JPS59212563A - Method of controlling stepless speed change gear of vehicle - Google Patents

Method of controlling stepless speed change gear of vehicle

Info

Publication number
JPS59212563A
JPS59212563A JP8425683A JP8425683A JPS59212563A JP S59212563 A JPS59212563 A JP S59212563A JP 8425683 A JP8425683 A JP 8425683A JP 8425683 A JP8425683 A JP 8425683A JP S59212563 A JPS59212563 A JP S59212563A
Authority
JP
Japan
Prior art keywords
speed
throttle opening
nin
engine
cvt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8425683A
Other languages
Japanese (ja)
Inventor
Takeshi Gono
郷野 武
Takao Niwa
丹羽 孝夫
Akinori Osanai
昭憲 長内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP8425683A priority Critical patent/JPS59212563A/en
Publication of JPS59212563A publication Critical patent/JPS59212563A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • F16H61/66254Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members controlling of shifting being influenced by a signal derived from the engine and the main coupling

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)

Abstract

PURPOSE:To improve fuel consumption without hindrance on responsiveness at the time of acceleration by fixing the speed ratio when a suction system throttle opening is small and engine rotation speed is low. CONSTITUTION:When a suction system throttle opening theta is small and input-side rotation speed Nin is low, the speed changing rate of a CVT4 is made zero and speed change ratio (E) is fixed. Thereby, when the movement of the throttle opening theta is small, poorer responsiveness of an engine can be allowed more or less, preventing the deterioration in the CVT transmitting efficiency by speed change and improving the fuel cost. Also, when the throttle opening theta is large, deterioration of the responsiveness can be prevented.

Description

【発明の詳細な説明】 本発明は、車両の動力伝達装置として用いられる無段変
速機(以下「CvT」と言う。)の制御方法に係り、特
にCVTの変速速度の制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling a continuously variable transmission (hereinafter referred to as "CvT") used as a power transmission device for a vehicle, and particularly to a method for controlling the speed change of a CVT.

CVTは速度比e  (=出力側回転速度Nout /
入力側回転速度N1n)を連続的に制御することができ
、燃料消費効率の優れた動力伝達装置として車両に用い
られる。このようなCVTでは第7図に示すように変速
速度a (速度比eを時間tで微分した値de/dtの
絶対値)が増大するに変速するわけであるが、その変速
のためむこ伝達効率が悪化しかえって燃料消費効率が悪
イヒする場合もあり得る。
CVT has speed ratio e (=output side rotational speed Nout /
The input side rotational speed N1n) can be continuously controlled and is used in vehicles as a power transmission device with excellent fuel consumption efficiency. In such a CVT, as shown in Fig. 7, the gear is shifted as the gear shift speed a (absolute value of the value de/dt obtained by differentiating the speed ratio e with respect to time t) increases, but for this shift, the muscular transmission is In some cases, the efficiency deteriorates and fuel consumption efficiency worsens.

本発明の目的は、加速時の応答性に支障を生じることな
く、燃料消費効率を改善すること力SできるCvTの制
御方法を提供することである。
An object of the present invention is to provide a CvT control method that can improve fuel consumption efficiency without impairing responsiveness during acceleration.

この目的を達成するために本発明によれは、吸気系スロ
ットル開度が小さくかつ機関回転速度が低い場合にはC
VTの速度比eを固定する。
In order to achieve this object, the present invention provides that when the intake system throttle opening is small and the engine speed is low, C
The speed ratio e of VT is fixed.

すなわちスロットル開度の動きが小さい場合Gこは、多
少の機関の応答性の悪化は¥1.容し、変速によるCV
T伝達効率の悪化を防出して燃費の改善を図る。スロッ
トル開度が大きい場合には本来の変速達度晶で制御を行
ない、応答性を損わないようにする。
In other words, if the movement of the throttle opening is small, a slight deterioration in engine responsiveness will cost ¥1. CV by changing speed
To prevent deterioration of T transmission efficiency and improve fuel efficiency. When the throttle opening is large, control is performed using the original speed change performance indicator so as not to impair responsiveness.

図面を参照して本発明の実施例を説明する。Embodiments of the present invention will be described with reference to the drawings.

る。1対の入力側ディスク6a 、 6bは互いに対向
的に設けられ、一方の入力側ディスク6a4J入力軸5
に軸線方向へ相対移動可能に設けられ、他方の入力側デ
ーrスク6bは入力軸5に固定されている。また、1対
の出力側ディスク7a 。
Ru. A pair of input side disks 6a and 6b are provided facing each other, and one input side disk 6a4J input shaft 5
The other input side disc 6b is fixed to the input shaft 5 so as to be relatively movable in the axial direction. Also, a pair of output side disks 7a.

7bも互いに対向的に設けられ、一方の出力側ディスク
7aは出力軸8に固定され、他方の出力側ディスク7b
は出力軸8に軸線方向へ移動可能に設けられている。ベ
ルト9は、等脚台形の横断面を有し、入力側ディスク6
a 、 6bと出力側ディスク7a+ 7bの間に掛け
られている。
7b are also provided facing each other, one output side disk 7a is fixed to the output shaft 8, and the other output side disk 7b
is provided on the output shaft 8 so as to be movable in the axial direction. The belt 9 has an isosceles trapezoidal cross section, and the input side disk 6
a, 6b and the output side disks 7a+7b.

入力側ディスク6a 、 6bの対向面、および出力側
ディスク7a + 7bの対向面は半径方向外方へ進む
に連れて両者間の距離が増大するようにテーパ断面に形
成される。対向面間の距離の増減に関係して、入力側お
よび出力側ディスク6a。
The opposing surfaces of the input side disks 6a, 6b and the opposing surfaces of the output side disks 7a+7b are formed into tapered cross sections so that the distance between them increases as they proceed radially outward. The input side and output side disks 6a in relation to the increase or decrease of the distance between the opposing surfaces.

6b 、 7a、 7bにおけるベルト9の掛かり半径
が増減し、速度比および伝達トルクが変化する。
The radius of engagement of the belt 9 at 6b, 7a, and 7b increases or decreases, and the speed ratio and transmission torque change.

オイルポンプ14は油だめ15から吸込んだオイルを調
圧弁16へ送る。リニアソレノイド式の調圧弁16はド
レン17へのオイルの排出量を制御して油路18のライ
ン圧を制御する。油路18は出力側ディスク7bの油圧
シリンダへ接続されている。リニアソレノイド式流月士
制御弁19は、入力側ディスク6a + 6b間の押圧
力を増大Ne)を増大させる場合には入力側ディスク6
aの油圧シリンダへの油路20と油路18との間の流通
断面積を増大させるとともに油路20とドレン17との
接続を断ち、また入力側ディスク6a + 6b間の押
圧力を減少させて速度比を減少させる場合には油路18
と20との接続を断つとともに油路20とドレン17と
の間の流通断面積を制御する。回転角センサ23 、2
4はそれぞれ入力側ディスク6bおよび出力側ディスク
7aの回転速度Nin + Noutを検出する。出力
側ディスク7bのシリンダ油圧、すなわちライン圧はベ
ルト9が滑らずにトルク伝達を確保できる最小の油圧に
制御され、これによりポンプ14の駆動損失が抑制され
る。入力側ディスク6aへのオイルの流量によりCVT
 4の速度比が制御される。なお出力側ディスク7bの
シリンダ油圧≧入力側ディスク6aのシリンダ油圧であ
るが、シリンダピストンの受圧面積は入力側〈出力側で
あり、1以上の速度比が実現可能である。水濡センサ2
5は機関1の冷却水温度を検出する。
The oil pump 14 sends oil sucked from the oil sump 15 to the pressure regulating valve 16. The linear solenoid type pressure regulating valve 16 controls the amount of oil discharged to the drain 17 to control the line pressure of the oil passage 18 . The oil passage 18 is connected to a hydraulic cylinder of the output side disc 7b. The linear solenoid type control valve 19 increases the pressing force Ne) between the input side disks 6a + 6b.
The flow cross-sectional area between the oil passage 20 and the oil passage 18 to the hydraulic cylinder a is increased, the connection between the oil passage 20 and the drain 17 is cut off, and the pressing force between the input side discs 6a + 6b is reduced. When reducing the speed ratio, the oil passage 18
and 20, and controls the flow cross-sectional area between the oil passage 20 and the drain 17. Rotation angle sensor 23, 2
4 detects the rotation speed Nin + Nout of the input side disk 6b and the output side disk 7a, respectively. The cylinder oil pressure of the output side disk 7b, that is, the line pressure, is controlled to the minimum oil pressure that can ensure torque transmission without the belt 9 slipping, thereby suppressing drive loss of the pump 14. CVT due to the flow rate of oil to the input side disc 6a
A speed ratio of 4 is controlled. Although the cylinder oil pressure of the output side disk 7b≧the cylinder oil pressure of the input side disk 6a, the pressure receiving area of the cylinder piston is on the input side <output side, and a speed ratio of 1 or more can be realized. Water wetness sensor 2
5 detects the cooling water temperature of the engine 1.

スロットル開度センサ26は、加速ペダル27に連動す
る吸気系スロットル弁の開度を検出する。
The throttle opening sensor 26 detects the opening of an intake system throttle valve that is linked to the accelerator pedal 27 .

シフト位置センサ28は座席29の近傍のシフトレバ−
のレンジを検出する。
The shift position sensor 28 is located at a shift lever near the seat 29.
Detects the range of

第2図は電子制御装置のブロック図である。FIG. 2 is a block diagram of the electronic control device.

CPU 32 、RAM 33 、ROM 34 、I
/F  (インタフェース)35、A/D  (アナロ
グ/デジタル変換器)36、およびD/A  (デジタ
ル/アナログ変換器)37はバス38により互いに接続
されている。回転角センサ23 、24およびシフト位
置センサ28の出力パルスはインタフェース35へ送ら
れ、水濡センサ25およびスロットル開度センサ26の
アナログ出力はA/D 36へ送られ、D/A 37の
出力は調圧弁16および流量制御弁19へ送られる。
CPU 32, RAM 33, ROM 34, I
/F (interface) 35, A/D (analog/digital converter) 36, and D/A (digital/analog converter) 37 are connected to each other by bus 38. The output pulses of the rotation angle sensors 23 and 24 and the shift position sensor 28 are sent to the interface 35, the analog outputs of the water wetness sensor 25 and the throttle opening sensor 26 are sent to the A/D 36, and the output of the D/A 37 is It is sent to the pressure regulating valve 16 and the flow rate control valve 19.

第3図はCVT 4の制御ブロック線図である。FIG. 3 is a control block diagram of the CVT 4.

ブロック44においてスロットル[用度OからCVT 
4の入力側回転速度N1n(=機関回転速度Ne)の目
標値Nin’が計算される。CVT 4てはスロットル
開度0の関数として機関1の要求馬力が設定され、各要
求馬力を最小燃滌消費量で達成する機関回転速度Ncを
その時のスロットル開度θにおける入力側回転速度Ni
nの目標値Nin’として定める。ブロック46てはN
inがNin’に達するまで、目標速度比e′をΔeず
つ増減する。ただし変更量Δeは正の値である。目標速
度比e′の初期値は実際の速度比eとし、八〇は所定量
であり、Nin < Nin’の場合は−Δe、Nin
> N i n’の場合は+Δeがそれぞれ選択される
At block 44, the throttle is adjusted from O to CVT.
A target value Nin' of the input side rotational speed N1n (=engine rotational speed Ne) of No. 4 is calculated. In the CVT 4, the required horsepower of the engine 1 is set as a function of the throttle opening 0, and the engine rotation speed Nc that achieves each required horsepower with the minimum fuel consumption is determined by the input side rotation speed Ni at the current throttle opening θ.
The target value of n is determined as Nin'. Block 46 is N
The target speed ratio e' is increased or decreased by Δe until in reaches Nin'. However, the change amount Δe is a positive value. The initial value of the target speed ratio e' is the actual speed ratio e, 80 is a predetermined amount, and if Nin <Nin', -Δe, Nin
>N i n', +Δe is selected.

ブロック48では目標速度比e′に対する実際の速度比
eの偏差からフィードバックケインが計算される。フィ
ードバックケインは流量制御アンプ50を経て流量制御
弁19へ送られ、CVT4の速度比eが制御される。ブ
ロック52では入刃側回転速度Ninとスロットル開度
θとから機関lの軸トルクTeを計算する。ブロック5
4ではCVT4の伝達トルクの関数としてライン圧力を
引算する。CVT 4の伝達トルクは機関1の軸トルク
Te、入力側回転速度Nin 、および出力側回転速度
Noutの関数である。ブロック54の出力は調圧弁ア
ンプ56を経て調圧弁16へ送られ、CVT4のライン
圧が制御される。
In block 48, a feedback cane is calculated from the deviation of the actual speed ratio e from the target speed ratio e'. The feedback cane is sent to the flow control valve 19 via the flow control amplifier 50, and the speed ratio e of the CVT 4 is controlled. In block 52, the shaft torque Te of the engine l is calculated from the blade entry side rotational speed Nin and the throttle opening degree θ. block 5
4, the line pressure is subtracted as a function of the transmission torque of the CVT 4. The transmission torque of the CVT 4 is a function of the shaft torque Te of the engine 1, the input side rotational speed Nin, and the output side rotational speed Nout. The output of the block 54 is sent to the pressure regulating valve 16 via the pressure regulating valve amplifier 56, and the line pressure of the CVT 4 is controlled.

第4図は第3図の制御ブロック線図に従った制御を実行
するルーチンのフローチャートである。制御の概要は第
3図においてすでに説明した通りである。なお目標速度
比e′の上限および下限はemaxおよびemi nと
され、流量制御弁19の入力電圧としての流量側′a電
圧はK(e’−e)(ただしKは定数)とされ、調圧弁
16の入力電圧としての調圧弁制御電圧はg (Te 
+ Nz n +Nout )とされる。ステップ60
,62.64ではスロットル開度0、入力側回転速度N
in 、出力側回転速度Noutを読込み、ステップ6
6では、目標入力側回転速度Nin’を計算する。ステ
ップ68ではNinとNin’とを比較し、Nin =
 Nin’であればステップ70においてe′を保持し
、Ntn<Nin’であればステップ72においてe′
をΔeだけ減少し、Nin > Nin’であれはステ
ップ76においてe′をΔeだけ増大する。ステップ7
3.74ではe′の下限をeminに制限し、ステップ
78゜80ではe′の上限をemaxに制限する。ステ
ップ82では流量制御電圧を計算し、ステップ84で機
関の軸トルクTeを計算してからステップ86で調圧弁
制御電圧を計算する。
FIG. 4 is a flowchart of a routine for executing control according to the control block diagram of FIG. 3. The outline of the control is as already explained in FIG. Note that the upper and lower limits of the target speed ratio e' are emax and emin, and the flow rate side 'a voltage as the input voltage of the flow rate control valve 19 is K(e'-e) (K is a constant), and the adjustment The pressure regulating valve control voltage as the input voltage of the pressure valve 16 is g (Te
+ Nz n +Nout ). Step 60
, 62.64, the throttle opening is 0 and the input side rotation speed is N.
in, read the output side rotation speed Nout, and step 6
In step 6, the target input side rotational speed Nin' is calculated. In step 68, Nin and Nin' are compared and Nin =
If Nin', e' is held in step 70, and if Ntn<Nin', e' is held in step 72.
is decreased by Δe, and if Nin>Nin', e' is increased by Δe in step 76. Step 7
In step 3.74, the lower limit of e' is limited to emin, and in steps 78 and 80, the upper limit of e' is limited to emax. At step 82, the flow rate control voltage is calculated, at step 84, the engine shaft torque Te is calculated, and at step 86, the pressure regulating valve control voltage is calculated.

第5図は本発明における吸気系スロットル開度0および
入力側回転速度Nin  (=機関回転速度Ne)と変
速速度&との関係を示している。
FIG. 5 shows the relationship between the intake system throttle opening degree 0, the input side rotational speed Nin (=engine rotational speed Ne), and the shift speed & in the present invention.

変速速度みはすでに定義しているように速度比eの時間
微分値de/dtの絶対値1de/dtlであり、第3
図のブロック46および第4図のステップ72.76に
おけるΔeに対応する。第5図から明らかなように0 
<e l+ Nin < Nin1の領域、すなわち軽
伯荷の領域では5=0が選択され、その他の領域では2
=x(ただしXは所定値である。)が選択される。吸気
系スロットル開度θが小さくかつ機関回転速度Ne(=
入力側回転速度Nin )が低い場合には多少の機関応
答性の悪化は許容し、変速速度みを0にすることにより
第7図に示されるような良好な伝達効率力を確保して燃
料消費効率の改善を図る。なお変速速度す二〇の期間で
は車速Vは機関回転速度Neの上昇のみにより上昇する
As already defined, the shift speed is the absolute value 1de/dtl of the time differential value de/dt of the speed ratio e, and the third
Corresponds to block 46 of the figure and Δe in step 72.76 of FIG. As is clear from Figure 5, 0
In the region of <e l+ Nin < Nin1, that is, in the region of light weight, 5=0 is selected, and in other regions, 2
=x (where X is a predetermined value) is selected. When the intake system throttle opening θ is small and the engine rotation speed Ne (=
If the input side rotational speed Nin) is low, some deterioration in engine response is allowed, and by setting only the shift speed to 0, a good transmission efficiency as shown in Fig. 7 is ensured and fuel consumption is reduced. Improve efficiency. Note that during the period of shift speed 20, the vehicle speed V increases only due to an increase in the engine rotation speed Ne.

第6図は第5図の関係に従って変速速度5を計算するル
ーチンのフローチャートである。ステップ92.94に
おいてスロットル開度0および入力側回転速度Ninと
所定値θ1.Nin1とを比較し、θくθ1かつNin
 < Nin1の場合はステップ96へ進んで変速速度
みにOを代入し、その他の場合はステップ98へ進んで
変速速度みにXを代入する。
FIG. 6 is a flowchart of a routine for calculating the shift speed 5 according to the relationship shown in FIG. At steps 92 and 94, the throttle opening degree is 0, the input side rotational speed Nin is determined, and the predetermined value θ1. Compare θ1 and Nin1.
If <Nin1, the process advances to step 96 and O is substituted for only the shift speed; otherwise, the process advances to step 98 and X is substituted for only the shift speed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明が適用されるCVTの全体の概略図、第
2図は電子制御装置のブロック図、第の制御ブロック線
図に従ったC V T ;l;!制御ルーチンのフロー
チャート、第5図は本発明における吸気系スロットル開
度および入力側回転速度と変速速度との関係を示す図、
第6図は第5図の関係に従う俊速速度fl′算ルーチン
のフローチャート、第7図はCVTにおける変速速度と
伝達効率との関係を示すグラフである。 1・・・機関、4・・・CVT、  +9・・・流量制
御弁、23・・・回転角センサ、26・・・スロットル
開度センサ。 特ご、8F人 トヨタ自動車株式会社 第7図 変速速度δ
FIG. 1 is an overall schematic diagram of a CVT to which the present invention is applied, FIG. 2 is a block diagram of an electronic control device, and C VT ;l;! according to the second control block diagram. A flowchart of the control routine, FIG. 5 is a diagram showing the relationship between the intake system throttle opening, the input side rotation speed, and the shift speed in the present invention,
FIG. 6 is a flowchart of a quick speed fl' calculation routine according to the relationship shown in FIG. 5, and FIG. 7 is a graph showing the relationship between shift speed and transmission efficiency in a CVT. 1... Engine, 4... CVT, +9... Flow rate control valve, 23... Rotation angle sensor, 26... Throttle opening sensor. Special order, 8F person Toyota Motor Corporation Figure 7 Shift speed δ

Claims (1)

【特許請求の範囲】[Claims] 吸気系スロットル開度が小さくかつ機関回転速度が低い
場合には速度比を固定することを特徴とする、車両用無
段変速機の制御方法。
A control method for a continuously variable transmission for a vehicle, characterized in that a speed ratio is fixed when the intake system throttle opening is small and the engine rotation speed is low.
JP8425683A 1983-05-16 1983-05-16 Method of controlling stepless speed change gear of vehicle Pending JPS59212563A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8425683A JPS59212563A (en) 1983-05-16 1983-05-16 Method of controlling stepless speed change gear of vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8425683A JPS59212563A (en) 1983-05-16 1983-05-16 Method of controlling stepless speed change gear of vehicle

Publications (1)

Publication Number Publication Date
JPS59212563A true JPS59212563A (en) 1984-12-01

Family

ID=13825373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8425683A Pending JPS59212563A (en) 1983-05-16 1983-05-16 Method of controlling stepless speed change gear of vehicle

Country Status (1)

Country Link
JP (1) JPS59212563A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992009829A1 (en) * 1990-11-26 1992-06-11 Komatsu Ltd. Control device in hydrostatic-mechanical transmitting machine
US5540051A (en) * 1990-11-26 1996-07-30 Komatsu Ltd. Control mechanism for hydrostatic-mechanical power transmission system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992009829A1 (en) * 1990-11-26 1992-06-11 Komatsu Ltd. Control device in hydrostatic-mechanical transmitting machine
US5540051A (en) * 1990-11-26 1996-07-30 Komatsu Ltd. Control mechanism for hydrostatic-mechanical power transmission system

Similar Documents

Publication Publication Date Title
JPS59217048A (en) Control of stepless speed change gear for car
JPS59217051A (en) Control for stepless speed change gear for car
JPH066977B2 (en) Control device for continuously variable transmission for vehicle
JPH0712810B2 (en) Speed ratio control device for continuously variable transmission for vehicles
US4622865A (en) Apparatus for controlling continuously variable transmission when accelerating from low speeds
JPH0335536B2 (en)
JPH0428947B2 (en)
JPH049936B2 (en)
JPH0327791B2 (en)
JPS59144850A (en) Method of controlling stepless transmission for vehicle
JPH0327792B2 (en)
JPS62110536A (en) Control for vehicle driving system
JPH049935B2 (en)
JPH0543896B2 (en)
JPH0428946B2 (en)
KR100694741B1 (en) Method and device for controlling the drive unit of a vehicle
JPS62110535A (en) Controller for vehicle driving system
JPH05332426A (en) Speed change control device of continuously variable transmission
JPS59212563A (en) Method of controlling stepless speed change gear of vehicle
JPS59217047A (en) Control for stepless speed change gear for car
JPS59217050A (en) Control of stepless speed change gear for vehicle
JPH0417292B2 (en)
JP3695230B2 (en) Shift control device and shift control method for continuously variable transmission for vehicle
JP2007132238A (en) Engine power control device in start of vehicle
JPS58193961A (en) Automatic transmission for automobile