JPS59212784A - Schering bridge circuit - Google Patents

Schering bridge circuit

Info

Publication number
JPS59212784A
JPS59212784A JP8822883A JP8822883A JPS59212784A JP S59212784 A JPS59212784 A JP S59212784A JP 8822883 A JP8822883 A JP 8822883A JP 8822883 A JP8822883 A JP 8822883A JP S59212784 A JPS59212784 A JP S59212784A
Authority
JP
Japan
Prior art keywords
shunt
circuit
airtight case
schering bridge
bridge circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8822883A
Other languages
Japanese (ja)
Inventor
Takeshi Endo
遠藤 桓
Junichi Minafuji
皆藤 順一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP8822883A priority Critical patent/JPS59212784A/en
Publication of JPS59212784A publication Critical patent/JPS59212784A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Abstract

PURPOSE:To minimize the residual inductance of a Schering bridge circuit and improve the measuring accuracy, by using a shunt which has a large resistance value and is small in size as the shunt of the circuit and installing the shunt in the main body of the Schering bridge circuit together with an airtight case. CONSTITUTION:A shunt 13 which has a large resistance value and is small in size is prepared by putting the shunt 13 in an airtight case 16 equipped with a refrigerant inlet 14 and refrigerant outlet 15 and forcedly cooling the shunt 13 with an inter refrigerant, such as insulating liquid of insulating oil, etc., or inert gas of nitrogen gas, freon gas, etc. Then the shunt 13 is installed into the main body of a Schering bridge 9 together with the airtight case 16. When the Schering bridge 9 is constituted in such a manner, its residual inductance can be minimized and the tan delta error can also be reduced. Therefore, the mesuring accuracy can be improved.

Description

【発明の詳細な説明】 本発明は/ニーリングブリツノ回路に係り、特に超高圧
低損失電カケープルの絶縁体などの誘電体の商用周波高
電圧における誘電特性を高精71で測定するのに好適な
シエーリングブリノジ回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a kneeling Britno circuit, and is particularly suitable for measuring the dielectric properties of dielectric materials such as insulators of ultra-high voltage, low loss power cables at commercial frequency high voltages with a high precision 71. It concerns the Schering-Blinozi circuit.

第1図はとの柚ンエーリノダブリノン回路の回路図であ
る、〜、第1図において、1は供試ギヤ・′?/り、2
は標準コンデンサ、3は巻線抵抗よりなる分流器、4は
直列抵抗器、5は検Flt計、6は口r変抵抗器、7は
可変コンデンサ、8は、)し列砥抗器で、これらが12
示のように接続しである。11.\jは商用周波制電圧
を示す。
Figure 1 is a circuit diagram of the circuit of Yuzu Nerino Dublinon. In Figure 1, 1 is the gear under test. /ri,2
is a standard capacitor, 3 is a shunt consisting of a wire-wound resistor, 4 is a series resistor, 5 is a detector Flt meter, 6 is a transformer resistor, 7 is a variable capacitor, 8 is a series resistor, These are 12
Connect as shown. 11. \j indicates the commercial frequency control voltage.

ところで、従来、/ニーリングブリツノ回路においては
、その構成素子の一部である分流器3は、測定誤差を少
なくするため、その残留インダクタンスが小さくなるよ
うに配慮されている。しがし7、分流器3への通電によ
る温度士昇を低減し、−1だ、抵抗値の長期信頼性を高
めるためには、分流器3をかなり大きいものとしなけれ
ばない。そのだめ、分流器3は外付けとしである。しか
しながら、一般に巻線抵抗よりなる抵抗素子は、同一抵
抗値の」場合、素rの大きさが大きいほど残留インダク
タンスか夫きくなり、゛また、分流器3を外付けとする
と、それにともなって電気配線の長さが長くなるか、7
11気v1己hWか1父くなると残留インダクタンスか
J+、・、・シフ、こJlらにより測定器の測定精度が
制限さ、lすることにな/)。
By the way, in the conventional/kneeling Blitzkno circuit, consideration has been given to reducing the residual inductance of the current shunt 3, which is a part of its constituent elements, in order to reduce measurement errors. However, in order to reduce the temperature rise due to energization of the shunt 3 and -1, increase the long-term reliability of the resistance value, the shunt 3 must be made considerably large. Instead, the flow divider 3 is externally attached. However, in general, when a resistance element made of a wire-wound resistor has the same resistance value, the larger the element r is, the greater the residual inductance becomes. Will the length of the wiring become longer?7
When 11 qi v1 self hW or 1 value becomes 1, the measurement accuracy of the measuring instrument will be limited by the residual inductance, J+,..., Schiff, etc.).

・As2図は従来の/コーーリノグブリソジ回路の構成
、説明図で、1は供試キャバ/り、2は標fli:コン
デノザ、3は分流H〜、9は/エーリ/グブリノジ本体
で、分流ニジ:(3は、円筒)11ν巻き芯10に折り
返し式に平角M Jノ’+−線11を巻き刊けた構成と
1−、であり、/」−−リノグブリノノ本体9に対して
外利けとしである。12はガード回路を示す。
・As2 diagram is an explanatory diagram of the configuration of the conventional /Kohli Noguri body. , branch flow Niji: (3 is a cylindrical) 11ν winding core 10 and has a configuration in which a rectangular M J no'+- wire 11 is wound in a folded manner, and 1-, It is a profit. 12 indicates a guard circuit.

分流器3.υ・1n□rr X 15 nmのエナメル
被覆平角マンガニン勝11を中心から折り返して直径5
0mmの円面型巻き芯】Oに18111111ピツチで
11回巻きイτ1けて構成してあり、抵抗j1i0.1
Ωである場合、この分流器:うに周囲温1紋20°Cの
ときに60 II Z。
Flow divider 3. υ・1n□rr
0mm circular winding core] It consists of 11 turns of 18111111 pitch winding on O, τ1, and resistance j1i0.1.
Ω, this shunt: 60 II Z when the ambient temperature is 20°C.

2〇への゛電流を流すと、内1則のマンガニン勝1】の
温度か60゛しどなり、これによる抵抗低下率は002
%となる。このときの抵抗の時定数は0.88XIO−
6秒である。ところで、このような分流器3を7工−リ
/ダブリノン本体9に収容することは、発熱(40W)
およびスベーヌの点から無理であり、第2図に示すよう
に外付けとi−である。
When a current is applied to 20, the temperature of Manganin Katsu 1 in the first rule rises to 60 degrees, and the rate of decrease in resistance due to this is 002.
%. The time constant of the resistance at this time is 0.88XIO-
It is 6 seconds. By the way, accommodating such a flow divider 3 in the main body 9 generates heat (40W).
This is impossible from the point of view of Svene and Svene, and as shown in FIG.

しかし、外側けとすると、配線の残留インダクタンスを
含めた抵抗の時定数は1.15 X 10−6秒となり
、この分流器3を6011/、でンエーリングブリノジ
用として用いた場合のtan i) Q’A差は(1,
043%となる。
However, if it is connected to the outside, the time constant of the resistance including the residual inductance of the wiring is 1.15 x 10-6 seconds, and the tan i) Q'A difference is (1,
It becomes 043%.

本発明は上記に鑑みてなされたもので、その目的とする
ところは、残留インダクタンスの低減をは〃・す、測定
精度を向上することができる/ニーリングツ9フ2回路
を提供することにある。
The present invention has been made in view of the above, and its purpose is to provide a kneeling circuit that can reduce residual inductance and improve measurement accuracy.

本発明の特徴は、回路を構成する抵抗素子のうち少なく
とも発熱が問題になる巻線抵抗よりなる分びC器の強制
冷却手段を設け、上記分流器を抵抗値が大きく小型のも
のとして7工−リングブリソジ本体内に内蔵し、上記分
流器およびそれの配線の残留インダクタンスの低減をは
かった構成とした点にある。
A feature of the present invention is that a forced cooling means is provided for the shunt C, which is made of at least a wire-wound resistor that generates heat among the resistive elements constituting the circuit, and that the shunt is made small and has a large resistance value. - Built into the ring bridge main body, the structure is designed to reduce the residual inductance of the shunt and its wiring.

以ト一本発明を第3図に/J<シた実施例を用いて詳細
に説明する。
The present invention will now be described in detail using an embodiment shown in FIG.

第3図は本5ら明の/ニーリングツ9フ2回路の一実施
例を小才構成説明図である3、第3図においては、分流
器13を冷媒人[]14と冷媒出口15どケ設けつある
気密ケース16内に収容し、分流器1 :3 (i−イ
・Ir科件の冷媒、例えば、絶縁油などの絶! 121
g * jA<あるいは−偶素ガス、ルジオンガスなと
のイく活1テ1:ガスにより強制c翁却するようにして
、分流器13ケ抵抗値が大きく、シかも、小型のものと
し、分流器3を気Wiケース16とともに/エーリ/グ
ブリノ、)本体9内に内蔵(5た構成としである。
FIG. 3 is an explanatory diagram of the construction of an embodiment of the two-circuit 9/Nielingutsu 9 circuit described in Book 5. In FIG. It is housed in the airtight case 16 that is being provided, and a flow divider 1:3 is used.
g * jA < or - Irregular gas, Lugeon gas, etc. 1 Step 1: Force the flow to flow with gas, use a shunt 13 with a large resistance value, or a small one, and use a shunt. The container 3 is built into the main body 9 together with the case 16.

なお、/ニーリングツ9フ2回路の全体の回路図は第1
図と同様−(ある。
In addition, the entire circuit diagram of the /Nielingtsu 9F2 circuit is shown in Part 1.
Same as the figure - (Yes.

ここに、図に示すように、0.2711771 X 4
 m+++の長さ54cmのエナメル被覆マンガニ〕線
(抵抗1(σ0.3Ω)17を中心から1カリ返して2
0 nun、 X 4.5 mmの短形蓚キ芯18に8
111111 L’ノチで5回巻き付けて構成した分子
tij 器laを[史用し、これを気密ケース16内に
セントして気密ケース16に61 / /!inの流量
で絶縁油を流した状態で分流器13に20Aを通電した
場合、120〜■の発熱になるが、マンガニン勝]7の
c″M4度は最大40℃寸でしかト外せず、絶縁油の温
度−ヒ昇は10℃であった。たたし、気密ケース16は
外側寸法が100 X 40 X 20 mmのものと
した。
Here, as shown in the figure, 0.2711771 X 4
m+++ length 54cm enamel-coated Mangani] wire (resistance 1 (σ0.3Ω))
0 nun, x 4.5 mm rectangular core 18 to 8
111111 Use the molecular tij vessel la constructed by wrapping it five times with L' notch, insert it into the airtight case 16, and put it in the airtight case 16 61 / /! If 20A is applied to the flow divider 13 with insulating oil flowing at a flow rate of 1.5 in, it will generate 120~■ heat, but Manganin Katsu] 7 c''M4 degrees can only be removed at a maximum of 40 degrees Celsius, The temperature rise of the insulating oil was 10° C. The airtight case 16 had outer dimensions of 100 x 40 x 20 mm.

丑だ、/ニーリングブリッジ本体9内に内蔵した03Ω
、、2OA定格の分流器13のソー1線部を含めた時定
数は0.2X10−6秒であり、6011Zでの帥δ誤
差は0.0075係であった。この値は従来の分流器3
を用いた場合のtallδ誤差の約17%と低い値であ
り、低損失誘電体のt、I11δ測定でもほとんど問題
とならない誤差である。
Ushida / 03Ω built into the kneeling bridge body 9
The time constant of the shunt 13 rated at 2OA including the saw 1 wire section was 0.2X10-6 seconds, and the δ error at 6011Z was 0.0075 factors. This value is the same as that of the conventional flow divider 3.
This is a low value of about 17% of the tall δ error when using , and is an error that hardly causes any problem even when measuring t and I11 δ of a low-loss dielectric.

上記したように、本発明の実施例によれば、分流器X3
を気密ケース16内に収容して冷媒で強制冷却するよう
にし、分流器13としては抵抗値が大きくて小形のもの
ケ用い、分流器13を気密ケース16とともにシエーリ
/グブリノジ本体9内に内蔵するようにしたので、リ−
1・線を含めた残’6’jイ/ダクタンスの低減をはか
ることができ、Lftllδ誤差が小さくなり、測定精
度の向上をはかることかできる。1だ、分流器内蔵型で
あるから、取り扱いが簡便である。
As mentioned above, according to the embodiment of the present invention, the flow divider X3
is housed in an airtight case 16 and forcibly cooled with a refrigerant, a small one with a large resistance value is used as the flow divider 13, and the flow divider 13 is built in the Schieri/Gublinosi body 9 together with the airtight case 16. I did this, so the lead
It is possible to reduce the residual '6'j i/ductance including the 1. line, reduce the Lftllδ error, and improve measurement accuracy. 1. Since it has a built-in flow divider, it is easy to handle.

なお、分流器1;3の強制冷却効果を商めるため、分流
器j3にフィンを設けたり、巻き芯18の構造を改良し
て“7ノノj二/&!17の内114!Iにも冷媒が流
れるようにしても」:い。このようにすると、さらに小
形化でき、それに応[7て時定数を小さくすることがで
きる。
In addition, in order to take advantage of the forced cooling effect of the flow divider 1; 3, fins are provided on the flow divider j3 and the structure of the winding core 18 is improved to make it 114! Even if the refrigerant is allowed to flow, no. In this way, the size can be further reduced, and the time constant can be reduced accordingly.

土だ、ト、1Cシた実h(u例では、抵抗制別としてマ
ン冒jニン線を用いているが、コンスタ/タノ線ヲ用い
るようにしてもよく、効果は同一である。
Earth, To, 1C Shita Real h (U In the example, a man attack line is used as a resistance limit, but a consta/tano line may also be used, and the effect is the same.

寸だ、抵抗線の絶縁はエナメル被覆によらず、ス・文−
ザにて絶縁し−C抵抗線が直接冷媒に接触するようにし
てもよい。
Insulation of resistance wire is not based on enamel coating,
Alternatively, the -C resistance wire may be insulated with a heat sink so that the -C resistance wire comes into direct contact with the refrigerant.

才だ、第:3図に小寸太hi!+1クリにおいては、分
苑器1;うのみを強制冷却するようにしであるが、その
他の長助信ψ口性が問題と在る抵抗素子を含めて強制(
′+1却を・何うようにしてもよく、さらに/ニーリン
グブリッジ回路全体を強制冷却するようにしてもよいこ
とはいうまでもない。
It's so good, it's small and thick in Figure 3! In the +1 chestnut, the branching device 1 is forced to cool the sea urchin, but other Nagasuke components are forced to cool down, including the resistor element, which has a problem.
It goes without saying that the cooling of '+1' may be done in any way, and that the entire kneeling bridge circuit may be forcibly cooled.

以上説明したように、本発明によれは、残留インダクタ
ンスの低減をはかることができ、−1,6誤差が小さく
なり、測定精度の向ヒをはかることができるという効果
がある。
As explained above, the present invention has the effect that residual inductance can be reduced, -1,6 error can be reduced, and measurement accuracy can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

i1図は/ニーリングブリツノ回路の回路図、第2図は
従来の7工−リングブリノジ回路の構成説明図、第3図
は本発明の7工−リノグブリノジ回路の一実施例をボず
構成説明図である。 ]・−供試ギャハ/夕、2 標準コ7デ/ザ、9/ニ一
リングブリツジ本体、13 ・分流器、16気密クース
、17・エナメル被↑9マンガニン線、18・・短形巻
き芯。 ゝ、−/
Figure i1 is a circuit diagram of a kneeling/kneeling circuit, Figure 2 is an explanatory diagram of the configuration of a conventional 7-ring circuit, and Figure 3 is an explanatory diagram of an embodiment of a seven-ring circuit of the present invention. It is. ] - Test gear / evening, 2 Standard code 7 design, 9 / Ni-ring bridge body, 13 - Flow divider, 16 Airtight coos, 17 - Enameled ↑ 9 Manganin wire, 18 - Rectangular winding core.ゝ、-/

Claims (1)

【特許請求の範囲】 1 誘電体の商用周波高電圧における誘電特性のd11
1定に用いる7工−リングブリノジ回路において、回路
を構成する抵抗素子のうち少なくとも被測定1.勿″I
に体に直列に接?1づじされる巻線抵抗よりなる分流器
の強制冷却手段を設け、前記分流。 滞とし2で抵抗111′Iが大きく小型のものを用い、
該分流器を7工−リングブリノジ本体内に内紙(7、前
記分流ビ;φおよびそれの配線の残留インダクタンスの
低θ・kをはかった4V’i成としCあること鞘!l−
1l−厳とする/ニーリングブリッジ回路。 zl)1s記強制冷却手段は、前記分流器を収容ずろ気
密ケースと該気密り一−スへの冷媒流体の供給、JJt
出手段とよりなる特許請求の範囲第1項記載の/ニーリ
ングブリツノ回路。
[Claims] 1. Dielectric property d11 of dielectric material at commercial frequency high voltage
In a 7-ring Blinozi circuit used for one constant, at least one of the resistance elements making up the circuit is measured. Of course I
Connected in series to the body? A forced cooling means for a shunt consisting of a wire-wound resistor is provided to divide the flow. For the resistor 2, use a small one with a large resistance 111'I,
The shunt is installed in the inner paper (7, the shunt pipe; φ and its wiring with a low θ・k of residual inductance, and there is a 4V'i structure inside the main body of the shunt ring).
1l - Strict/kneeling bridge circuit. zl) The forced cooling means includes an airtight case that houses the flow divider, and a supply of refrigerant fluid to the airtight case.
2. A kneeling circuit according to claim 1, comprising output means.
JP8822883A 1983-05-19 1983-05-19 Schering bridge circuit Pending JPS59212784A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8822883A JPS59212784A (en) 1983-05-19 1983-05-19 Schering bridge circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8822883A JPS59212784A (en) 1983-05-19 1983-05-19 Schering bridge circuit

Publications (1)

Publication Number Publication Date
JPS59212784A true JPS59212784A (en) 1984-12-01

Family

ID=13937006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8822883A Pending JPS59212784A (en) 1983-05-19 1983-05-19 Schering bridge circuit

Country Status (1)

Country Link
JP (1) JPS59212784A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5819269B2 (en) * 1980-08-19 1983-04-16 江崎グリコ栄食株式会社 How to store Chinese noodles

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5819269B2 (en) * 1980-08-19 1983-04-16 江崎グリコ栄食株式会社 How to store Chinese noodles

Similar Documents

Publication Publication Date Title
ES2709100T3 (en) Current measurement compensated by temperature
Hill et al. An ac double bridge with inductively coupled ratio arms for precision platinum-resistance thermometry
Hill et al. A seven-decade adjustable-ratio inductively-coupled voltage divider with 0.1 part per million accuracy
KR102399565B1 (en) Voltage measurement with non-inductive resistor having improved insulation
Kaczmarek et al. The influence of the 3rd harmonic of the distorted primary current on the self-generation of the inductive current transformers
US4322710A (en) Electrical resistors
JPS59212784A (en) Schering bridge circuit
WO2021136710A1 (en) Sensor part for installation in medium-voltage cable compartments and a device for measuring a voltage in medium-voltage circuits comprising such sensor part
Awan et al. A new four terminal-pair bridge for traceable impedance measurements at frequencies up to 1 MHz
US3144770A (en) Means for determining an internal condition in electrical apparatus
US9816876B2 (en) Measurement of the homogeneous temperature of a coil by increasing the resistance of a wire
KR101099953B1 (en) Composite Insulated Electronic Instrument Transformer
US2381724A (en) Resistor
US2431244A (en) High-voltage metering apparatus
Fuhrmann Resistance measurements at frequencies below 10 Hz
Elmquist et al. Characterization of four-terminal-pair resistance standards: a comparison of measurements and theory
Harris A coaxial film bolometer for the measurement of power in the UHF band
FI105855B (en) Voltage divider for insulation structure
Schüpferling et al. CABLE CONNECTION BUSHING TYPE C WITH INTEGRATED ROGOWSKI COIL CURRENT SENSOR AND CAPACITIVE VOLTAGE SENSOR
SU930753A1 (en) Resistive electronic heater for instrument radio engineering apparatus
RU2262761C2 (en) Instrument shunt
Zinkernagel A low-voltage and high-frequency ac-dc transfer system using inductive dividers
Ponomarev A combined shunt for measuring drastically changing currents.
JP2006098378A (en) High precision voltage/current sensor for power transmission and distribution system
Bowdler A resistor for high-voltage measurements