JPS59211585A - Electrolytic oxidation of xylene - Google Patents

Electrolytic oxidation of xylene

Info

Publication number
JPS59211585A
JPS59211585A JP58084849A JP8484983A JPS59211585A JP S59211585 A JPS59211585 A JP S59211585A JP 58084849 A JP58084849 A JP 58084849A JP 8484983 A JP8484983 A JP 8484983A JP S59211585 A JPS59211585 A JP S59211585A
Authority
JP
Japan
Prior art keywords
xylene
nitrate
oxygen
acetonitrile solvent
electrolytically
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58084849A
Other languages
Japanese (ja)
Inventor
Yoshiharu Matsuda
松田 好晴
Tomio Nishiki
西木 富雄
Masataka Izuhara
出原 正孝
Katsuta Nakagawa
中川 勝太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sugai Chemical Industry Co Ltd
Original Assignee
Sugai Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sugai Chemical Industry Co Ltd filed Critical Sugai Chemical Industry Co Ltd
Priority to JP58084849A priority Critical patent/JPS59211585A/en
Publication of JPS59211585A publication Critical patent/JPS59211585A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain tolualdehyde or methyl benzyl nitrate at a high conversion by oxidizing electrolytically xylene in an acetonitrile solvent in the presence or absence of oxygen by using a platinum anode and an electrolyte of metallic nitrate. CONSTITUTION:Xylene is electrolytically oxidized in an acetonitrile solvent by using platinum for an anode and metallic nitrate as an electrolyte to be dissolved in an electrolytic soln. while supplying oxygen to the acetonitrile solvent, by which tolualdehyde is obtd. Methyl benzyl nitrate is obtd. by oxidizing electrolytically xylene in the acetonitrile solvent in nitrogen atmosphere or non- supply of oxygen in the above-mentioned method. The temp. of the electrolytic bath in the synthesis of said tolualdehyde is preferably as low as about <=45 deg.C and the concn. of the metallic nitrate in the electrolyte is preferably about >=0.1mol/l. The temp. of the electrolytic bath in the production of the methyl benzyl nitrate is preferably an ordinary temp. or relatively high temp. and the moisture in the reaction vessel is preferably about <=5vol%.

Description

【発明の詳細な説明】 本発明は新規なキシレンの電解酸化方法に係る。[Detailed description of the invention] The present invention relates to a novel method for electrolytic oxidation of xylene.

更に詳しくはキシレンをアセトニトリル溶媒中で、且つ
限定された条件を適宜採用することによっC電解酸化し
、選択的にトルアルデヒド及び/′又(J硝酸メチルベ
ンジルエステルを製造する方法に関する。
More specifically, the present invention relates to a method for selectively producing tolualdehyde and/' or (J methyl benzyl nitrate ester) by electrolytically oxidizing xylene in an acetonitrile solvent and appropriately adopting limited conditions.

硝酸メチルベンジルエステルは0す性1・で加水分解す
ることにより、容易、且つ定量的にメチルヘンシルアル
コールを得ることができる。
Methylbenzyl nitrate ester can be easily and quantitatively obtained by hydrolyzing it at 1.0%.

1〜ルアルデヒト並びにメヂルベンシル)′ルニ1−ル
は各種有機化学品の中間物として広い用途を右している
。例えば、トルアルデヒドはポリマー安定剤、重合用モ
ノマー等機能性高分子分野、史には殺菌、抗菌等の性能
を有づる農・医桑用中間物等、フン・インケミカル分野
への応用なと広い範囲で用いられ、又、メチルペンジル
アル=+  ルし同様に溶剤、染料、医・農薬、可塑剤
等々、広汎な用途を有している。
1-rualdehyde and methylbensyl)'runyl has wide application as an intermediate for various organic chemicals. For example, tolualdehyde has been used in the field of functional polymers, such as polymer stabilizers and monomers for polymerization, and has been used in the field of feces and chemicals, such as agricultural and medical intermediates with sterilization and antibacterial properties. It is used in a wide range of applications, and like methylpenzyl alcohol, it has a wide range of uses, such as solvents, dyes, medicines and agricultural chemicals, plasticizers, etc.

これらの化合物の合成方法として、種々の手法が提案さ
れている。
Various methods have been proposed as methods for synthesizing these compounds.

例えば、これらの化合物の一般的製造方法としてはメチ
ル置換基を塩素化して、対応するヘンジルクl」ライド
とヘンジリデンクロライドの)化合物とし、加水分解す
る方法や、メチル置換基の部分酸化により合成する方法
である。
For example, common methods for producing these compounds include chlorinating the methyl substituent to produce the corresponding henzyl chloride and henzylidene chloride compounds, and hydrolyzing them, or synthesizing them by partial oxidation of the methyl substituent. It's a method.

曲名方法CJ I程的に複雑であり、且つ副生する塩酸
ガスの回収等の多くの問題があり、実際的に好ましい工
業的製造方法とは言い難い。又、後者方法は気相酸化方
法においては比較的高温での触媒的酸化方法であり、液
相酸化方法に83いては有(幾溶媒、主として無水酢酸
中での触媒的酸化方法であるが、これら2方法共、共通
して言える欠点としては使用される触媒がほとlυどの
場合、高価であること、及び、これら高価な触媒を用い
ても選択率が低いが、或いは転化率が悪く、はとんどの
場合、これらの反応では主生成物が、カルボキシル基ま
で酸化され、フェニルアルデヒド類や、ベンジルアルコ
ール類等は、この反応での不純物として副生ずるにJぎ
ず、これも又、工業的製造方法と言い難いものであった
It is as complicated as the title Method CJ I, and there are many problems such as recovery of by-product hydrochloric acid gas, so it is difficult to say that it is a practically preferred industrial production method. In addition, the latter method is a catalytic oxidation method at a relatively high temperature in the gas phase oxidation method, and in the liquid phase oxidation method, it is a catalytic oxidation method in several solvents, mainly acetic anhydride. The common disadvantages of these two methods are that the catalysts used are expensive in most cases, and even when these expensive catalysts are used, the selectivity is low or the conversion rate is poor. In most cases, the main product in these reactions is oxidized to the carboxyl group, and phenylaldehydes, benzyl alcohols, etc. are not only produced as by-products as impurities in this reaction, but they are also used industrially. The manufacturing method was difficult to describe.

このため、これら芳香族アルデヒドや芳香族アルコール
を得るための方法としては、合成方法の改良よりもむし
ろ、これらを含有した部分酸化反応の混合生成物から種
々の手段を駆使することにより、分離精製しC得る方法
に力を汀いCいた、。
Therefore, rather than improving the synthesis method, the method for obtaining these aromatic aldehydes and aromatic alcohols is to separate and purify the mixed product of partial oxidation reaction containing them by making full use of various methods. I was focusing on how to get it.

例えばキシレンからのトルアルデじ1〜及び/又はメチ
ルベンジルアルコールを寄る場合、HAの存在下、酢酸
溶媒中、コバルト、クロム、モリブデン、タングステン
、バナジウム、マンガン+lIf+水銀等の化合物を触
媒として用いて酸化し、その反応生成物から各種の不純
物、異性体の物理的性質の差を利用して分離する方法が
とられCいた。
For example, when tolualde and/or methylbenzyl alcohol is prepared from xylene, it is oxidized in the presence of HA in an acetic acid solvent using a compound such as cobalt, chromium, molybdenum, tungsten, vanadium, manganese + lIf + mercury as a catalyst. A method was adopted to separate various impurities and isomers from the reaction product by utilizing differences in physical properties.

しかしながら、これらの方法は前)ホした如く、転化率
1選択率が非常に悪く、実際的、且つ工業的製造方法と
は言い難い方法であった。
However, as mentioned above, these methods had very poor conversion rates and selectivity, and could hardly be called practical and industrial production methods.

これらの状況から、本発明者等はこれら問題点を解決し
、これら有意な化合物の新規な工業的製造方法を確立す
べく、鋭意研究を重ね、ついに本発明を完成した。
Under these circumstances, the present inventors conducted extensive research in order to solve these problems and establish a new industrial production method for these significant compounds, and finally completed the present invention.

即ち、本発明【よ、 1) アセトニトリル溶媒中、陽極に白金を用いて、且
つ電解液に溶解させる電解質として硝酸金属塩を用い、
酸素の存在下、又は非存在下でキシレンを電解酸化する
キシレンの電解酸化方法であり、 2) アセ1〜二1〜リル溶媒中に酸、累を供給しつつ
、キシレンを電解酸化し、トルアルデヒドをjJIJ 
’Aする前述1)の方法。
That is, the present invention [1] Using platinum as an anode in an acetonitrile solvent and using a nitrate metal salt as an electrolyte dissolved in an electrolytic solution,
This is an electrolytic oxidation method for xylene in which xylene is electrolytically oxidized in the presence or absence of oxygen. jJIJ aldehyde
'A method of 1) above.

3) アセ1へ二1〜リル溶媒中、M水雰囲気下又は酸
素不供給下、キシレンを電W(酸化し、硝酸メチルベン
ジルエステルを製造する前述1)の方法。
3) The method of 1 above, in which xylene is oxidized to produce methyl benzyl nitrate in a water atmosphere or in the absence of oxygen supply in an acetate solvent.

−Cある。-There is C.

更に訂9111に述べるならば、トルアルデヒドの合成
にJ3いては、特に酸素加圧下でなくとも良く、単なる
曝気或いは液中への通気下でも良い。又、用いられる酸
素は純粋な酸素ガスのみてなく、空気又(,1反応に不
;′1モ性な窒素酸いは炭酸ガス等のガスて布状されC
いても艮い。
Furthermore, in accordance with Rev. 9111, synthesis of tolualdehyde in J3 does not necessarily need to be carried out under oxygen pressure, but may be carried out simply by aeration or by aeration into the liquid. In addition, the oxygen used is not only pure oxygen gas, but also air or gases such as monomorphic nitrogen acid or carbon dioxide, which are incompatible with one reaction.
It doesn't matter if it's there.

電iW浴温度は通;;:1、常温−C行なわれ、特に規
制は4fいが酸素2有万スlli気時は比較的低温が好
ましく/l!1℃以下、々/ d:L < 1,1.1
0°G以下に保ちつつ電MY nu化づる方法がよい。
The temperature of the electric iW bath is normal: 1, room temperature -C, especially the regulation is 4F, but when there is oxygen 2 million slili, a relatively low temperature is preferable /l! 1℃ or less, d: L < 1, 1.1
A good method is to maintain the temperature below 0°G while changing the current to MYnu.

陽極電位については、標準U水電極〈以下SCEという
)に対し 1.4ポルt−vsscE以上になると、本
発明の効果が減少して電流効率か低トシ−(未反応が多
くなり、又2.8ポルhvsscl三以十になるとトル
アルデヒドの選択率が減少づる。
Regarding the anode potential, when it becomes 1.4 port t-vsscE or more with respect to the standard U water electrode (hereinafter referred to as SCE), the effect of the present invention decreases and current efficiency or low tossie (unreacted material increases, and When the .8 pol hvsscl is 30 or more, the selectivity of tolualdehyde decreases.

電解液に溶解させる電解質である硝酸金属塩の電解槽中
のモル濃度は0.1モル/ILX十Cあれば良く、0.
1モル/′1以■ではトルアルデヒ1〜の選択率が低ト
する。又、電解液に溶解させる好ましい電解質どしては
硝酸銀の外、硝酸ニラクル、硝酸鉄等の硝酸金属塩をあ
げることが−CMる。
The molar concentration of metal nitrate, which is an electrolyte to be dissolved in the electrolytic solution, in the electrolytic cell should be 0.1 mol/ILX 10C, and 0.1 mol/ILX1C.
When the amount is less than 1 mol/'1, the selectivity of tolualdehy 1~ becomes low. In addition to silver nitrate, preferred electrolytes to be dissolved in the electrolytic solution include metal nitrates such as niracle nitrate and iron nitrate.

又、電解槽中の水分は極度に太きく1ヘルアルデヒドの
生成率に影響を与えることはないが、比較して少ない方
が良い。
Further, although the water content in the electrolytic cell is extremely large and does not affect the production rate of 1-heraldehyde, it is better to have less water in comparison.

一方、加水分解にJ、リメチルヘンジルアルニ1−ルを
定量的に得ることのできる硝酸メチルペンシルエステル
を製造する場合には、酸素の非存右ドで行なうのが好ま
しいが、反応系中から完全に酸素を除去J゛る等の特別
な方法をあらかじめとる必要はなく、酸素含有気体での
強制的1■気方法をとらなりればJ:い。
On the other hand, in the case of producing methyl nitrate pencil ester, which can quantitatively yield J, trimethylhenzylalnylene, by hydrolysis, it is preferable to carry out the process in the absence of oxygen; It is not necessary to take any special method in advance such as completely removing oxygen from the gas, but it is possible to use a forced one-gas method using an oxygen-containing gas.

又、電解槽の温度は特に限定7る必要はないが空気中で
行なう場合には溶存酸素の増加を防ぐ意味からも、積極
的に冷却等の処置はゼず、常温1>J至は比較的高温が
よい。
In addition, the temperature of the electrolytic cell does not need to be particularly limited7, but when conducting in air, active measures such as cooling are not required to prevent an increase in dissolved oxygen. Target temperature is good.

又、反応槽中の水分は多聞に存在しない方が良く、9r
ましくは5容量%以下が良い。
Also, it is better that there is no moisture in the reaction tank, and 9r
Preferably, it is 5% by volume or less.

本発明を更に詳細に説明するため、以下に実施例をあげ
て説明するが、本発明の範囲はこれら実施例のみに限定
されるものではない。
EXAMPLES In order to explain the present invention in more detail, Examples will be given below, but the scope of the present invention is not limited only to these Examples.

実施例 中火にガラスフリット隔膜を設()た全容量50m1の
ビーカー型電解槽を用い、電極として陽極に白金、陰極
に炭素電極を用い、電極に溶媒アレトニ1−リルを15
1.及び電解液に溶解させる電解質を所定濃度になるよ
う加え、更に陽極に基質として0−キシレンを0.00
5モル/15m1−アセトニトリルどなるよう加え、恒
温槽内で一定温度に電解槽を保温しながら所定の定電位
電解酸化反応をおこなった。
Example A beaker-type electrolytic cell with a total capacity of 50 m1 equipped with a glass frit diaphragm on a medium flame was used, a platinum electrode was used as the anode, a carbon electrode was used as the cathode, and 15% of the solvent aretonyl-1-lyl was used as the electrode.
1. and an electrolyte to be dissolved in the electrolytic solution to a predetermined concentration, and 0-xylene was added as a substrate to the anode at a concentration of 0.00.
5 mol/15 ml of 1-acetonitrile was added, and a predetermined constant potential electrolytic oxidation reaction was carried out while keeping the electrolytic cell at a constant temperature in a constant temperature bath.

実施例1〜21まては、反応開始前15分より反応終了
迄、酸素又は空気曝気しなからJ3こなった。
In Examples 1 to 21, J3 was carried out without oxygen or air aeration from 15 minutes before the start of the reaction until the end of the reaction.

反応生成物はガスクロマド法により分υ1し、(の結果
を生成比で示した。
The reaction product was separated into υ1 parts by the gas chromatography method, and the results are shown as the production ratio.

実施例1〜4 電解液に溶解させる電解質である硝酸銀を0.6モル/
′1−アセトニ1〜リルとなるように加え、所定の陽極
電位を用いる定電位電@法により、電気量965ク一ロ
ン通電した後分析した。反応温度は注1)実施例3は空
気曝気をした。
Examples 1 to 4 Silver nitrate, which is an electrolyte, is dissolved in an electrolytic solution at a concentration of 0.6 mol/
'1-acetonyl-1-lyl was added and analyzed after applying a current of 965 corons using a constant potential method using a predetermined anode potential. Reaction temperature: Note 1) In Example 3, air aeration was performed.

注2)Aはトルアルデヒド、Bは硝酸メチルベンジルエ
ステルであり、以下略してA、F3で記載する。
Note 2) A is tolualdehyde and B is methylbenzyl nitrate, which will be abbreviated as A and F3 below.

実施例5〜9 陽極電位を2.3ボルトvsS CEに保ちながら電解
液に溶解させる電解質の量の影響をみた。他の実施例1
0〜12 電解槽を所定の温度に保ち、陽極電位を2,3ボルトv
s3 CLとし、他は実施例1と同様の条件で反応をお
こなった。その結果を次頁の表に示す。
Examples 5-9 The effect of the amount of electrolyte dissolved in the electrolyte was examined while maintaining the anode potential at 2.3 volts vs S CE. Other example 1
0 to 12 Keep the electrolytic cell at a predetermined temperature and set the anode potential to 2 or 3 volts.
s3 CL, and the other conditions were the same as in Example 1. The results are shown in the table on the next page.

実施例13〜17 陽極電位を2.3ボルトvsS CE 、電解槽の温度
を30℃とし、溶媒アセトニトリル中の水分量を種々変
えて反応をおこなった。他の来月は実施例1に実施例1
8〜19 電解液に溶解させる電解質である(irl酸金属塩の硝
酸イAンの温度を0.6モル/′1に調整し、陽極電位
を2.3ポルhvsSCEに保ち、硝酸金属塩の種類を
変えた他は実施例1と同様の条件で反応を実施例20〜
21 陽極電位2.3ポル1−vsSCL、電M槽ンFiA度
を30°Cに保ちながら、基質を変えた仙は実施例1と
同実施例22〜23 ?b解槽内への酸素曝気をしない、或いは窒素気流でお
おった以外の条件は実施例4と同様の条件で反応をおこ
なった。その結果を小人に承り、1実施例24〜26 硝酸銀の濃麿を1.0モル/用−ノ7し1−二1〜リル
Examples 13 to 17 Reactions were carried out at an anode potential of 2.3 volts vs S CE , an electrolytic cell temperature of 30° C., and various amounts of water in the solvent acetonitrile. Other next month will be Example 1
8-19 It is an electrolyte to be dissolved in the electrolytic solution (adjust the temperature of the nitrate ion of the irl acid metal salt to 0.6 mol/'1, keep the anode potential at 2.3 pol hvsSCE, Examples 20~
21 Example 1 and Examples 22 to 23 where the substrate was changed while keeping the anode potential at 2.3pol 1 vs SCL and the electric field temperature at 30°C? b The reaction was carried out under the same conditions as in Example 4, except that the inside of the cracking tank was not aerated with oxygen or was covered with a nitrogen stream. The results were reported to the dwarf, and 1.0 mol/concentration of silver nitrate was added to Example 24-26.

陽極電位2.1ボルトVSS CE 、基質0−キシレ
ン(1,005モル、陽極に白金(2,0cm2)を用
いて、電解槽の温度を変えて陽極電位を一定にして、定
電位電解をおこなった。その結果を上表に示す。
Using an anode potential of 2.1 volts VSS CE, a substrate of 0-xylene (1,005 mol), and platinum (2.0 cm2) for the anode, constant potential electrolysis was performed by changing the temperature of the electrolytic cell and keeping the anode potential constant. The results are shown in the table above.

実施例27 陽極電位を2.1小ルトvs3 Cト、電解液に溶解さ
せる電解質の硝酸イオン11!度を1.0モル/′1−
アセトニトリル、電解槽温度30°C2基i’′!i 
o−キシレン0.005モルの条件で反応をおこない、
硝酸金属塩の種類の影響をみIc Qその結果について
下表実施例28〜29 陽極電位2.3ポル1−VSS CE 、電解槽温度3
0℃。
Example 27 The anode potential is 2.1% vs. 3%, and the nitrate ion of the electrolyte dissolved in the electrolyte is 11%! 1.0 mol/'1-
Acetonitrile, electrolytic cell temperature 30°C 2 groups i''! i
The reaction was carried out under the conditions of 0.005 mol of o-xylene,
Look at the influence of the type of nitrate metal salt Ic Q The results are shown in the table below Examples 28 to 29 Anode potential 2.3 pol 1-VSS CE, electrolytic cell temperature 3
0℃.

電解液に溶解させる電解質として硝酸銀0.6モル/′
1−アセ[・ニトリルに調整し、溶媒アセ1〜二[〜リ
ル中の水分量を種々変えた他は実施例22と同様の条イ
′1で反応をおこなった。その結果について下表に示す
Silver nitrate 0.6 mol/' as an electrolyte dissolved in the electrolytic solution
The reaction was carried out in the same manner as in Example 22, except that the reaction mixture was adjusted to 1-acenitrile and the water content in the solvent ace1-2[-nitrile was varied. The results are shown in the table below.

実施例30〜31 基質を変えた以外は実施例22にLI’−U−i’定電
位電解をおこなった。その結果を1・表に承り。
Examples 30 to 31 LI'-U-i' constant potential electrolysis was carried out in the same manner as in Example 22, except that the substrate was changed. I received the results in 1. Table.

Claims (1)

【特許請求の範囲】 1)アセトニトリル溶媒中、陽極に白金を用いて、且つ
電解液に溶解させる電解質として硝酸金Its JJA
を用い、酸素の存在下、又は非存在下でキシレンを電解
酸化することを特徴とするキシレンの電解酸化方法。 2)アセトニトリル溶媒中に酸素を供給しつつキシレン
を電解酸化し、l−ルアルデヒドを製造することを特徴
とする特許請求の範囲第1項記載の発明。 3)アセトニトリル溶媒中、窒素雰囲気下又は酸素不供
給下、キシレンを電解酸化し、硝酸メチルベンジルエス
テルを製造することを精微とするfi胎請求の範囲第1
項記載の発明。
[Claims] 1) In an acetonitrile solvent, using platinum as an anode and as an electrolyte dissolved in an electrolytic solution, gold nitrate Its JJA
1. A method for electrolytically oxidizing xylene, which comprises electrolytically oxidizing xylene in the presence or absence of oxygen. 2) The invention according to claim 1, characterized in that xylene is electrolytically oxidized while supplying oxygen to an acetonitrile solvent to produce l-raldehyde. 3) The method of claim 1 is to electrolytically oxidize xylene in an acetonitrile solvent under a nitrogen atmosphere or in the absence of oxygen supply to produce methylbenzyl nitrate ester.
The invention described in Section 1.
JP58084849A 1983-05-14 1983-05-14 Electrolytic oxidation of xylene Pending JPS59211585A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58084849A JPS59211585A (en) 1983-05-14 1983-05-14 Electrolytic oxidation of xylene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58084849A JPS59211585A (en) 1983-05-14 1983-05-14 Electrolytic oxidation of xylene

Publications (1)

Publication Number Publication Date
JPS59211585A true JPS59211585A (en) 1984-11-30

Family

ID=13842243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58084849A Pending JPS59211585A (en) 1983-05-14 1983-05-14 Electrolytic oxidation of xylene

Country Status (1)

Country Link
JP (1) JPS59211585A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111270261A (en) * 2020-03-16 2020-06-12 万华化学集团股份有限公司 Method for preparing 4-acetoxyl-2-methyl-2-butenal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111270261A (en) * 2020-03-16 2020-06-12 万华化学集团股份有限公司 Method for preparing 4-acetoxyl-2-methyl-2-butenal

Similar Documents

Publication Publication Date Title
EP3297995B1 (en) Process for the preparation of an aromatic dicarboxylic acid
CN107148415A (en) The method for preparing glyceric acid carbonic ester
CN111910209A (en) Electrochemical synthesis method of 3-arylseleno quinolinone compound
EP3297996B1 (en) Process for the purification of a carboxylic acid-containing composition
GB2080335A (en) Electrochemical synthesis of organic compounds
Navarro et al. Synthesis of Aldehydes, Ketones and Carboxylic Acids by Selective Oxidations of Alcohols Using a Polypyridyl Complex of Ruthenium (IV)
JPS59211585A (en) Electrolytic oxidation of xylene
Vasudevan et al. Electrosynthesis of dimethylsulfone from dimethylsulfoxide at a dimensionally stable anode
JPS60100536A (en) Preparation of 2-(p-isobutylphenyl)propionic acid
Koshechko et al. Electrochemical conversion of carbon dioxide catalysed by benzil
CN113460994B (en) Nano material and preparation method thereof, and catalytic oxidation method of cycloparaffin
Vijayabharathi et al. A comparative study of two stage electrochemical oxidation of Toluene, P-Ethoxy toluene, O-Chlorotoluene and P-Isopropyl toluene using Ce4+/Ce3+... medium
JPS6363633A (en) Production of 3,3,3-trifluoropropanal
JP2009184950A (en) Method for producing aliphatic dicarboxylic acid compound
JPS6342711B2 (en)
JP4023255B2 (en) Method for producing dicarboxylic acid and method for producing catalyst used therefor
JP2947967B2 (en) Method for producing acetaldehyde
JPH0598481A (en) Method for synthesizing cuminaldehyde
CN115786942A (en) Electrochemical method for preparing N-aryl sulfimide compound
JPS6039183A (en) Manufacture of terephthalaldehyde
CN116180109A (en) Method for preparing glycollic acid by electrolyzing oxalic acid
JPH1112776A (en) Modifying electrode and electrolytic oxidation method using this modifying electrode
CN111945181A (en) Electrochemical synthesis method of 3-alkylselenoquinolinone compound
JPH05195272A (en) Production of para-methoxystyrene
JPS632249B2 (en)