanese (ja)
Inventor
Takeshi Sato
武 佐藤
Motomu Koizumi
求 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP8816183A priority Critical patent/JPS59213489A/en
Publication of JPS59213489A publication Critical patent/JPS59213489A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To treat efficiently water contg. a boron compd. by adding a chlorine agent to the water contg. boron and other salts and treating the same with a membrane separating stage using a chlorine resistant permeable membrane then treating the water with a permeable membrane having an Nidentical bond. CONSTITUTION:Water contg. a boron compd. is subjected preliminarily to a flocculating treatment to remove coexisting heavy metals such as zinc and nickel and thereafter >=0.1mg/l chlorine agent is added as a residual chlorine to said water. The water contg. boron added with the chlorine agent is supplied to the 1st stage of a membrane separator. A chlorine-resistant semipermeable membrane of cellulose acetate, etc. is required to be used as the permeable membrane in the 1st stage of the membrane separator. Coexisting inorg. and org. salts, Ca, Mg salt, and a part of boron are removed by the 1st stage of the membrane separating process. The water is then supplied to the 2nd stage of a membrane separator using a permeable membrane having an Nidentical bond in the molecule of -CONH-, etc. by which the water is treated.

Description

【発明の詳細な説明】 この発明はホウ素含有水の処理方法に関するものであジ
、さらに計しくはホウ素含有水を透過膜を用いて処理す
る方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for treating boron-containing water, and more particularly to a method for treating boron-containing water using a permeable membrane.

メッキ工業や排煙脱硫廃水、原子力発電所から排出され
る放射性廃液、地熱発・亀廃水、コ゛ミ焼却場洗煙廃水
などには、ホウ酸塩とともに、多量の無機性や有機性の
塩類か含まれているのが一般的である。
In addition to borates, large amounts of inorganic and organic salts are contained in plating industry and flue gas desulfurization wastewater, radioactive wastewater discharged from nuclear power plants, geothermal power generation/Kame wastewater, smoke washing wastewater from Koimi incinerators, etc. It is common that

従来、これらのホウ素含有水を処理するために、イオン
交換樹脂が採用されてきた。しかし、塩類含;a量があ
る程度低ければイオン交換樹脂は適用可能であるが、比
較的高くなると、もはや効率的に分離することはできな
くなる。また、キレート樹脂の適用も横側されているが
、キレート樹脂では共存イオンを除去することはできず
、不適当であった。
Conventionally, ion exchange resins have been employed to treat these boron-containing waters. However, if the salt content is low to a certain extent, ion exchange resins can be used, but if it becomes relatively high, efficient separation is no longer possible. In addition, the application of chelate resins has been sidelined, but chelate resins cannot remove coexisting ions and are therefore unsuitable.

一方、ホウ素含有水の処理に酢酸セルロース膜を用いた
分離方法が提案されている。しかし、酢酸セルロース膜
ではI)Hをアルカリ土類金属いとホウ素の除去率が極
めて悪く(通常20〜40するという致命的な欠点があ
った。
On the other hand, a separation method using a cellulose acetate membrane has been proposed for treating boron-containing water. However, cellulose acetate membranes have a fatal drawback of extremely poor removal rates for I)H, alkaline earth metals, and boron (usually 20 to 40%).

最近、メッキエ揚″lr:新設する場合には、廃水全処
理して処理水を再度循環オU用する必要に迫られる場合
があり、従来の処理方法では必ずしも充分に満足のゆく
方法を提供することはできず、効率的な対策が求められ
ていた。
Recently, when constructing a new plated pump, there are cases where it is necessary to completely treat the wastewater and recycle the treated water, and conventional treatment methods are not always fully satisfactory. Therefore, efficient countermeasures were required.

この発明は、上記の従来技術の欠点を克服すべく鋭意イ
v[死の結果、児成されたものであって、互いに素材の
異なる2棟類の透過膜を用いることによシ、ホウ素化合
物含有水を効率良く処理することができるとともに水回
収率が極めて良好な処理方法を提供するものである。
The present invention was developed as a result of the above-mentioned efforts to overcome the drawbacks of the prior art, and by using two types of permeable membranes made of different materials, The present invention provides a treatment method that can efficiently treat contained water and has an extremely good water recovery rate.

すなわち、この発明は、ホウ素及び他の塩類を含む水に
塩素剤を添加したのち、耐塩素性透過膜を用いた膜分離
工程で処理し、必要に応じて脱塩素処理し、次いで、−
N−結合を有する透過膜を用いた膜分離工程で処理する
ことを特徴とするホウ素含有水の処理方法である。
That is, in this invention, after adding a chlorine agent to water containing boron and other salts, it is treated in a membrane separation process using a chlorine-resistant permeable membrane, dechlorinated if necessary, and then -
This is a method for treating boron-containing water, characterized in that the treatment is performed in a membrane separation step using a permeable membrane having N-bonds.

この発明で白うホウ素及び他の塩類とは、各IJfホウ
酸塩、ホウフッ化物などを含むホウ素化合物及び他の有
機性、無機性塩を含有する水を指す。
In this invention, white boron and other salts refer to water containing boron compounds including IJf borates, borofluorides, and other organic and inorganic salts.

この発明の対象となる水は、比較的ボウ索言イ]Mが高
いものが好ましく、例えはホウ素化合物が50〜1,0
00m9/ 13 (、H3BO3として)&、度のも
のである。また、ホウ素含有水は、通常、ホウ素化合物
とともに、他の無機性有機性塩知金含んでおp、例えば
メッキ廃水の場合Qζは塩化ナトリウム、硫酸すトリウ
ム、酸12ソーダ、ラウリル酸ソーダなどの塩類全多量
に含んでいる。
The water that is the subject of this invention preferably has a relatively high boron index (M), for example, a boron compound containing 50 to 1,0
00m9/13 (as H3BO3) &, degrees. In addition, boron-containing water usually contains other inorganic and organic chloride metals as well as boron compounds. Contains a large amount of salt.

この発明の場合、上記の塩類濃度が30.000nly
/J3を超えると処理水負が次第に悪化するので、好ま
しくは500〜30,000 m9/ l程gotのが
対象となる。
In the case of this invention, the above salt concentration is 30.000nly
If it exceeds /J3, the negative value of the treated water will gradually worsen, so the target is preferably about 500 to 30,000 m9/l.

次にこの発明を工程順に説明する。Next, this invention will be explained step by step.

先ず、上記のホウ素化合物含有水膜分離工程に送る訳で
あるが、通常、ホウ素化合物含有水にはさらに亜鉛やニ
ソクルなどの重金属塩が共存しているので、予め凝集処
理ヲ殉こして除去する方が好ましい。
First, the boron compound-containing water is sent to the membrane separation process described above, but since the boron compound-containing water usually also coexists with heavy metal salts such as zinc and dichloromethane, it is removed by a coagulation process in advance. is preferable.

メンキ))≦水など、一般には敵性の性状を示すものが
多く、例えば各種鉄塩とアルカリ剤を用いて凝集処理す
る。
In general, many substances exhibit hostile properties, such as water), and they are coagulated using, for example, various iron salts and alkaline agents.

このよう((、前処理された(或いは前処理されない)
ホウ水含;fj水は第1段目の膜分市工程に送られる。
Like this ((, preprocessed (or not preprocessed)
The water containing boron water is sent to the first stage membrane separation process.

し〃・し、そのままではI!+2面で、微生物が繁殖し
ゃすくなジ、これらが膜面に付着して膜汚染を誘引し、
処理効率全低下させてしまう。このた〃ノ、この発明に
おいては、上記ホウ素含有水に、先ず、塩素剤全添加す
る。
Shi, sh, as it is, I! On the +2 side, microorganisms do not propagate, and these adhere to the membrane surface and induce membrane contamination.
Processing efficiency will be completely reduced. In the present invention, first, the entire chlorine agent is added to the boron-containing water.

塩素剤としては、水中に溶解して有効塩素全発生させる
ものであれは特に限定されず、例えば塩素ガス、次亜塩
素酸塩、塩水を電解処理して得られる電解塩素などが挙
げられる。
The chlorine agent is not particularly limited as long as it dissolves in water to generate all available chlorine, and examples include chlorine gas, hypochlorite, and electrolytic chlorine obtained by electrolytically treating salt water.

塩素剤の添加量は、残留塩素として0.1 m978以
上、好1しくけ0.5〜l m97 l程度とする。残
留塩素量がo、xmyy、e未満の場合には、微生物の
増殖をくい止めることが困難となる場合がある。
The amount of the chlorine agent added is 0.1 m978 or more as residual chlorine, preferably about 0.5 to 1 m97 l. If the amount of residual chlorine is less than o, xmyy, e, it may be difficult to prevent the growth of microorganisms.

一方、  11nり/13に超えると、効果は変わらず
、かえって次工程で残留塩素を必ず除去する必安住が生
じ、不経済となる。
On the other hand, if it exceeds 11n/13, the effect remains the same, and on the contrary, it becomes necessary to remove residual chlorine in the next process, which becomes uneconomical.

こうして、塩素剤がふ加式ttだホウ素含有水は、次い
で第1段目のj漠分離装前に供給はれる。
Thus, the boron-containing water containing the chlorine agent is then fed before the first stage separation.

第1段目の透過膜としてCユ、耐塩ヌタ件の半透膜を用
いる必要がある。そのような1夙として、酢酸セルロー
ス糸、スルホン化ホリフエニレンオキザイド糸、ポリア
クリロニトリル示、ポリオレフィン糸、スルホン化ポリ
スルホン糸のものが例示さ才りる。なた、形状Qてつい
ては、スパイラル型、中空糸」j謀、管渠、平膜型など
、従来のいずれのタイプでも適用可能であるが、SSを
多量に含むような水に対しては音型又tよ平膜型が好ま
しい。
It is necessary to use a salt-resistant semipermeable membrane as the first stage permeable membrane. Examples of such yarns include cellulose acetate yarn, sulfonated polyphenylene oxide yarn, polyacrylonitrile yarn, polyolefin yarn, and sulfonated polysulfone yarn. Regarding the shape of the hatch, any conventional type can be used, such as spiral type, hollow fiber type, pipe conduit type, flat membrane type, etc. However, for water containing a large amount of SS, the sound A flat film type is preferred.

なお、第1段目の透過!Aは限外濾過力・息でも逆浸透
膜でも良く、運転圧力は2〜75 ky、f / cr
d程度である。ただし、第1段目の分離工程で、共存塩
類、及び微生物全町及的に除去した方が望まLいので、
逆浸透膜を用いる方が好ましく、そのときの運転圧力は
IQ〜75kgf/7とする。
In addition, the first stage is transparent! A can be ultrafiltration power/breath or reverse osmosis membrane, operating pressure is 2 to 75 ky, f/cr
It is about d. However, it is preferable to remove all coexisting salts and microorganisms in the first stage separation process.
It is preferable to use a reverse osmosis membrane, and the operating pressure at that time is IQ ~ 75 kgf/7.

この結果、第1段目の膜分離工程で、ホウ素含有水中の
AiJ記無機性、有俵性の共存塩類と、スケール成分で
ある〃ルシウム、マグネシウム塩及び一部のホウ素化合
物が除去される。また、第1段目の膜は遊離又は結@塩
素に耐久性の膜を10いるものであって、原水中に残留
塩素としてO,1rn9/E以上、好ましくはo、5−
1mg7(3存在させて加圧処理(10〜75kgf/
cIIX)すると、処理水中にも残留塩素が0.2〜Q
、 8Inノア6程度含まれることにな9、第1段目の
膜はほぼ完全に段歯された状態に維持される。
As a result, in the first stage membrane separation step, the AiJ inorganic and organic coexisting salts, scale components lucium, magnesium salts, and some boron compounds are removed from the boron-containing water. In addition, the first stage membrane has 10 membranes that are resistant to free or condensed chlorine, and the residual chlorine in the raw water is O,1rn9/E or more, preferably o,5-
1 mg7 (3) and pressurized treatment (10 to 75 kgf/
cIIX) Then, the residual chlorine in the treated water will be 0.2~Q
, 8 Innoir 6 or so is included. 9 The first stage film is maintained in an almost completely staged state.

次に、この透過水は第2段目の特定素材の膜分離装置に
供給されるが、第1段目に先だって塩素剤を多量に添加
したりして、残留塩素量が0、Lmt//(3に超える
ほど透過水に存在してかれば、そのまま第2段目の膜分
離装置に供給することは特定素材に悪影響を及ぼして不
適当となるので、予め、脱塩素する必要が生じる。脱塩
素は重亜硫酸塩などの還元剤や活性炭を用いた物理化学
的手段を用いることによジ、容易に0.1111)/看
取下“す6j、!=dK”’e!:、5・      
 1第2段目で用いる透過膜は、分子中に−N −結合
を持った膜に限定される。これ以外の膜を用いると、ホ
ウ素化合物はほとんど除去さitず、この発明の目的を
達することはできない。
Next, this permeated water is supplied to the second stage membrane separator made of a specific material, but a large amount of chlorine agent is added prior to the first stage, so that the amount of residual chlorine is 0, Lmt// (If the amount of chlorine present in the permeated water exceeds 3, it will be inappropriate to feed it as it is to the second stage membrane separation device as it will have an adverse effect on the specific material, so it will be necessary to dechlorinate it in advance. Dechlorination is easily achieved by using physicochemical means using reducing agents such as bisulfite or activated carbon. :, 5・
1. The permeable membrane used in the second stage is limited to membranes having -N- bonds in their molecules. If any other film is used, the boron compound will hardly be removed and the object of the invention cannot be achieved.

−N−h合を有する膜とは、ポリマー中に−C0NH−
や−C,0Ni(N HCO−1および−CON−co
−i合′ff:有するもので、例えばJ3−9 (Du
pon を社)、PA−100、PA−300(UOP
社)、FT−30(1?’i Intec社)なとの名
前で市販されている膜が和尚する。
A film having -Nh bonds is -C0NH- in the polymer.
and -C,0Ni(NHCO-1 and -CON-co
-i combination'ff: For example, J3-9 (Du
pon wosha), PA-100, PA-300 (UOP
The commercially available membranes are commercially available under the names FT-30 (Intec) and FT-30 (Intec).

第2段目の膜分離装置は運転圧力io〜40’kI1.
f/cl程度で操作される。
The second stage membrane separator has an operating pressure of io~40'kI1.
It is operated at about f/cl.

−N−結合を有する膜は、塩素MIJによる攻撃を受け
やすく、塩素剤が使用できない事情から微生物による膜
汚染を受けやすいものであるが、この発明の場合には、
第1段目で光分塩素剤で滅菌され、除菌されているので
、第2段目膜分Pj11工程での微生物の発生の確率は
極めて低く、第2段目の膜は長期間にわたって安定して
ボウ素化@物全除去することができる。また、残存する
共存イオン濃度も低いため、より低圧でも高い水回収率
全達成することができる。さらに、−N−結合膜による
ホウ素化合物の除去率はpHが上がるほど(9〜11程
度)改善されることがわかっており、この発明の場合、
予めスケール成分が第1段目膜分離工程で除去されてい
るので、スケールの心配なく pHf所望値まで上げら
れる。
Membranes with -N- bonds are easily attacked by chlorine MIJ and are susceptible to membrane contamination by microorganisms because chlorine agents cannot be used; however, in the case of this invention,
Since the first stage is sterilized and sterilized using a photospectral chlorine agent, the probability of microorganisms occurring in the second stage membrane Pj11 process is extremely low, and the second stage membrane is stable for a long period of time. You can turn it into a bow and remove all objects. Furthermore, since the concentration of remaining coexisting ions is low, a high water recovery rate can be achieved even at lower pressures. Furthermore, it is known that the removal rate of boron compounds by the -N-bonded film improves as the pH increases (about 9 to 11), and in the case of this invention,
Since scale components have been removed in advance in the first stage membrane separation step, the pH can be raised to the desired value without worrying about scale.

なお、−N−結合全方する透過膜単独で、ホウ素化合物
含有水を処理しても、残留塩素量が0.1ml;l/8
以下であると、微生物汚染は必ず発生し、一方、0.1
 my/τを超えると膜に悪影響を与え、著しく寿命を
短縮させるため、実用化にはほど遠い。
In addition, even if water containing boron compounds is treated with a permeable membrane that has all -N- bonds, the amount of residual chlorine is 0.1 ml; l/8
If it is less than 0.1, microbial contamination will definitely occur;
If it exceeds my/τ, it will have an adverse effect on the membrane and significantly shorten its life, so it is far from practical use.

以上のように、この発ツ]では、従来、水を回収して再
利用することが困難であったホウ素化合物含有水の処理
に際して、2穐の素材の異なる透過膜を41機的に結合
することにより、得られる最終処理水の水質は極めて良
好で、その才ま、もしくは若干の後処理を加えるだけで
、再度使用することが可能となる。勿論、そのまま糸外
に放かLすることも可能である。
As mentioned above, in this development, 41 permeable membranes made of 2 different materials are combined in a mechanical manner to treat water containing boron compounds, which has traditionally been difficult to recover and reuse. As a result, the quality of the final treated water obtained is extremely good, and it is possible to use it again just by adding some post-treatment. Of course, it is also possible to leave it outside the thread as it is.

以下、実殉例によりこの発明を更に説明する。This invention will be further explained below using actual examples.

実施例 基メッキ工場よシ排出されたメッキ廃水につき、この発
ψjを実姉した。
EXAMPLE This occurrence ψj was observed in plating wastewater discharged from a plating factory.

第1表に記載の水質のメッキ廃水に、次亜塩素酸ソーダ
を、残留塩素が0.7 mq/ lになる寸で添加した
Sodium hypochlorite was added to the plating wastewater having the quality listed in Table 1 in an amount such that the residual chlorine was 0.7 mq/l.

次いで、酢廠゛セルロース系透過膜全装着した逆浸透膜
分離装置に供給し、圧力35 k、yf / crdで
処理した。この結果、第1表の通シの透過水が得られた
(水回収率90%)。
Next, it was supplied to a reverse osmosis membrane separator fully equipped with a cellulose-based permeable membrane in an vinegar factory, and treated at a pressure of 35 k, yf/crd. As a result, the permeated water shown in Table 1 was obtained (water recovery rate 90%).

次いで、この透過水に重亜硫酸ソーダf 5m9/θ添
加し、残留塩素fi ”c O,I my/ y未満と
したのち、  N  Mr@を有する膜(FT−31J
、FiJmtec社商品)′f::装着した逆浸透膜分
離装置に供糺゛した。このときの運転圧力は301cy
f/7であった。
Next, sodium bisulfite f 5m9/θ was added to this permeated water to make the residual chlorine fi ”c O,I my/y less than that, and then a membrane containing N Mr@ (FT-31J
, a product of FiJmtec Co., Ltd.)'f:: It was applied to a reverse osmosis membrane separation device equipped with it. The operating pressure at this time is 301cy
It was f/7.

この結果、第1表に記載した水質の処理水が得られた。As a result, treated water having the quality shown in Table 1 was obtained.

これかられかるように、最終処理水のホウ酸の除去率は
給水基準で87.5%、導電率の除去率は98.6%で
あシ、回収して再オリ用するに光分な純度をイ1(−で
いる。なお、総括水回収率は83.7チであった。
As you will see, the removal rate of boric acid in the final treated water was 87.5% based on the feed water standard, and the removal rate of conductivity was 98.6%, so the purity was high enough to be recovered and reused. The total water recovery rate was 83.7.

また、酢酸セルロース膜の透過液にアルカリ剤を加えて
pHk l 0.0に調整した場合(第1表2段1膜処
理水の)参照)ホウ酸の除去率は95.8チにまで改善
され、しかもスケールの発生は全くみら九なかった。
In addition, when an alkaline agent was added to the permeate of the cellulose acetate membrane to adjust the pH to 0.0 (see Table 1, 2nd row, 1 membrane treated water), the removal rate of boric acid improved to 95.8%. Moreover, there was no occurrence of scale at all.

第  1  表 比  較  例 実施例において、第2段目の膜分離装置として酢酸セル
ロース糸膜を装着した他は実施例と同一条件で処理した
Table 1 Comparison Example In the example, the treatment was carried out under the same conditions as in the example except that a cellulose acetate thread membrane was installed as the second stage membrane separation device.

結果全第2表に示す。All results are shown in Table 2.

この結果から、酢酸セルロース系の膜ではホウ素化合物
を除去することは不可能に近いことがわかる。又、導電
率についても比較例は実施例よりも1桁多い。
This result shows that it is almost impossible to remove boron compounds with cellulose acetate-based membranes. Also, the electrical conductivity of the comparative example is one digit higher than that of the example.

特W「出願人栗田工業株式会社Special W “Applicant Kurita Industries Co., Ltd.

Claims (1)

【特許請求の範囲】 1、 ホウ素及び他の塩類を含む水に塩素剤を添加した
のち、耐塩素性透過膜を用いた膜分離工程で処理し、必
要に応じて脱塩素処理し、次いで、−N−結合を有する
透過膜を用いた膜分離工程で処理することを%徴とする
ホウ素含有水の処理方法。 2、 ホウ素および他の塩類を含む水はメッキ工業煙 廃水又は排脱硫廃水である特許請求の範囲第1Δ 項記載の処理方法。 3、耐塩素性透導膜は酢酸セルロース膜である特許請求
の範囲第1項又は第2項記載の処理方法。 4、膜分離工程はいずれも逆浸透膜分離工程である特許
請求の範囲第1項ないし第3項のいずれかに記載の処理
方法。
[Claims] 1. After adding a chlorine agent to water containing boron and other salts, it is treated in a membrane separation process using a chlorine-resistant permeable membrane, and if necessary, dechlorinated, and then A method for treating boron-containing water, which comprises treating it in a membrane separation step using a permeable membrane having -N- bonds. 2. The treatment method according to claim 1, wherein the water containing boron and other salts is plating industry smoke wastewater or waste desulfurization wastewater. 3. The treatment method according to claim 1 or 2, wherein the chlorine-resistant permeable membrane is a cellulose acetate membrane. 4. The treatment method according to any one of claims 1 to 3, wherein the membrane separation step is a reverse osmosis membrane separation step.
JP8816183A 1983-05-19 1983-05-19 Treatment of water containing boron Pending JPS59213489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8816183A JPS59213489A (en) 1983-05-19 1983-05-19 Treatment of water containing boron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8816183A JPS59213489A (en) 1983-05-19 1983-05-19 Treatment of water containing boron

Publications (1)

Publication Number Publication Date
JPS59213489A true JPS59213489A (en) 1984-12-03

Family

ID=13935196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8816183A Pending JPS59213489A (en) 1983-05-19 1983-05-19 Treatment of water containing boron

Country Status (1)

Country Link
JP (1) JPS59213489A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08206460A (en) * 1994-12-02 1996-08-13 Toray Ind Inc Reverse osmosis membrane separator and separation of highly concentrated solution
JP2001269543A (en) * 1994-12-02 2001-10-02 Toray Ind Inc Membrane separation device and method for separating highly concentrated solution
JP2001269544A (en) * 1994-12-02 2001-10-02 Toray Ind Inc Membrane separation device and method for separating highly concentrated solution
US7097769B2 (en) 2001-02-26 2006-08-29 I.D.E. Technologies Ltd. Method of boron removal in presence of magnesium ions

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5612195A (en) * 1979-07-10 1981-02-06 Toshiba Corp Diaphragm for loudspeaker

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5612195A (en) * 1979-07-10 1981-02-06 Toshiba Corp Diaphragm for loudspeaker

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08206460A (en) * 1994-12-02 1996-08-13 Toray Ind Inc Reverse osmosis membrane separator and separation of highly concentrated solution
JP2001269543A (en) * 1994-12-02 2001-10-02 Toray Ind Inc Membrane separation device and method for separating highly concentrated solution
JP2001269544A (en) * 1994-12-02 2001-10-02 Toray Ind Inc Membrane separation device and method for separating highly concentrated solution
US7097769B2 (en) 2001-02-26 2006-08-29 I.D.E. Technologies Ltd. Method of boron removal in presence of magnesium ions

Similar Documents

Publication Publication Date Title
JP5873771B2 (en) Organic wastewater treatment method and treatment apparatus
JP3909793B2 (en) Method and apparatus for treating organic wastewater containing high-concentration salts
JP5567468B2 (en) Method and apparatus for treating organic wastewater
US20110056876A1 (en) Desalination system
JP2009095821A (en) Method of treating salt water
CA1311717C (en) Effluent treatment
JP2008223115A (en) Method for treating salt water
WO2002000551A2 (en) A process and apparatus for brine purification
JP6738145B2 (en) Method for producing sodium hypochlorite and apparatus for producing sodium hypochlorite
KR100347864B1 (en) System of treated for industrial wastewater
JP3800450B2 (en) Method and apparatus for treating organic wastewater containing high concentrations of salts
JP3800449B2 (en) Method and apparatus for treating organic wastewater containing high concentrations of salts
JP2018035024A (en) Method for producing sodium hypochlorite, and sodium hypochlorite production device
CN107473478A (en) A kind of wet method prepares brombutyl technique waste water recycling treatment process
CN109824194A (en) A kind of processing method of high COD organic wastewater with high salt
JPS59213489A (en) Treatment of water containing boron
CN210915600U (en) Recycling device of RO strong brine
US8062532B2 (en) Process for electrolytic production of chlorine products and byproducts
CN213771708U (en) Novel membrane treatment system for wastewater hardness removal
CN211896410U (en) Desulfurization waste water resource recovery system
CN113121048B (en) Process for treating and recycling purified cotton wastewater
CN112794472A (en) Concentration system and concentration method for high-salinity wastewater
CN212222710U (en) System for waste water purification salt
TW202041471A (en) Method for removing chlorine-containing salt from industrial wastewater and apparatus thereof
JPH11165179A (en) Method for treating fluorine-containing water