JPS59212731A - Torque detector - Google Patents

Torque detector

Info

Publication number
JPS59212731A
JPS59212731A JP8866483A JP8866483A JPS59212731A JP S59212731 A JPS59212731 A JP S59212731A JP 8866483 A JP8866483 A JP 8866483A JP 8866483 A JP8866483 A JP 8866483A JP S59212731 A JPS59212731 A JP S59212731A
Authority
JP
Japan
Prior art keywords
spring
torque
springs
displaced
turns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8866483A
Other languages
Japanese (ja)
Inventor
Tadahiko Goto
後藤 忠彦
Kiyoshi Oniki
鬼木 清
Satoshi Murakami
智 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Manufacturing Co Ltd filed Critical Yaskawa Electric Manufacturing Co Ltd
Priority to JP8866483A priority Critical patent/JPS59212731A/en
Publication of JPS59212731A publication Critical patent/JPS59212731A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/14Rotary-transmission dynamometers wherein the torque-transmitting element is other than a torsionally-flexible shaft
    • G01L3/1407Rotary-transmission dynamometers wherein the torque-transmitting element is other than a torsionally-flexible shaft involving springs

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

PURPOSE:To eliminate the unbalanced weight of the whole body of a torque detector and to prevent the detector from vibrating by installing the 1st and 2nd springs having the same number of turns and different diameters under a condition where they are fitted concentrically with their fitting position being displaced by 180 deg. from each other and setting the moment of the unit angle of each spring so as to become equal to each other. CONSTITUTION:The 1st spring 20 and 2nd spring 30 have the same winding direction and number of turns and different winding diameters. The springs 20 and 30 are arranged concentrically and fixed to adapter plates 5 and 6 in such a way that their beginning ends 21 and 31 are fitted to the adapter plate 5 at positions which are displaced by 180 deg. from each other and their ending ends 22 and 32 are fitted to the adapter plate 6 at position which are displaced by 180 deg. from each other. Moreover, their cross-sectional areas are set so that the areas are in inverse proportion to the square of the winding radius. When such an arrangement is made, flexure is produced in the springs in accordance with torque and, even when the weight distribution of each spring is changed, the change in the weight distribution denies each other and the unbalanced weight of the whole body is eliminated, and thus, occurrence of vibrations can be prevented.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は1回転トルクをコイルばねの撓み角によって検
出するようにしたトルク検出器におけるばねの構成に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to the configuration of a spring in a torque detector that detects one-rotation torque based on the deflection angle of a coil spring.

(従来技術) 回転軸の駆動側と出力側の間に、コイルばねを介挿し、
負荷トルクによってコイルばねに撓みを生じさせ、ばね
両端をとりつけたばね取付板相互の偏位量によってトル
クを検出するようにしたトルク検出器においては、コイ
ルばねの撓みによってコイルばねの重量分布が変化し6
回転による不つり合い振動を生じ、高速機械や精密機器
には使用できない欠点がある。
(Prior technology) A coil spring is inserted between the drive side and output side of the rotating shaft,
In a torque detector that causes a coil spring to deflect due to load torque, and detects torque by the amount of mutual deviation between spring mounting plates attached to both ends of the spring, the weight distribution of the coil spring changes due to the deflection of the coil spring. 6
It has the drawback that unbalanced vibration occurs due to rotation, making it unsuitable for use in high-speed machinery and precision equipment.

すなわち、第」図に示すように、固定子1の励磁によシ
回転子2を介して中空の駆動軸3を回転させ、この駆動
軸端と中空内に支持した出力軸4にそれぞれはね取付板
5・6を設けて対向させ。
That is, as shown in FIG. Provide mounting plates 5 and 6 to face each other.

この取付板にコイルばね7の両端をそれぞれ固着し、コ
イルばね7の撓みによる取付板相互の偏位を1位置検出
器8・9で検出し、その偏位量により)ルクを検出する
ようにしてらるa 10・11はばね取付板の位置検出
片、12・13は軸受である。
Both ends of the coil spring 7 are fixed to this mounting plate, and the displacement between the mounting plates due to the deflection of the coil spring 7 is detected by 1-position detectors 8 and 9, and the torque is detected based on the amount of displacement. Teral a 10 and 11 are position detection pieces of the spring mounting plate, and 12 and 13 are bearings.

(従来技術における問題点) このように構成したトルク検出器つき電動機において、
出力軸4を無負荷の状態にして回転系のバランスをとっ
ているが、出力軸4に負荷トルクが加わると、ばね7に
撓みを生じ、第2図に示すようにコイルばねの両端A−
B(簡単のため巻数を1回で示す)はA′・B′に拡げ
られ、この撓み角0によりトルクを検出する。しかるに
、このA′・37間は空隙になるため、コイルばねの左
右の重量が不つり合いになシ1回転によって不つり合い
振動を誘起する。
(Problems with conventional technology) In the electric motor with a torque detector configured as described above,
The rotation system is balanced by keeping the output shaft 4 in an unloaded state, but when a load torque is applied to the output shaft 4, the spring 7 is deflected, and as shown in FIG.
B (the number of turns is shown as one for simplicity) is expanded into A' and B', and torque is detected from this deflection angle of 0. However, since the space between A' and 37 becomes a gap, the weights of the left and right sides of the coil spring are unbalanced, and one rotation induces unbalanced vibration.

(本発明の構成) 本発明はこのような点にかんがみ、駆動軸3店出力軸4
とを、同一巻数を有し、単位角度のモーメントを等しく
した異径のコイルばねを用い、このコイルばねを相互に
取付位置を180°偏位させ。
(Structure of the present invention) In view of these points, the present invention has three drive shafts and four output shafts.
Using coil springs of different diameters having the same number of turns and having the same moment per unit angle, the mounting positions of the coil springs are offset by 180 degrees from each other.

同心に配置するように構成したものである。They are arranged concentrically.

(本発明の実施例) 第3図および第4図に示す要部の実施例において、3は
駆動軸、4は出力軸でそれぞれ軸端部を示しており、は
ね取付板5・6を固着しである。
(Embodiment of the present invention) In the embodiment of the main parts shown in FIG. 3 and FIG. It is fixed.

10・11は検出片でたとえば永久磁石片、20は一端
21をばね取付板5に、他方端22をばね取付板6に固
着させたコイル状(実施例では巻数をほぼ1としである
)の第1ばね、30は一端31をばね取付板5に他方端
32をばね取付板6に固着させたコイル状の第2ばねで
ある。しかして第1ばね20と第2ばね30は巻方向お
よび巻回数が等しく1巻径を異にして同心に配置し、そ
れぞれ巻きはじめ端21・31をばね取付板5の180
°偏位した位置に0巻きおわシ端22・32をばね取付
板6の180°偏位した位置に固着させてあり、その断
面積はそれぞれ巻半径の2乗に反比例するようにしであ
る。
10 and 11 are detection pieces, for example, permanent magnet pieces, and 20 is a coil-shaped piece (in the example, the number of turns is approximately 1) with one end 21 fixed to the spring mounting plate 5 and the other end 22 fixed to the spring mounting plate 6. The first spring 30 is a coil-shaped second spring having one end 31 fixed to the spring mounting plate 5 and the other end 32 fixed to the spring mounting plate 6. Therefore, the first spring 20 and the second spring 30 are arranged concentrically with the same winding direction and the same number of windings, and each winding diameter is different.
The ends 22 and 32 are fixed to the spring mounting plate 6 at a position offset by 180°, and their cross-sectional areas are inversely proportional to the square of the winding radius. .

(作 用) 出力軸4に固定したばね取伺板6がばね取付板5に対し
て第4図矢印方向に角0偏位すると、第5図に示すよう
に第1ばね2oのばね取付板6側の端22(説明の便宜
上、無負荷状態でのばね端21・22および31・32
が同じ角度位置にあるものとする。)がθだけ偏位した
位置22′へ移動して端21との間に空隙22−22 
 をつくり、ばね半径r1が(r1+△r1)に増加す
る。
(Function) When the spring retaining plate 6 fixed to the output shaft 4 deviates at an angle of 0 in the direction of the arrow in FIG. 6 side end 22 (for convenience of explanation, spring ends 21, 22 and 31, 32 in the no-load state)
are at the same angular position. ) moves to a position 22' deviated by θ, creating a gap 22-22 between it and the end 21.
, and the spring radius r1 increases to (r1+Δr1).

同時に第2ばね30の端82が32′に移り空隙32−
32’を生じ、ばね半径r2がr2+△r2に増加する
At the same time, the end 82 of the second spring 30 moves into the air gap 32-
32', and the spring radius r2 increases to r2+Δr2.

ところで、偏位量θとばね半径の増加量△rと2π の関係があり、ばね全体に生じる不つり合い重量wrは Wr =NV1 (r 1+△r1)−W2(r2灼r
2)・・・・(2)で表わされる。ここで Wl・1〜
・2は第1ばね、第2ばねの変形によシ空隙となった部
分の重量でW2−82・ ま ただしSl、S2:ばねの断面積 r:ばねの比重量 である。(2)式で示された不つり合い重量wrをOと
すれば 81   r2+△r2 82   r1+△r1 (1)式、(3)式を代入して整理すると51r2 2 82   rl の関係が成立する。
By the way, there is a relationship between the amount of deviation θ and the amount of increase △r in the spring radius, and 2π.
2)...Represented by (2). Here Wl・1~
・2 is the weight of the part that became a gap due to the deformation of the first spring and the second spring, W2-82. ・Sl, S2: cross-sectional area of the spring r: specific weight of the spring. If the unbalanced weight wr shown in equation (2) is O, then 81 r2+Δr2 82 r1+Δr1 By substituting and rearranging equations (1) and (3), the relationship 51r2 2 82 rl is established.

したがって、第1ばね20の断面積S1と第2はね30
の断面積S2をそれぞれのはね半径の2乗に反比例する
ように遷定しておくことにより。
Therefore, the cross-sectional area S1 of the first spring 20 and the second spring 30
By changing the cross-sectional area S2 of , so that it is inversely proportional to the square of the radius of each splash.

ばねの撓みによる不つり合いをOにすることができる。The unbalance caused by the deflection of the spring can be reduced to O.

なお、コイルばねの巻回数は1回に限られるものではな
く、コイルばねの径を小さくする方向に撓む場合にも適
用できることは当然である。また。
Note that the number of turns of the coil spring is not limited to one, and it goes without saying that the present invention can also be applied to a case where the coil spring is bent in a direction that reduces its diameter. Also.

コイルはね両端を無負荷状態である角度に開いて −取
りつける場合も不つり合いをなくすことができる。
Unbalance can also be eliminated if the coil is installed with both ends open at a certain angle under no load.

(本願の効果) このように1本発明は、同一巻数で異径の第1ばねと第
2ばねを同心にかつ、取付位置を180゜偏位させて設
け、各ばねの単位角度のモーメントが等しくなるように
、tfi面積を径の2乗に反比例し比重量に比例するよ
うにしであるから、トルクに応じてばねに撓みを生じ各
ばねの重量分布が変化しても、相互に打ち消して全体の
不つり合い重量をなくすことができ、振動の発生を防ぎ
、精密機械に用いる場合にも振動による影響を与えるこ
とがなく、高精度のトルク検出を行ないうる効果がちる
(Effects of the present application) In this way, the present invention provides the first and second springs with the same number of turns and different diameters concentrically and with their mounting positions offset by 180°, so that the moment of unit angle of each spring is In order to be equal, the tfi area is inversely proportional to the square of the diameter and proportional to the specific weight, so even if the springs are deflected in response to torque and the weight distribution of each spring changes, they cancel each other out. It is possible to eliminate the overall unbalanced weight, prevent the occurrence of vibration, and when used in precision machinery, there is no influence of vibration, and it is possible to perform highly accurate torque detection.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例を示すトルク検出器つき電動機の上半部
側断面図、第2図はコイルはねの撓与状態を示す説明図
、第3図は本発明の実施例を示す要部側面図で上半部を
断面にしである。第4図は第3図x−X線にそう断面図
、第5図は本発明におけるコイルばねの撓み状態を示す
説明図である。 3は駆動軸、4は出力軸、5・6はばね取付板。 7はコイルばね、8・9は位置検出器、20は第1ばね
、30は第2ばね、21・22・31・32はばね端で
ある。 第 1 図 J4 第 5 図 n
Fig. 1 is a side sectional view of the upper half of a motor with a torque detector showing a conventional example, Fig. 2 is an explanatory view showing the state of deflection of a coil spring, and Fig. 3 is a main part showing an embodiment of the present invention. The upper half is shown in cross section in a side view. FIG. 4 is a cross-sectional view taken along line XX in FIG. 3, and FIG. 5 is an explanatory view showing the deflected state of the coil spring in the present invention. 3 is the drive shaft, 4 is the output shaft, and 5 and 6 are the spring mounting plates. 7 is a coil spring, 8 and 9 are position detectors, 20 is a first spring, 30 is a second spring, and 21, 22, 31, and 32 are spring ends. Figure 1 J4 Figure 5 n

Claims (1)

【特許請求の範囲】 1 駆動側と出力側との間に、コイルばねを介挿し、前
記コイルばねの撓み角によって回転トルクを検出するト
ルク検出装置において、同一巻数を有し、単位角度のモ
ーメントを等しくした異径の第1ばねと第2ばねをそな
え、前記第1ばねと第2ばねをそれぞれ駆動側と出力側
との間に同心に。 かつ取付位置を1800偏位させて設けたことを特徴と
するトルク検出器。 2 前記第1ばねと第2ばねが、同−利質で径の自乗に
反比例する断面積をそなえている特許請求の範囲第1項
記載のトルク検出器。
[Scope of Claims] 1. A torque detection device that detects rotational torque by inserting a coil spring between a drive side and an output side and using a deflection angle of the coil spring, which has the same number of turns and has a moment of unit angle. A first spring and a second spring having different diameters are provided, and the first spring and the second spring are arranged concentrically between a drive side and an output side, respectively. A torque detector characterized in that the mounting position is offset by 1800 degrees. 2. The torque detector according to claim 1, wherein the first spring and the second spring have the same stiffness and a cross-sectional area that is inversely proportional to the square of the diameter.
JP8866483A 1983-05-18 1983-05-18 Torque detector Pending JPS59212731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8866483A JPS59212731A (en) 1983-05-18 1983-05-18 Torque detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8866483A JPS59212731A (en) 1983-05-18 1983-05-18 Torque detector

Publications (1)

Publication Number Publication Date
JPS59212731A true JPS59212731A (en) 1984-12-01

Family

ID=13949085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8866483A Pending JPS59212731A (en) 1983-05-18 1983-05-18 Torque detector

Country Status (1)

Country Link
JP (1) JPS59212731A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05142071A (en) * 1991-04-03 1993-06-08 Micro Epsilon Messtechnik Gmbh & Co Kg Torque transmission device
JP2006071468A (en) * 2004-09-02 2006-03-16 Nakamura Seisakusho:Kk Torque gauge

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05142071A (en) * 1991-04-03 1993-06-08 Micro Epsilon Messtechnik Gmbh & Co Kg Torque transmission device
JP2006071468A (en) * 2004-09-02 2006-03-16 Nakamura Seisakusho:Kk Torque gauge

Similar Documents

Publication Publication Date Title
US4062600A (en) Dual-gimbal gyroscope flexure suspension
US3943778A (en) Multigimbal flexure universal joint
US7939976B2 (en) Hybrid type rotary electric machine
US5142177A (en) Magnetically controlled bearing unit
US4492906A (en) Electric motor
US4269072A (en) Flexure assembly for a dynamically tuned gyroscope
US5363700A (en) Skewed axis inertial sensor assembly
JPS61175314A (en) Magnetic bearing
JPH0137608B2 (en)
US4143451A (en) Method of manufacturing a flexure hinge assembly
JPH11230255A (en) Inertia damper
JPS59212731A (en) Torque detector
US3438270A (en) Two-axis torquer
US4114402A (en) Flexure hinge assembly
US4285248A (en) Two-degree-of-freedom gyroscope
JPS5829442B2 (en) Jiki Bearing
EP0029655B1 (en) Gyroscope apparatus
US3452608A (en) Tubular hinge suspension for a gyro rotor
JPH0565808B2 (en)
JPS59131137A (en) Driving shaft fitting assembly for dynamic balance regulatorof wheel
US3270566A (en) Inertial sensor
US7250698B2 (en) Multi-phase claw-pole type rotary machine
US4464942A (en) Gyroscope hinge assembly with adjustable axial compliance
JPH06341435A (en) Air static pressure bearing device
JP2699870B2 (en) Rotary encoder