JPS59211858A - Analytical method of copolymer of acrylic ester and methacrylic ester - Google Patents

Analytical method of copolymer of acrylic ester and methacrylic ester

Info

Publication number
JPS59211858A
JPS59211858A JP8507183A JP8507183A JPS59211858A JP S59211858 A JPS59211858 A JP S59211858A JP 8507183 A JP8507183 A JP 8507183A JP 8507183 A JP8507183 A JP 8507183A JP S59211858 A JPS59211858 A JP S59211858A
Authority
JP
Japan
Prior art keywords
ester
ratio
copolymer
methacrylic
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8507183A
Other languages
Japanese (ja)
Inventor
Shigehiko Yamaguchi
山口 茂彦
Shinichi Yokoyama
伸一 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Original Assignee
NOF Corp
Nippon Oil and Fats Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NOF Corp, Nippon Oil and Fats Co Ltd filed Critical NOF Corp
Priority to JP8507183A priority Critical patent/JPS59211858A/en
Publication of JPS59211858A publication Critical patent/JPS59211858A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/005Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods investigating the presence of an element by oxidation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To make it possible to simply and accurately analyze a composition comprising a copolymer of acrylic ester and methacrylic ester, by performing correction by using the peak areal ratio of the monomer and the dimer of acrylic ester formed by thermal decomposition. CONSTITUTION:In analyzing the compositional ratio of a copolymer of acrylic ester and methacrylic ester by thermal decomposition gas chromatography, the ratio of monomer/dimer of acrylic ester formed by thermal decomposition is calculated by multiplying the peak areal ratio of an acrylic ester monomer and a methacrylic ester monomer formed by thermal decomposition by correction coefficient calculated from a preset correction curve. The correction coefficient is calculated from the drawing obtained by using a specimen of which the compositional ratio is known. In the next step, the compositional ratio is calculated by operation shown by formula. By this method, accurate measurement is enabled regardless of the chain length of an ester group.

Description

【発明の詳細な説明】 本発明は、熱分解ガスクルマドグラフィーによるアクリ
ルTi?lエステノ♂・とメタクリル酸エステルとの共
う”11合体の新規な分析方法に関し、さらに詳しく(
ま、試料中のアクリル酸エステルの熱分解生成モノマブ
タイマー比(熱分解で生成したモノマーとダイマーのピ
ーク面積比)を用いて補正することを特徴とする、共重
合体中のアクリル酸エステルとメタクリル酸エステルの
組成比を求めるための簡便で正確な分析方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides acrylic Ti? For more details on the new analysis method for the 11-coalescence of l-ester and methacrylic acid ester, please see (
The acrylic ester in the copolymer and This invention relates to a simple and accurate analytical method for determining the composition ratio of methacrylic acid esters.

一般に、熱分解ガスクルマドグラフィーにより共重合体
の組成比を求める場合、熱分解で生成した対応するモノ
マーのビータ面積を比較して試料の組成比を求めている
Generally, when determining the composition ratio of a copolymer by pyrolysis gas chromatography, the composition ratio of a sample is determined by comparing the beater areas of corresponding monomers produced by pyrolysis.

エステル基の異なるアクリルI挾エステル共重合体また
はメタクリル酸エステル共1合体の場合は、熱分解生成
モノマーのピーク面積比から正しい組成比か得られるが
、アクリルl殿エステルとメタクリル酸エステルとの共
重合体の場合は、熱分解生成モノマーのピーク面積比か
ら求めた組成比は実際の組成比とは大きく違っており、
分析Y+’j度も悪く、分析法の改善が望まれている。
In the case of an acrylic ester copolymer or methacrylic ester copolymer with different ester groups, the correct composition ratio can be obtained from the peak area ratio of the monomers produced by thermal decomposition, but the copolymer of acrylic ester and methacrylic ester In the case of polymers, the composition ratio determined from the peak area ratio of monomers produced by thermal decomposition is significantly different from the actual composition ratio.
The analysis Y+'j degree was also poor, and improvement of the analytical method is desired.

このために従来から多くの方法が提案されており、例え
ば、試料中のアクリル酸エステルとメタクリル酸エステ
ルとの熱分解生成率を求め、これに一定の値を乗じ、組
成を分析する方法、また、既知試料により熱分解生成率
ツマ−のピーク面積比を求め、検量線を作成する方法な
どが知られている。前者は、バーケンら(ジャーナル−
オプ・クロマトグラフィー、126巻、239−247
ページ、1976年)が提案した方法であるが、熱分解
生成率を求めることは容易ではなく、単独重合体混合物
と共重合体とで乗じる値を考寛する心安があり、さらに
、アクリル酸エステルとメタクリル酸エステルとの共重
合体について、一定の値を乗じることは分析精度を悪く
するという欠点を有している。一方、後者では検量線を
実験で容易に作成できず、また、アクリル酸エステルと
メタクリル酸エステルとを多成分共重合させた試料の場
合、解析が困難であるという欠点を有している。
Many methods have been proposed for this purpose. For example, there is a method in which the thermal decomposition production rate of acrylic esters and methacrylic esters in a sample is determined, and this is multiplied by a certain value to analyze the composition. , a method is known in which the peak area ratio of the thermal decomposition product rate Zimmer is determined using a known sample and a calibration curve is created. The former is based on Birken et al.
Op Chromatography, vol. 126, 239-247.
Page, 1976), but it is not easy to determine the thermal decomposition product rate, and it is necessary to carefully consider the value to be multiplied by the homopolymer mixture and copolymer. For copolymers of and methacrylic acid esters, multiplying by a certain value has the disadvantage that analysis accuracy deteriorates. On the other hand, the latter method has the disadvantage that a calibration curve cannot be easily created by experiment, and analysis is difficult in the case of a sample made by multi-component copolymerization of acrylic acid ester and methacrylic acid ester.

pマドグラフィーを用いて、簡便に、かつ精度良く求め
る方法を開発するために鋭意研究を重ねた結果、アクリ
ル酸エステル共重合体の場合lオ熱分解によりモノマー
、ダイマーおよびトリマー等のピークが現われるが1.
メタクリル酸エステル共重合体の場合は熱分解によりモ
ノマーのピークしか現われないことに注目し、さらに、
アクリル酸エステルとメタクリルはエステルとの共重合
体の場合には、アクリル酸エステルの熱分解生成モノマ
ー/ダイマー比がメタクリル酸エステルの共重合比とあ
る特定の関係を有していることを見い出して、本発明の
分析方法を完成した。
As a result of intensive research to develop a method for easily and accurately determining the results using p-madography, we found that in the case of acrylic ester copolymers, peaks for monomers, dimers, trimers, etc. appear due to thermal decomposition. is 1.
Note that in the case of methacrylic acid ester copolymers, only the monomer peak appears due to thermal decomposition, and furthermore,
It has been found that in the case of a copolymer of acrylic ester and methacrylic ester, the monomer/dimer ratio produced by thermal decomposition of acrylic ester has a certain relationship with the copolymerization ratio of methacrylic ester. , completed the analytical method of the present invention.

すなわち、本発明は、熱分解ガスクロマトグラフィーに
よるアクリル酸エステルとメタクリル酸エステルとの共
重合体の分析方法において、熱分解で生成したアクリル
酸エステルのモノマー/ダイマー比を用いて補正するこ
とにより、アクリル酸エステルとメタクリル酸エステル
との組成比を求めることを特徴とするアクリル酸エステ
ルとメタクリル酸エステルとの共重合体の分析方法を提
供するものである。
That is, the present invention provides a method for analyzing a copolymer of acrylic ester and methacrylic ester by pyrolysis gas chromatography, by correcting using the monomer/dimer ratio of the acrylic ester produced by pyrolysis. The present invention provides a method for analyzing a copolymer of acrylic ester and methacrylic ester, which is characterized by determining the composition ratio of acrylic ester and methacrylic ester.

本発明において用いる熱分解ガスクロマトグラフィーと
は、熱分解装置とガスクロマトグラフを接続したもので
あり、この場合、熱分解装置としては高周波誘導加熱装
置が適している。
The pyrolysis gas chromatography used in the present invention is one in which a pyrolysis device and a gas chromatograph are connected, and in this case, a high frequency induction heating device is suitable as the pyrolysis device.

本発明において設定する熱分解温度は、熱分解可能な温
度であればよいが、好ましくは、400〜700Cが適
している。
The thermal decomposition temperature set in the present invention may be any temperature that allows thermal decomposition, but preferably 400 to 700C is suitable.

本発明において分析対象物となるアクリル酸エステルと
メタクリル酸エステルとの共重合体とは、エステル基に
1〜24個の炭素をもつアクリル酸エステルおよびメタ
クリル酸エステルが共重合したものであり、3成分以上
の共重合体も対象物となる。
The copolymer of acrylic ester and methacrylic ester, which is the object of analysis in the present invention, is a copolymer of acrylic ester and methacrylic ester having 1 to 24 carbon atoms in the ester group. Copolymers containing more than the components are also targets.

本発明において、試料のアクリル酸エステルとメタクリ
ル酸エステルとの組成比は、熱分解で生成したアクリル
酸エステルのモノマー/ダイマー比を用いて予め設定さ
れた補正曲線から補正係数を求め、この補正係数を、熱
分解で生成したアクリル削エステルモノマーとメタクリ
ル酸エステルモノマーとのピーク面積比に乗じて求める
ことができる。
In the present invention, the composition ratio of acrylic ester and methacrylic ester in a sample is determined by determining a correction coefficient from a preset correction curve using the monomer/dimer ratio of acrylic ester produced by thermal decomposition. can be determined by multiplying the peak area ratio of the acrylic cut ester monomer and the methacrylic acid ester monomer produced by thermal decomposition.

すなわち、試料の組成比は、 という関係式で示すことができる。In other words, the composition ratio of the sample is It can be shown by the following relational expression.

また、アクリル酸エステルの熱分解生成モノマー/ダイ
マー比と補正係数との関係は、組成比が既知の試料を用
いて求めることができ、例えば下記の条件で求めると図
−1のような曲線が得られる。
In addition, the relationship between the monomer/dimer ratio produced by thermal decomposition of acrylic ester and the correction coefficient can be determined using a sample with a known composition ratio. For example, when determined under the following conditions, a curve as shown in Figure 1 is obtained. can get.

この曲線は試料のエステル基の鎖長に関係なくほぼ一定
となるため、広範囲の試料に適用することが可能であり
、この関係を利用して補正することにより、アクリル酸
エステルとメタクリル酸エステルとの組成比を正確に求
めることができる。
This curve is almost constant regardless of the chain length of the ester group in the sample, so it can be applied to a wide range of samples, and by using this relationship to correct The composition ratio of can be determined accurately.

また、アクリル酸エステルとメタクリル酸エステルが3
成分以上共重合した試料の場合は、アクリル酸エステル
間の組成比又はメタクリル酸エステル間の組成比は、そ
れぞれ対応する熱分解生成七ツマー比から直接求め、ア
クリル酸エステルとメタクリル酸エステルとの組成比は
上記に述べた本発明の方法によって求めることで、試料
の全体の組成比を解析することができる。
In addition, acrylic acid ester and methacrylic acid ester are 3
In the case of a sample in which more than one component is copolymerized, the composition ratio between acrylic esters or methacrylic esters is directly determined from the corresponding thermal decomposition product seven-mer ratio, and the composition of acrylic ester and methacrylic ester is determined. By determining the ratio using the method of the present invention described above, the overall composition ratio of the sample can be analyzed.

本発明の分析方法は、塗料、接着剤および高分子界面活
性剤等の分野で多く使用されるアクリル酸エステルとメ
タクリル酸エステルとの共重合体の組成を、簡便に精度
よく分析できるので、製品の分析、品質管理に好適であ
る。以下、実施例によって本発明を具体的に説明するが
、本発明は、これらの実施例に限定されるものではない
The analysis method of the present invention can easily and accurately analyze the composition of copolymers of acrylic esters and methacrylic esters, which are often used in the fields of paints, adhesives, and polymeric surfactants. Suitable for analysis and quality control. EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited to these Examples.

実施例1 表−1に示す組成比を有するアクリル酸エチル(EA)
とメタクリル酸ブチル(BMA)との共重合体を試料と
して、本発明の方法を用いて分析した。
Example 1 Ethyl acrylate (EA) having the composition ratio shown in Table-1
A copolymer of BMA and butyl methacrylate (BMA) was analyzed using the method of the present invention as a sample.

なお、各試料は下記のようにして合成した。In addition, each sample was synthesized as follows.

小型フラスコに、かく拌機、コンデンサー、温度相、チ
ッソ導入管および滴下R−)をとりつけた絡うスコに、
キシレン(s o、 Of )、EAとHMAの七ツマ
ー混合液(78,4t )を入れた。
A small flask is equipped with a stirrer, a condenser, a temperature phase, a nitrogen inlet pipe, and a dropping R-).
Xylene (so, Of) and a 7-mer mixture of EA and HMA (78.4 t) were added.

浴液をかく拌し、反応系の温度を120°Cに保ちなが
ら、滴下ロートにパーブチル1(1−ブチルパーオキシ
インプロピルカーiトネートー日本油口旨■製)161
を含むキシレン溶液を入れ、フラスコ内に1時間で滴下
した。滴下終了後、3時1;;]、120 ’0の温度
で反応系を保持し、重合を終えた。
While stirring the bath solution and maintaining the temperature of the reaction system at 120°C, add 161% of perbutyl 1 (1-butylperoxyinpropylcartonate manufactured by Nippon Yuguchi) to the dropping funnel.
was added dropwise into the flask over 1 hour. After the dropwise addition was completed, the reaction system was maintained at a temperature of 120'0 at 3:00 to complete the polymerization.

試)iを下記の条件で熱分解したときのパイルグラムの
1 jf’ljを図−2に示す。
Trial) Figure 2 shows the pilegram 1jf'lj when i is thermally decomposed under the following conditions.

熱分解装置:JHP−2型 熱分解温度: 590 ’0 カラム: F F A P (15% )、2mキャリ
アーガス:N2’30罰/分 担体:ユニボー)HP(80〜100メツシユ)温度:
50°C→250℃、lO℃/分、昇温図−2中のfi
lのピークはEAモノマー、(2)のピークはBMAモ
ノマー、(3)および(4)のピークはEAダイマーの
ピークである。
Pyrolysis device: JHP-2 type Pyrolysis temperature: 590'0 Column: FFAP (15%), 2m Carrier gas: N2'30 Punishment/Partner: Unibo) HP (80-100mesh) Temperature:
50°C → 250°C, 10°C/min, fi in temperature rise diagram-2
The 1 peak is the EA monomer, the (2) peak is the BMA monomer, and the (3) and (4) peaks are the EA dimer peaks.

表−1に、試料の組成比と熱分解生成上ツマー比((1
)と(2)のピーク面積比)から求めた値、EAの熱分
子が生成モノマー/ダイマー比(tl+ / (f3’
l 十+413)、図−1より求めた補正係数および分
析値(補正後の値)を示す。
Table 1 shows the composition ratio of the sample and the pyrolysis product upper Zimmer ratio ((1
) and (2) peak area ratio), the thermal molecules of EA produce the monomer/dimer ratio (tl+ / (f3'
1 + 413), the correction coefficient and analysis value (value after correction) obtained from Figure 1 are shown.

表−1から、熱分解生成上ツマー比から求めた値は試料
の組成比と大きく異っているが、本発明の方法により得
た分析値は試料の組成比と良く一致していることがわか
る。
From Table 1, it can be seen that the values obtained from the Zummer ratio of thermal decomposition products are significantly different from the composition ratio of the sample, but the analytical values obtained by the method of the present invention are in good agreement with the composition ratio of the sample. Recognize.

−λ 実ノxli1ζ112 ル(EA)とメタクリル14′!エチル(EMA)とメ
タクリル1俊ブチル・(BM A)との3成分からな−
る共重合体を、実h1り例1の方法に準じて合成し、各
試、+1. v(ついてすh&例]と同(・ヒの条件で
分析を行なった。♂〈−2に滅相の組成比と熱分解生J
j′yモノマー比から求il)た11・しおよび分析値
を示す。分析値を24(め7.、 lL7.4 、 E
 Aと■弓MAのシ′II酸比は、実方位例1のJす合
と凹扮して求め、また、E M AとB M Aの組成
比は対応する熱分屓生成七ツマー比よりjα接に求 め
ブこ。
-λ Real xli1ζ112 Lu (EA) and Methacrylic 14'! It consists of three components: ethyl (EMA) and methacrylic butyl (BMA).
A copolymer was synthesized according to the method of Example 1, and +1. Analyzes were conducted under the same conditions as V (Tsukusu h&example) and (・H).
11 calculated from the j'y monomer ratio and the analytical values are shown. The analysis value was 24 (me7., lL7.4, E
The Si' II acid ratios of A and ■ Bow MA are determined by concave J sum of actual orientation example 1, and the composition ratios of E M A and B M A are calculated from the corresponding thermal fractionation formation seven mer ratios. Ask for jα tangent.

3成分からなる共111合体の場合も、本発明の方法に
よりイて4た分析葡は試料のa酸比と良く一致している
Even in the case of a co-111 complex consisting of three components, the a-acid ratio obtained by analysis according to the method of the present invention is in good agreement with the a-acid ratio of the sample.

実施例3 表−3に示す組成比を有するアクリル59工壬ル(EA
)とメタクリル酸へキサデカニル(HXMA)とメタク
リル酸へブタデカニル(HP M A )とからなる共
重合体を、実施例1と同オ′)の条件で、実施例2の方
法に準じて分析した。表−3に試料の組成比と分析値を
示す。
Example 3 Acrylic 59 mold (EA) having the composition ratio shown in Table-3
), hexadecanyl methacrylate (HXMA), and hexadecanyl methacrylate (HPMA) were analyzed according to the method of Example 2 under the same conditions as in Example 1. Table 3 shows the composition ratio and analysis values of the sample.

試料の組成比と分析値とは良く一致している。The composition ratio of the sample and the analytical value are in good agreement.

表−3Table-3

【図面の簡単な説明】[Brief explanation of the drawing]

図−1は輔正係数とアクリル酸エステルの熱分j宵生成
モノマー/タイマー比とσ月ダー1係曲扉である。 図−2は、実施側」1におけるパイルグラムであり、+
j従袖は強度を、4A軸は保持詩画を表わす。図イマー
のヒータである。 0    510    15    025    
30(1)  (2)
Figure 1 shows the positive coefficient, the thermal component of acrylic acid ester, the night-forming monomer/timer ratio, and the curved door. Figure-2 is the pilegram on the implementation side "1", +
j The subordinate sleeve represents strength, and the 4A axis represents retention poetry. Figure is the heater of the timer. 0 510 15 025
30 (1) (2)

Claims (1)

【特許請求の範囲】[Claims] 1 熱分解ガスクルマドグラフィーによるアクリル酸エ
ステルとメタクリル酸エステルとの共重合体の分析方法
において、熱分解で生成したフ゛クリル淑エステルのモ
ノマーと夕“イマーのピーク而イエー比を用いて補正す
ることにより、アクリル酸エステルとメタクリル酸エス
テルとの組成比を求めることを特徴とするアクリル酸エ
ステルとメククリ/し酸エステルとの共重合体の分析方
法。
1. In the analysis method of a copolymer of acrylic ester and methacrylic ester by pyrolysis gas chromatography, correction is made using the peak ratio of the monomer and monomer of pyrolytic ester produced by pyrolysis. A method for analyzing a copolymer of an acrylic acid ester and a methacrylic acid ester, the method comprising determining the composition ratio of an acrylic acid ester and a methacrylic acid ester.
JP8507183A 1983-05-17 1983-05-17 Analytical method of copolymer of acrylic ester and methacrylic ester Pending JPS59211858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8507183A JPS59211858A (en) 1983-05-17 1983-05-17 Analytical method of copolymer of acrylic ester and methacrylic ester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8507183A JPS59211858A (en) 1983-05-17 1983-05-17 Analytical method of copolymer of acrylic ester and methacrylic ester

Publications (1)

Publication Number Publication Date
JPS59211858A true JPS59211858A (en) 1984-11-30

Family

ID=13848386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8507183A Pending JPS59211858A (en) 1983-05-17 1983-05-17 Analytical method of copolymer of acrylic ester and methacrylic ester

Country Status (1)

Country Link
JP (1) JPS59211858A (en)

Similar Documents

Publication Publication Date Title
Sato et al. Application of spin trapping technique to radical polymerization, 14. Initiation reaction of vinyl monomers with the tert‐butoxyl radical and evaluation of monomer reactivities
Edeleva et al. Impact of side reactions on molar mass distribution, unsaturation level and branching density in solution free radical polymerization of n-butyl acrylate under well-defined lab-scale reactor conditions
Voorhaar et al. Cu (0)-mediated polymerization of hydrophobic acrylates using high-throughput experimentation
US5073615A (en) High temperature heat resistant acrylics
Shim et al. Simultaneous control over the molecular weight and tacticity of poly (vinyl acetate) using a low-temperature photoinitiated RAFT process in fluoroalcohols
Heidarzadeh et al. Maximizing macromonomer content produced by starved-feed high temperature acrylate/methacrylate semi-batch polymerization
Buback et al. Detailed analysis of termination kinetics in radical polymerization
JPS61247712A (en) Emulsion polymerization method and polymer formed by said method
JPS59211858A (en) Analytical method of copolymer of acrylic ester and methacrylic ester
Hu et al. Thermal degradation kinetics of poly (n-butyl acrylate) initiated by lactams and thiols
Shaikh et al. A new high‐throughput approach to measure copolymerization reactivity ratios using real‐time FTIR monitoring
CN113336882B (en) Process for preparing PMMA resin with narrow molecular weight distribution by adopting intermittent bulk polymerization method
Buback et al. High‐pressure free‐radical copolymerization of ethene‐methacrylic acid and of ethene‐acrylic acid, 1.(Meth) acrylic acid reactivity ratios
Czech et al. Use of pyrolysis and gas chromatography for the determination of acrylic acid concentration in acrylic copolymers containing carboxylic groups
Dürr et al. Determining the Mark–Houwink parameters of nitrile rubber: a chromatographic investigation of the NBR microstructure
Badel et al. Melt grafting of polymethyl methacrylate onto poly (ethylene‐co‐1‐octene) by reactive extrusion: Model compound approach
Jones et al. Pyrolysis/gas chromatography applied to problems of sequence analysis and microstructure in copolymers
Vlček et al. Anionic polymerization of acrylates. II. Polymerization of 2‐ethylhexyl acrylate initiated by butyllithium/lithium‐tert‐butoxide system in tetrahydrofuran and its mixtures with toluene
Doudin et al. Reactive processing of polymers: Structural characterisation of products by 1H and 13C NMR spectroscopy for glycidyl methacrylate grafting onto EPR in the absence and presence of a reactive comonomer
CN105683224A (en) Method for polymerising meth(acrylic) acid in a solution, polymer solutions obtained and uses thereof
JPS6227662A (en) Method for analysis of vinyl type terpolymer
Semchikov et al. The effect of monomer preferential solvation in radical copolymerization: Reactivity ratios and compositional distribution
Klein et al. Synthesis and characterization of high molecular weight poly (tert. butyl acrylate)
JP2017178975A (en) Acrylic resin, molded body, light guide body and manufacturing method of acrylic resin
JP2017500412A (en) Process for producing short-chain macromolecules based on acrylate monomers