JPS59212513A - Bearing apparatus - Google Patents

Bearing apparatus

Info

Publication number
JPS59212513A
JPS59212513A JP8611583A JP8611583A JPS59212513A JP S59212513 A JPS59212513 A JP S59212513A JP 8611583 A JP8611583 A JP 8611583A JP 8611583 A JP8611583 A JP 8611583A JP S59212513 A JPS59212513 A JP S59212513A
Authority
JP
Japan
Prior art keywords
bearing
shaft
outer peripheral
hydraulic chamber
rotating shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8611583A
Other languages
Japanese (ja)
Inventor
Eihiko Tsukamoto
塚本 頴彦
Ryoji Taura
良治 田浦
Junichi Iifushi
順一 飯伏
Keiichi Katayama
圭一 片山
Hikotaro Itani
猪谷 彦太郎
Michinori Yamamoto
山本 道則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP8611583A priority Critical patent/JPS59212513A/en
Publication of JPS59212513A publication Critical patent/JPS59212513A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement

Abstract

PURPOSE:To control the dangerous speed to a constant value by continuously forming a pressing mechanism for pressing a bearing towards the outer peripheral surface side of a rotary shaft, onto the outer peripheral part in the radial direction of the bearing. CONSTITUTION:An annular hydraulic chamber 2 is formed continuously onto the outer peripheral part in the radial direction of a bearing 1 for supporting a rotary shaft S and a pressing mechanism PM for pressing the bearing 1 towards the outer peripheral surface side of the rotary shaft S is formed. The oil discharged from the pump P of a hydraulic pressure feeding apparatus 5 is supplied into the hydraulic chamber 2 through an oil passage 4. A relief valve 3 for controlling the amount of oil returned to a reservoir R is installed in parallel to the pump P. Thus, the gap between the shaft S and the bearing 1 can be adjusted by controlling the pressure P acting into the hydraulic chamber 2 can be controlled.

Description

【発明の詳細な説明】 本発明は、圧延設備の巻取り巻戻しのリール等のように
高速で回転する軸を支持するための軸受装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a bearing device for supporting a shaft rotating at high speed, such as a winding and unwinding reel of a rolling equipment.

従来のこの種の軸受装置では、第1図(j)、 (b)
に示すように、回転軸Sを回転させるの番とベアリング
(軸受)lにて一点または二点で支持して回す場合がほ
とんどである。
In the conventional bearing device of this type, Fig. 1 (j), (b)
As shown in the figure, in most cases, the rotating shaft S is rotated while being supported at one or two points by a bearing L.

軸Sを高速で回転させると、軸Sの支持法や軸Sの径り
、長さlにより回転可能な回転数が決まってくる。すな
わちそれ以上の速度で軸S数とが一致して共振し、軸S
は破損することかある。このときの回転数を危険速度と
呼んでいる。
When the shaft S is rotated at high speed, the number of revolutions that can be rotated is determined by the method of supporting the shaft S, the diameter of the shaft S, and the length l. In other words, at a speed higher than that, the number of shafts S matches and resonates, and the shaft S
may be damaged. The rotational speed at this time is called the critical speed.

この危険速度は第1図(a)、(b)に示すように一点
支持か二点支持かによる支持法や軸の径や長さ、それに
軸構造が第2図(a)に示すように中実軸Sと軸受1と
の間にスリーブSaを介した二重軸構造か、第2図(b
)に示すように中実軸Sを軸受1で支承した一重中実軸
構造かによっても異なってくる。また固有振動数か高い
ほど、危険速度は大きくなる。
This critical speed depends on the support method (one-point support or two-point support), the diameter and length of the shaft, and the shaft structure as shown in Figure 2 (a), as shown in Figures 1 (a) and (b). A double shaft structure with a sleeve Sa interposed between the solid shaft S and the bearing 1, or a double shaft structure as shown in FIG.
) As shown in ), it also differs depending on whether it is a single solid shaft structure in which a solid shaft S is supported by a bearing 1. Also, the higher the natural frequency, the higher the critical speed.

次に、上述の一重中実軸構造と二重軸構造の場合の固有
振動数特性についての実験結果を説明する。第3図(b
)がその結果である。
Next, experimental results regarding the natural frequency characteristics of the single solid shaft structure and double shaft structure described above will be explained. Figure 3 (b
) is the result.

これは第3図(a)に示すような寸法をもつ軸受装置(
二重軸構造の場合もほぼ同じ構造)を用いて、モータM
で軸Sを回転数N=1000rpmで回転させた場合で
あるが、軸Sを軸受1で支えて回転させると、支持部(
ネック部)に熱がこのネック部における熱(軸受温度)
Toと固有振動数との関係を軸受1の上昇温度毎に一重
中実軸構造の場合(実線)と二重軸構造の場合(点線)
とについてまとめたものが第3図(b)に示す特性図で
ある。
This is a bearing device (
(almost the same structure in the case of the double shaft structure), the motor M
In this case, the shaft S is rotated at a rotation speed N=1000 rpm, but when the shaft S is supported by the bearing 1 and rotated, the support part (
Heat at this neck (bearing temperature)
The relationship between To and the natural frequency is shown for each rising temperature of bearing 1 in the case of a single solid shaft structure (solid line) and in the case of a double shaft structure (dotted line).
The characteristic diagram shown in FIG. 3(b) summarizes these characteristics.

この第3図(b)から判るように、第2図(a)のよう
な二重軸構造の場合は、軸受lの温度上昇に関係なく固
有振動数はほぼ一定値である。〔第3図(b)に点線で
示す特性参照〕 これに対し、第2図(b)のような−型中実軸構造にす
ると、軸受1の温度上昇とともに、固有振動数は増加し
ている。〔第3図(b)に実線で示す特性参照〕 この原因を調べた結果、次のことが判った。
As can be seen from FIG. 3(b), in the case of the double-shaft structure as shown in FIG. 2(a), the natural frequency is approximately constant regardless of the temperature rise of the bearing l. [Refer to the characteristics indicated by the dotted line in Figure 3 (b)] On the other hand, if the −-shaped solid shaft structure is used as shown in Figure 2 (b), the natural frequency increases as the temperature of the bearing 1 increases. There is. [Refer to the characteristics indicated by the solid line in FIG. 3(b)] As a result of investigating the cause of this, the following was found.

まず、二重軸構造のものは、第4図(a)に示すごとく
、軸受1とスリーブSCとの間に、ごくわずかのすきま
δ1がある。
First, in the double-shaft structure, as shown in FIG. 4(a), there is a very small gap δ1 between the bearing 1 and the sleeve SC.

またスリーブSCと軸Sとの間にも、δ1より大きいす
きまδ2がある。
Furthermore, there is also a gap δ2 between the sleeve SC and the shaft S, which is larger than δ1.

ところで、回転中、軸受1の温度が上昇すると言うこと
は、その部分の軸部も温度上昇することになる。これに
よりスリーブSaが熱により膨張し、軸受1も膨張する
By the way, if the temperature of the bearing 1 rises during rotation, the temperature of that portion of the shaft will also rise. As a result, the sleeve Sa expands due to heat, and the bearing 1 also expands.

この軸受1の膨張よりスリーブSCのほうがその形状9
寸法が大きいため、スリーブSCが膨らんで軸受1間の
すきまδ1を次第に縮めてゆき、やがてδ、−〇となり
、ついには軸受1とスリーブSaとの間に、圧縮力が発
生してくる。
The shape 9 of the sleeve SC is better than the expansion of the bearing 1.
Due to its large size, the sleeve SC expands and gradually reduces the gap δ1 between the bearings 1, eventually becoming δ, -0, and finally a compressive force is generated between the bearing 1 and the sleeve Sa.

また軸Sも温度上昇によって膨張するが、スリーブSC
との間のすきまδ2はスリーブSCと軸受1との間のす
きまδ、よりはるかに大きいため、この間のすきまδ2
は縮まるだけで、すきまは常に存在することが判った。
The shaft S also expands due to temperature rise, but the sleeve SC
The clearance δ2 between the sleeve SC and the bearing 1 is much larger than the clearance δ2 between the sleeve SC and the bearing 1.
It was found that the gap only decreases, but the gap always exists.

次に、−型中実軸構造の場合には、第4図(b)に示す
ように軸受lと軸Sとの間に、第4図(a)の軸受1と
スリーブSCとの間と同量のすきまδ3がある。この場
合も、温度上昇とともに、すきまδ3は縮まって、つい
には第4図(a)のすきまδ1と同様に、δ3のすきま
は無くなり、この間には圧縮量が作用しはじめることが
判った。
Next, in the case of a - type solid shaft structure, there is a gap between the bearing 1 and the shaft S as shown in FIG. 4(b), and between the bearing 1 and the sleeve SC in FIG. 4(a). There is a gap δ3 of the same amount. In this case as well, as the temperature rises, the gap δ3 narrows, and finally, like the gap δ1 in FIG. 4(a), the gap δ3 disappears, and it was found that the amount of compression begins to act during this time.

この結果から、−型中実軸構造の場合は、温度上昇とと
もに、軸受1と軸Sとの間のすきまδ3が無くなり、ば
ね定数Kが増したことにより、固有振動数が増加したこ
とが判り、逆に二重軸構造の場合には、スリーブSCと
軸受1との間のすきまδ1は無くなるが、軸Sとスリー
ブSaとの間にすきまδ2が残っているため、バネ定数
には増加せず、固有振動数には無関係であることが判っ
た。
From this result, it can be seen that in the case of the - type solid shaft structure, as the temperature rises, the gap δ3 between the bearing 1 and the shaft S disappears, and the spring constant K increases, resulting in an increase in the natural frequency. Conversely, in the case of a double shaft structure, the clearance δ1 between the sleeve SC and the bearing 1 disappears, but the clearance δ2 remains between the shaft S and the sleeve Sa, so the spring constant does not increase. First, it turned out that it has nothing to do with the natural frequency.

ここで、バネ定数にとは、物体のたわみΔSとそれに対
する反力pとの相関から求まる定数であり、第5図に示
すように、角度Kにて与えられる。第5図は軸受1と軸
Sとのすきまを大中、小と変えた場合に得られるであろ
うバネ定数にの変化を示している。つまりすきまが小さ
いほどバネ定数には大きくなる。
Here, the spring constant is a constant determined from the correlation between the deflection ΔS of the object and the reaction force p thereto, and is given by the angle K as shown in FIG. FIG. 5 shows the change in spring constant that would be obtained when the clearance between the bearing 1 and the shaft S was changed from large to medium to small. In other words, the smaller the gap, the larger the spring constant.

第6図(b)は、第6図(a)に示すような寸法をもつ
軸受装置(二重軸構造の場合もほぼ同じ構造)を用いて
、はね定数にと危険速度との関係について一重中実軸構
造の場合と二重軸構造の場合とを比較した計算結果であ
る。
Figure 6(b) shows the relationship between the spring constant and critical speed using a bearing device with dimensions as shown in Figure 6(a) (almost the same structure in the case of double shaft structure). These are calculation results comparing the case of a single solid shaft structure and the case of a double shaft structure.

この計算結果から判るように、バネ定数Kが大きいほど
危険速度は増加してくる。つまりバネ定数Kが大きい程
高速回転が可能となる。
As can be seen from this calculation result, the greater the spring constant K, the greater the critical speed. In other words, the larger the spring constant K is, the higher the rotation speed becomes possible.

そして危険速度が増加することは、固有振動数が増加し
たことを意味する。
An increase in the critical speed means an increase in the natural frequency.

以上の結果から回転軸系のバネ定数Kを増加させる支持
手段、さらにこのバネ定数Kを一定に調整できる支持手
段があれば、常に一定の危険速度を確保でき、操業の安
定化、安全化が保てる。
From the above results, if there is a support means that increases the spring constant K of the rotating shaft system, and a support means that can adjust this spring constant K to a constant value, it is possible to always maintain a constant critical speed and stabilize and improve the safety of operations. I can keep it.

本発明は、発明者が得た上述の知見に基づき創作された
もので、回転軸系のバネ定数を自在に調整できるように
して、回転軸の危険速度を自由に制御できるようにした
、軸受装置を提供することを目的とする。
The present invention was created based on the above-mentioned knowledge obtained by the inventor, and is a bearing that enables the spring constant of the rotating shaft system to be freely adjusted and the critical speed of the rotating shaft to be freely controlled. The purpose is to provide equipment.

このため、本発明の軸受装置は、回転軸を支承する軸受
の半径方向外周部に、同軸受を回転軸外周面側に向かっ
て押付ける加圧機構を連接させてなることを特徴として
いる。
For this reason, the bearing device of the present invention is characterized in that a pressing mechanism for pressing the bearing toward the outer peripheral surface of the rotating shaft is connected to the radially outer peripheral portion of the bearing that supports the rotating shaft.

以下、図面により本発明の一実施例としての軸受装置に
ついて説明すると、第7図はその概略構成を示す模式図
であり、第8図はその変形例の概略構成を示す模式図で
あって、第7,8図中、第1〜6図と同じ符号はほぼ同
様の部分を示している。
Hereinafter, a bearing device as an embodiment of the present invention will be described with reference to the drawings. FIG. 7 is a schematic diagram showing the schematic configuration thereof, and FIG. 8 is a schematic diagram showing the schematic configuration of a modification thereof, In FIGS. 7 and 8, the same reference numerals as in FIGS. 1 to 6 indicate substantially similar parts.

第7図に示すごとく、高速の回転軸Sを支承するために
、軸受lが設けられており、この軸受1の半径方向外周
部に、軸受1を回転軸Sの外周面側に向かって押付ける
加圧機構PMを構成すべく、環状の油圧室2が連接して
設けられている。
As shown in FIG. 7, a bearing 1 is provided to support the high-speed rotating shaft S, and the bearing 1 is pushed toward the outer circumferential surface of the rotating shaft S on the radial outer circumference of the bearing 1. Annular hydraulic chambers 2 are connected to form a pressurizing mechanism PM.

なお、この油圧室2は図示しない固定部に取付けられて
おり、油圧室2に作用する圧力pの反力を支承できるよ
うになっている。
Note that this hydraulic chamber 2 is attached to a fixed part (not shown), so that it can support the reaction force of the pressure p acting on the hydraulic chamber 2.

さらに、油圧室2には、油路4を介して油圧供給装置5
のポンプPからの吐出油が供給されるようになっている
Further, a hydraulic pressure supply device 5 is connected to the hydraulic chamber 2 via an oil passage 4.
Discharge oil from the pump P is supplied.

また、ポンプPと並列的にリザー/<Rへの戻り油量を
制御するIJ IJ−フ弁3が設けられており、これに
より油圧室2に作用する圧力pを制御して、軸Sと軸受
1との間のすきまを調整し、常に一定のバネ定数Kが得
られるようになっている。
In addition, an IJ-F valve 3 is provided in parallel with the pump P to control the amount of oil returned to the reservoir/<R. The clearance between the bearing 1 and the bearing 1 is adjusted so that a constant spring constant K is always obtained.

このように回転軸系のバネ定数Kを一定に調整できるの
で、軸受温度により危険速度ひいては固有振動数が変化
するのを防止することができ、操業の安全化、安定化に
寄与しうるのである。
Since the spring constant K of the rotating shaft system can be adjusted to a constant value in this way, it is possible to prevent the critical speed and even the natural frequency from changing due to bearing temperature, contributing to safer and more stable operations. .

また、IJ ’J−フ弁3を調整すれば、油圧室2に作
用する圧力pの値を変えて、回転軸系のノくネ定数Kを
任意に調整することができ、これにより操業条件に応じ
て危険速度を適宜変更でき、その結果操業条件の拡大を
はかることができる。
In addition, by adjusting the IJ'J valve 3, the value of the pressure p acting on the hydraulic chamber 2 can be changed, and the screw constant K of the rotating shaft system can be arbitrarily adjusted. The critical speed can be changed as appropriate depending on the situation, and as a result, the operating conditions can be expanded.

なお、第7図中の符号M′は、ポンプ駆動用モータを示
している。
Note that the symbol M' in FIG. 7 indicates a pump driving motor.

ところで、第8図に示すごとく、加圧機構PMとして、
対をなすくさび6,7を軸受1の半径方向外周部に連接
させるとともに、一方のくさび7を油圧シリンダのごと
き駆動装置8にて矢印方向に駆動する機構を設けること
により、軸受1を回転軸外周面側に向かって押付ける力
pを制御するようにしてもよい。なお、くさび7は外側
方への移動は規制されている。
By the way, as shown in FIG. 8, as the pressurizing mechanism PM,
By connecting the pair of wedges 6 and 7 to the outer circumference in the radial direction of the bearing 1 and by providing a mechanism for driving one of the wedges 7 in the direction of the arrow with a drive device 8 such as a hydraulic cylinder, the bearing 1 can be connected to the rotating shaft. The force p pressing toward the outer circumferential surface may be controlled. Note that the wedge 7 is restricted from moving outward.

かかる構成により、くさび効果にて軸受1を締めつけ、
軸受1と軸Sとの間のすきまおよび圧力を調整すること
ができ、常に一定のノくネ定 グ数Kが得られるように
調整したり、任意のノくネ定数にとなるように調整した
りすることができるのであり、この場合も操業の安全化
、安定化に寄与できるほか、操業条件の範囲の拡大をは
かることができる。
With this configuration, the bearing 1 is tightened by a wedge effect,
The clearance and pressure between the bearing 1 and the shaft S can be adjusted so that a constant number constant K is always obtained, or it can be adjusted to an arbitrary number constant. In this case as well, it is possible to contribute to safer and more stable operations, and also to expand the range of operating conditions.

なお、第7,8図に示すような加圧機構PMを、」二連
のごとく一重中実軸構造の軸受装置に適用するほか、第
2図(a)や第4図(a)に示すような二重軸構造の軸
受装置にも適用することができる。
In addition to applying the pressure mechanism PM shown in Figs. 7 and 8 to a bearing device with a single solid shaft structure such as a double series, the pressure mechanism PM shown in Figs. 2(a) and 4(a) The present invention can also be applied to a bearing device with a dual shaft structure such as this.

以上詳述したように、本発明の軸受装置によれば、回転
軸を支承する軸受の半径方向外周部に、同軸受を回転軸
外周面側に向かって押付ける加圧機構が連設するように
設けられるという簡素な構成で、回転軸系のバネ定数を
適切に調整することができ、これにより回転軸の危険速
度ひいては固有振動数を制御して、操業の安全化や安定
化に寄与しうるほか、操業条件の範囲の拡大をもたらし
うる利点もある。
As described in detail above, according to the bearing device of the present invention, a pressurizing mechanism that presses the bearing toward the outer peripheral surface of the rotating shaft is connected to the radially outer peripheral portion of the bearing that supports the rotating shaft. With a simple configuration that is installed in In addition, there are other benefits that can result in an expanded range of operating conditions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜6図は従来の軸受装置を示すもので、第1図(a
)、 (b)はそれぞれ異なった回転軸支持手段を示す
模式図、第2図(a)、 (b)はそれぞれ異なった構
造を有する軸受装置を示す模式図、第3図(a)は固有
振動数−軸受湿度特性を求めるために使用される装置各
所の概略寸法を示す模式図、第3図(b)は固有振動数
−軸受温度特性図、第4図(a)、 (b)はそれぞれ
第2図(a)、 (b)に対応させてこれらの構造を詳
細に示す模式図、第5図は回転軸系のバネ定数を決定す
る手法を説明するための反力−たわみ特性図、第6図(
a)は危険速度−バネ定数特性を求めるために使用され
る装置各所の概略寸法を示す模式図、第6図(b)は危
険速度−バネ定数特性図であり、第7,8図は本発明の
一実施例としての軸受装置を示すもので、第7図はその
概略構成を示す模式図であり、第8図はその変形例の概
略構成を示す模式図である。 1・・軸受、2・・油圧室、3・・IJ IJ−フ弁、
4・・油路、5・・油圧供給装置、6,7・・くさび、
8・・駆動装置、M′・・モータ、P・・ポンプ、R・
・リザーバ、S・・回転軸、PM・・加圧機構、SC・
・スリーブ。 復代理人 弁理士 飯−沼 義厚 第1図 第2図 第 3 図 (0) (b) 軸−之7□!、;j JL′Tθ(0C)第4図 (a) (b) 第5図 たわl、・△S 第6図 (0) (b) バネ/T W父K (kg/cm) 第7図 第8図 第1頁の続き 0発 明 者 猪谷彦太部 広島市西区観音新町四丁目6番 22号三菱重工業株式会社広島研 突所内 0発 明 者 山本道則 広島市西区観音新町四丁目6番 22号三菱重工業株式会社広島造 船所内
Figures 1 to 6 show conventional bearing devices, and Figure 1 (a
), (b) are schematic diagrams showing different rotating shaft support means, Figures 2 (a) and (b) are schematic diagrams showing bearing devices with different structures, and Figure 3 (a) is a schematic diagram showing a bearing device with a different structure. A schematic diagram showing the approximate dimensions of various parts of the device used to determine the frequency-bearing humidity characteristic, Figure 3 (b) is a natural frequency-bearing temperature characteristic diagram, and Figures 4 (a) and (b) are A schematic diagram showing these structures in detail corresponds to Figures 2(a) and (b), respectively, and Figure 5 is a reaction force-deflection characteristic diagram to explain the method for determining the spring constant of the rotating shaft system. , Figure 6 (
a) is a schematic diagram showing the approximate dimensions of various parts of the device used to determine the critical speed-spring constant characteristic, Figure 6(b) is a diagram of the critical speed-spring constant characteristic, and Figures 7 and 8 are from this book. This shows a bearing device as an embodiment of the invention, and FIG. 7 is a schematic diagram showing the schematic structure thereof, and FIG. 8 is a schematic diagram showing the schematic structure of a modification thereof. 1. Bearing, 2. Hydraulic chamber, 3. IJ IJ valve,
4. Oil path, 5. Hydraulic supply device, 6, 7. Wedge,
8...Drive device, M'...Motor, P...Pump, R...
・Reservoir, S... Rotating shaft, PM... Pressure mechanism, SC...
·sleeve. Sub-Agent Patent Attorney Yoshiatsu Iinuma Figure 1 Figure 2 Figure 3 (0) (b) Axis - No. 7 □! ,;j JL'Tθ(0C) Fig. 4 (a) (b) Fig. 5 Tawa l, ·△S Fig. 6 (0) (b) Spring/T W Father K (kg/cm) No. 7 Figure 8 Continued from page 1 0 Author: Hikotabe Igaya 4-6-22 Kannon-Shinmachi, Nishi-ku, Hiroshima City Mitsubishi Heavy Industries, Ltd. Hiroshima Research Center 0 Author: Michinori Yamamoto 4-6-6 Kannon-Shinmachi, Nishi-ku, Hiroshima City No. 22 inside Mitsubishi Heavy Industries, Ltd. Hiroshima Shipyard

Claims (1)

【特許請求の範囲】[Claims] 回転軸を支承する軸受の半径方向外周部に、同軸受を回
転軸外周面側に向かって押付ける加圧機構を連接させて
なることを特徴とする、軸受装置。
A bearing device comprising a pressure mechanism connected to a radially outer circumferential portion of a bearing that supports a rotating shaft and presses the bearing toward the outer circumferential surface of the rotating shaft.
JP8611583A 1983-05-17 1983-05-17 Bearing apparatus Pending JPS59212513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8611583A JPS59212513A (en) 1983-05-17 1983-05-17 Bearing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8611583A JPS59212513A (en) 1983-05-17 1983-05-17 Bearing apparatus

Publications (1)

Publication Number Publication Date
JPS59212513A true JPS59212513A (en) 1984-12-01

Family

ID=13877693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8611583A Pending JPS59212513A (en) 1983-05-17 1983-05-17 Bearing apparatus

Country Status (1)

Country Link
JP (1) JPS59212513A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014028427A (en) * 2012-07-30 2014-02-13 Rohm & Haas Electronic Materials Cmp Holdings Inc Method for chemical mechanical polishing layer pre-texturing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014028427A (en) * 2012-07-30 2014-02-13 Rohm & Haas Electronic Materials Cmp Holdings Inc Method for chemical mechanical polishing layer pre-texturing

Similar Documents

Publication Publication Date Title
JP6650110B2 (en) Ring rolling mill and method for producing rolled material
US5947608A (en) Conical bearing apparatus used in a motor
JPS6229649B2 (en)
US20170058907A1 (en) Load-limiting thrust bearing system and an associated method thereof
JPS59212513A (en) Bearing apparatus
US3308510A (en) Film extrusion mill
JPH07293553A (en) Tilting pad type bearing
JPH11239902A (en) Spindle supporting device for machine tool
JPS58196319A (en) Pneumatic bearing device
JPS6116208A (en) Labyrinth seal device
JP2010038183A (en) Rotating body supporting device
US4914795A (en) Mill roll with a deformable casing
JPS60124427A (en) Controlling method of rolling mill
JPH09273636A (en) Mechanical seal
JP2007513781A (en) Method and apparatus for preloading a tapered roller bearing of a rolling mill roll
JPS645115Y2 (en)
US2356278A (en) Releasable plug jacket
RU2079014C1 (en) Gas-dynamic bearing
JPH11188505A (en) Main spindle device of machine tool
JPH06142759A (en) Method and device for winding strip
JPS60130417A (en) Tension provided roll for taking up multiple bars
JP3174431B2 (en) Hydrostatic bearing
JPH0529603U (en) Spindle device
JP2006068868A (en) Pre-load variable spindle unit
JPH11244918A (en) Device for controlling/sliding a plurality of rolls in axial direction